1
|
Okoń E, Kukula-Koch W, Jarząb A, Gaweł-Bęben K, Bator E, Michalak-Tomczyk M, Jachuła J, Antosiewicz-Klimczak B, Odrzywolski A, Koch W, Wawruszak A. The Activity of 1,8-Dihydroanthraquinone Derivatives in Nervous System Cancers. Molecules 2024; 29:5989. [PMID: 39770078 PMCID: PMC11677425 DOI: 10.3390/molecules29245989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers. Anthraquinone derivatives, a class of tricyclic secondary metabolites, are found in several botanical families, such as Fabaceae, Polygonaceae, Rhamnaceae, and Rubiaceae. In a comprehensive review, recent advancements in the anticancer properties of 1,8-dihydroanthraquinone derivatives-such as emodin, aloe-emodin, hypericin, chrysophanol, rhein, and physcion-were analyzed. These compounds have been studied extensively, both used individually and in combination with other chemotