1
|
Wang D, Ren YM, Guo YX, Zhang ZQ, Sui H, Zhang HY. The effects of baicalin in depression: preclinical evidence construction based on meta-analysis. Front Pharmacol 2024; 15:1425094. [PMID: 39114351 PMCID: PMC11303225 DOI: 10.3389/fphar.2024.1425094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Background Depression manifests as a mental disorder characterized by a low mood, suicidal tendencies, disturbances in sleep-wake cycles, psychomotor agitation, and pronounced feelings of hopelessness and anhedonia. Baicalin, a natural flavonoid compound, shows significant promise in alleviating depressive symptoms in animals. This study aims to assess the impact of baicalin on experimental models of depression. Methods A systematic search of electronic databases was conducted using the search terms "baicalin" AND "depression" OR "depressed" OR "anti-depression". Preclinical animal models representing experimental depression were included in the analysis. The risk of bias in the included studies was evaluated using the CAMARADES tools. Results Baicalin significantly increased sucrose preference test (SPT) [SMD= 21.31, 95%CI (16.32, 26.31), P < 0.00001]. mThe tail suspension test (TST) duration significantly decreased in the baicalin group compared to the model group [SMD = -39.3, 95%CI (-49.71, -28.89), P < 0.0001]. Furthermore, baicalin reduced immobility time in rats subjected to the forced swim test (FST) [SMD = -39.73, 95%CI (-48.77, -30.69) P < 0.0001]. Compared to the model group, baicalin treatment also significantly increased the frequency of crossings in the open field test (OFT) [SMD = 32.44, 95%CI (17.74, 47.13), P < 0.00001]. Conclusion Baicalin significantly improves the manifestations of depressive symptoms. The effect of baicalin against depression is exerted through its anti-inflammatory actions, inhibition of oxidative stress, regulation of the HPA axis, and restoration of neuroplasticity. Future studies will be needed to further explore how these promising preclinical findings can be translated into clinical treatment for depression. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023472181.
Collapse
Affiliation(s)
- Dan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Meng Ren
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi-Xuan Guo
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhi-Qi Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - He- Sui
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Yan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Liang H, Xu Y, Zhao J, Chen M, Wang M. Hippo pathway in non-small cell lung cancer: mechanisms, potential targets, and biomarkers. Cancer Gene Ther 2024; 31:652-666. [PMID: 38499647 PMCID: PMC11101353 DOI: 10.1038/s41417-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Lung cancer is the primary contributor to cancer-related deaths globally, and non-small cell lung cancer (NSCLC) constitutes around 85% of all lung cancer cases. Recently, the emergence of targeted therapy and immunotherapy revolutionized the treatment of NSCLC and greatly improved patients' survival. However, drug resistance is inevitable, and extensive research has demonstrated that the Hippo pathway plays a crucial role in the development of drug resistance in NSCLC. The Hippo pathway is a highly conserved signaling pathway that is essential for various biological processes, including organ development, maintenance of epithelial balance, tissue regeneration, wound healing, and immune regulation. This pathway exerts its effects through two key transcription factors, namely Yes-associated protein (YAP) and transcriptional co-activator PDZ-binding motif (TAZ). They regulate gene expression by interacting with the transcriptional-enhanced associate domain (TEAD) family. In recent years, this pathway has been extensively studied in NSCLC. The review summarizes a comprehensive overview of the involvement of this pathway in NSCLC, and discusses the mechanisms of drug resistance, potential targets, and biomarkers associated with this pathway in NSCLC.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Melano I, Lo YC, Su WC. Characterization of host substrates of SARS-CoV-2 main protease. Front Microbiol 2023; 14:1251705. [PMID: 37670988 PMCID: PMC10475589 DOI: 10.3389/fmicb.2023.1251705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The main protease (Mpro) plays a crucial role in coronavirus, as it cleaves viral polyproteins and host cellular proteins to ensure successful replication. In this review, we discuss the preference in the recognition sequence of Mpro based on sequence-based studies and structural information and highlight the recent advances in computational and experimental approaches that have aided in discovering novel Mpro substrates. In addition, we provide an overview of the current understanding of Mpro host substrates and their implications for viral replication and pathogenesis. As Mpro has emerged as a promising target for the development of antiviral drugs, further insight into its substrate specificity may contribute to the design of specific inhibitors.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yan-Chung Lo
- Sinphar Pharmaceutical Co., Ltd., Sinphar Group, Yilan, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Kitamura N, Fujiwara N, Hayakawa K, Ohama T, Sato K. Protein phosphatase 6 promotes neurite outgrowth by promoting mTORC2 activity in N2a cells. J Biochem 2021; 170:131-138. [PMID: 34314486 DOI: 10.1093/jb/mvab028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the molecular mechanism of neuronal differentiation is important to overcome the incurable diseases caused by nervous system damage. Neurite outgrowth is prerequisite for neuronal differentiation and regeneration, and cAMP response element-binding protein (CREB) is one of the major transcriptional factors positively regulating this process. Neuronal differentiation stimuli activate mammalian target of rapamycin (mTOR) complex 2 (mTORC2)/Akt signaling to phosphorylate CREB, however, the precise molecular mechanism of this event has not been fully understood. In this manuscript, we show that neuronal differentiation stimuli increased a protein level of protein phosphatase 6 (PP6), a member of type 2A Ser/Thr protein phosphatases. PP6 knockdown suppressed mTORC2/Akt/CREB signaling and results in failure of neurite outgrowth. SIN1 is a unique component of mTORC2 that enhances mTORC2 activity toward Akt when it is in dephosphorylated form. We found PP6 knockdown increased SIN1 phosphorylation. These data suggest that PP6 may positively regulate neurite outgrowth by dephosphorylating SIN1 to activate mTORC2/Akt/CREB signaling.
Collapse
Affiliation(s)
- Nao Kitamura
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | - Koji Hayakawa
- Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, 794-8555 Ehime, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
5
|
Yu LY, Tseng TJ, Lin HC, Hsu CL, Lu TX, Tsai CJ, Lin YC, Chu I, Peng CT, Chen HJ, Tsai FC. Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. SCIENCE ADVANCES 2021; 7:eabg2106. [PMID: 34321207 PMCID: PMC8318371 DOI: 10.1126/sciadv.abg2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed. Single-cell analyses showed that STK40 knockdown reduced cell motility and coordination by strengthening focal adhesion (FA) complexes. Furthermore, STK40 knockdown reduced the stability of yes-associated protein (YAP) and subsequently decreased YAP transported into the nucleus, while MAPK inhibition further weakened YAP activities in the nucleus to disturb FA remodeling. Together, we unveiled an integrated STK40-YAP-MAPK system regulating cell migration and introduced "synthetic dysmobility" as a novel strategy to collaboratively control cell migration.
Collapse
Affiliation(s)
- Ling-Yea Yu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Jen Tseng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Chao Lin
- Department of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Lin Hsu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Ph.D. Program in Biological Sciences, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Chia-Jung Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yu-Chiao Lin
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I Chu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Tzu Peng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Ma ZX, Zhang RY, Rui WJ, Wang ZQ, Feng X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/ BDNF signaling pathway. Behav Brain Res 2021; 406:113245. [PMID: 33745981 DOI: 10.1016/j.bbr.2021.113245] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Quercetin, a naturally occurring flavonoid, has been reported to exert antidepressant effects, however, the underlying mechanisms are still uncertain. Recent studies have demonstrated that Forkhead box transcription factor G1 (FoxG1) regulates the process of adult hippocampal neurogenesis (AHN) and exerts neuroprotective effects. In this study, we explored whether quercetin plays an anti-depressant role via regulation of FoxG1 signaling in mice and revealed the potential mechanisms. To explore the antidepressant effects of quercetin, mice were subjected to behavioral tests after a chronic unpredictable mild stress (CUMS) exposure. We found that chronic quercetin treatment (15 mg/kg, 30 mg/kg) obviously restored the weight loss of mice caused by CUMS and alleviated CUMS-induced depression-like behaviors, such as increased sucrose consumption, improved locomotor activity and shorten immobility time. In addition, to clarify the relationship between quercetin and AHN, we detected neurogenesis markers in the dentate gyrus (DG) of the hippocampus. Furthermore, FoxG1-siRNA was employed and then stimulated with quercetin to further investigate the mechanism by which FoxG1 participates in the antidepressant effects of quercetin. Our results indicate that chronic quercetin treatment dramatically increased the number of doublecortin (DCX)-positive and BrdU/NeuN-double positive cells. Besides, the expression levels of FoxG1, p-CREB and Brain-derived neurotrophic factor (BDNF) were also enhanced by quercetin in the DG. Strikingly, quercetin failed to reverse the levels of p-CREB and BDNF after FoxG1-siRNA was performed in SH-SY5Y cells and Neural Progenitor Cells (NPCs). Our results thus far suggest that quercetin might exert antidepressant effects via promotion of AHN by FoxG1/CREB/ BDNF signaling pathway.
Collapse
Affiliation(s)
- Zhong-Xuan Ma
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Ru-Yi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Wen-Juan Rui
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhi-Qing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xia Feng
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
7
|
Jiang M, Meng J, Zeng F, Qing H, Hook G, Hook V, Wu Z, Ni J. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J Neurochem 2020; 155:300-312. [PMID: 32330298 PMCID: PMC7581626 DOI: 10.1111/jnc.15032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023]
Abstract
Lysosomes are known to mediate neurite outgrowth in neurons. However, the principal lysosomal molecule controlling that outgrowth is unclear. We studied primary mouse neurons in vitro and found that they naturally develop neurite outgrowths over time and as they did so the lysosomal cysteine protease cathepsin B (CTSB) mRNA levels dramatically increased. Surprisingly, we found that treating those neurons with CA-074Me, which inhibits CTSB, prevented neurites. As that compound also inhibits another protease, we evaluated a N2a neuronal cell line in which the CTSB gene was deleted (CTSB knockout, KO) using CRISPR technology and induced their neurite outgrowth by treatment with retinoic acid. We found that CTSB KO N2a cells failed to produce neurite outgrowths but the wild-type (WT) did. CA-074Me is a cell permeable prodrug of CA-074, which is cell impermeable and a specific CTSB inhibitor. Neurite outgrowth was and was not suppressed in WT N2a cells treated with CA-074Me and CA-074, respectively. Lysosome-associated membrane glycoprotein 2-positive lysosomes traffic to the plasma cell membrane in WT but not in CTSB KO N2 a cells. Interestingly, no obvious differences between WT and CTSB KO N2a cells were found in neurite outgrowth regulatory proteins, PI3K/AKT, ERK/MAPK, cJUN, and CREB. These findings show that intracellular CTSB controls neurite outgrowth and that it does so through regulation of lysosomal trafficking and remodeling in neurons. This adds valuable information regarding the physiological function of CTSB in neural development.
Collapse
Affiliation(s)
- Muzhou Jiang
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jie Meng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fan Zeng
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China
| | - Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing 100081, China
| |
Collapse
|
8
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Huang J, Jiang R, Chu X, Wang F, Sun X, Wang Y, Pang L. Overexpression of microRNA-23a-5p induces myocardial infarction by promoting cardiomyocyte apoptosis through inhibited of PI3K/AKT signalling pathway. Cell Biochem Funct 2020; 38:1047-1055. [PMID: 32519337 DOI: 10.1002/cbf.3536] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 11/11/2022]
Abstract
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.
Collapse
Affiliation(s)
- Jiechun Huang
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Rongrong Jiang
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xianglin Chu
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Fangrui Wang
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaotian Sun
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Liewen Pang
- Department of Cardiothoracic surgery, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Hsu PC, Yang CT, Jablons DM, You L. The Crosstalk between Src and Hippo/YAP Signaling Pathways in Non-Small Cell Lung Cancer (NSCLC). Cancers (Basel) 2020; 12:cancers12061361. [PMID: 32466572 PMCID: PMC7352956 DOI: 10.3390/cancers12061361] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
The advancement of new therapies, including targeted therapies and immunotherapies, has improved the survival of non-small-cell lung cancer (NSCLC) patients in the last decade. Some NSCLC patients still do not benefit from therapies or encounter progressive disease during the course of treatment because they have intrinsic resistance, acquired resistance, or lack a targetable driver mutation. More investigations on the molecular biology of NSCLC are needed to find useful biomarkers for current therapies and to develop novel therapeutic strategies. Src is a non-receptor tyrosine kinase protein that interacts with cell surface growth factor receptors and the intracellular signaling pathway to maintain cell survival tumorigenesis in NSCLC. The Yes-associated protein (YAP) is one of the main effectors of the Hippo pathway and has been identified as a promoter of drug resistance, cancer progression, and metastasis in NSCLC. Here, we review studies that have investigated the activation of YAP as mediated by Src kinases and demonstrate that Src regulates YAP through three main mechanisms: (1) direct phosphorylation; (2) the activation of pathways repressing Hippo kinases; and (3) Hippo-independent mechanisms. Further work should focus on the efficacy of Src inhibitors in inhibiting YAP activity in NSCLC. In addition, future efforts toward developing potentially reasonable combinations of therapy targeting the Src–YAP axis using other therapies, including targeted therapies and/or immunotherapies, are warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Cheng-Ta Yang
- Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - David M. Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (P.-C.H.); (D.M.J.)
- Correspondence: ; Tel.: +1-415-476-6906
| |
Collapse
|
11
|
Hsu PC, Jablons DM, Yang CT, You L. Epidermal Growth Factor Receptor (EGFR) Pathway, Yes-Associated Protein (YAP) and the Regulation of Programmed Death-Ligand 1 (PD-L1) in Non-Small Cell Lung Cancer (NSCLC). Int J Mol Sci 2019; 20:ijms20153821. [PMID: 31387256 PMCID: PMC6695603 DOI: 10.3390/ijms20153821] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) pathway is a well-studied oncogenic pathway in human non-small cell lung cancer (NSCLC). A subset of advanced NSCLC patients (15–55%) have EGFR-driven mutations and benefit from treatment with EGFR-tyrosine kinase inhibitors (TKIs). Immune checkpoint inhibitors (ICIs) targeting the PD-1/PDL-1 axis are a new anti-cancer therapy for metastatic NSCLC. The anti-PD-1/PDL-1 ICIs showed promising efficacy (~30% response rate) and improved the survival of patients with metastatic NSCLC, but the role of anti-PD-1/PDL-1 ICIs for EGFR mutant NSCLC is not clear. YAP (yes-associated protein) is the main mediator of the Hippo pathway and has been identified as promoting cancer progression, drug resistance, and metastasis in NSCLC. Here, we review recent studies that examined the correlation between the EGFR, YAP pathways, and PD-L1 and demonstrate the mechanism by which EGFR and YAP regulate PD-L1 expression in human NSCLC. About 50% of EGFR mutant NSCLC patients acquire resistance to EGFR-TKIs without known targetable secondary mutations. Targeting YAP therapy is suggested as a potential treatment for NSCLC with acquired resistance to EGFR-TKIs. Future work should focus on the efficacy of YAP inhibitors in combination with immune checkpoint PD-L1/PD-1 blockade in EGFR mutant NSCLC without targetable resistant mutations.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - David M Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
12
|
Lee WJ, Chen LC, Lin JH, Cheng TC, Kuo CC, Wu CH, Chang HW, Tu SH, Ho YS. Melatonin promotes neuroblastoma cell differentiation by activating hyaluronan synthase 3-induced mitophagy. Cancer Med 2019; 8:4821-4835. [PMID: 31274246 PMCID: PMC6712479 DOI: 10.1002/cam4.2389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the second most common pediatric malignancy and has a high rate of spontaneous remission. Uncovering the mechanisms underlying neuroblastoma cell differentiation is critical for therapeutic purposes. A neuroblastoma cell line (N2a) treated with either serum withdrawal (<2.5%) or melatonin (>0.1 nmol/L) for 24 hours was used as a cell differentiation research model. Interestingly, the hyaluronan synthase 3 (HAS3) protein was induced in differentiated N2a cells. N2a-allografted nude mice received an intraperitoneal injection of melatonin (40 or 80 mg/kg/day for 3 weeks). The mean tumor volume in mice treated with 80 mg/kg melatonin was smaller than that in PBS-treated mice (1416.3 and 3041.3 mm3 , respectively, difference = 1625 mm3 , *P = 0.0003, n = 7 per group). Compared with the vector control group, N2a cells with forced HAS3 overexpression showed significantly increased neuron length (*P = 0.00082) and neurite outgrowth (*P = 0.00059). Intracellular changes in autophagy, including distorted mitochondria with abnormal circular inner membranes, were detected by transmission electron microscopy (TEM). Our study demonstrated that HAS3-mediated signaling activated by physiological concentrations of melatonin (>0.1 nmol/L) triggered significant N2a cell differentiation. These results provide molecular data with potential clinical relevance for therapeutic drug development.
Collapse
Affiliation(s)
- Wen-Jui Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Li-Ching Chen
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Juo-Han Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Tzu-Chun Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, En Chun Kong Hospital, New Taipei City, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Hsin Tu
- Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Dinh TA, Jewell ML, Kanke M, Francisco A, Sritharan R, Turnham RE, Lee S, Kastenhuber ER, Wauthier E, Guy CD, Yeung RS, Lowe SW, Reid LM, Scott JD, Diehl AM, Sethupathy P. MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 7:803-817. [PMID: 30763770 PMCID: PMC6468197 DOI: 10.1016/j.jcmgh.2019.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.
Collapse
Affiliation(s)
- Timothy A Dinh
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Mark L Jewell
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Adam Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Rigney E Turnham
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Seona Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Cynthia D Guy
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John D Scott
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington
| | - Anna M Diehl
- Department of Medicine, School of Medicine, Duke University, Durham, North Carolina.
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.
| |
Collapse
|
14
|
Hsu PC, Yang CT, Jablons DM, You L. The Role of Yes-Associated Protein (YAP) in Regulating Programmed Death-Ligand 1 (PD-L1) in Thoracic Cancer. Biomedicines 2018; 6:biomedicines6040114. [PMID: 30544524 PMCID: PMC6315659 DOI: 10.3390/biomedicines6040114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
The programmed death-ligand 1(PD-L1)/PD-1 pathway is an immunological checkpoint in cancer cells. The binding of PD-L1 and PD-1 promotes T-cell tolerance and helps tumor cells escape from host immunity. Immunotherapy targeting the PD-L1/PD-1 axis has been developed as an anti-cancer therapy and used in treating advanced human non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Yes-associated protein (YAP) is a key mediator of the Hippo/YAP signaling pathway, and plays important roles in promoting cancer development, drug resistance and metastasis in human NSCLC and MPM. YAP has been suggested as a new therapeutic target in NSCLC and MPM. The role of YAP in regulating tumor immunity such as PD-L1 expression has just begun to be explored, and the correlation between YAP-induced tumorigenesis and host anti-tumor immune responses is not well known. Here, we review recent studies investigating the correlation between YAP and PD-L1 and demonstrating the mechanism by which YAP regulates PD-L1 expression in human NSCLC and MPM. Future work should focus on the interactions between Hippo/YAP signaling pathways and the immune checkpoint PD-L1/PD-1 pathway. The development of new synergistic drugs for immune checkpoint PD-L1/PD-1 blockade in NSCLC and MPM is warranted.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
| | - David M Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA.
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA.
| |
Collapse
|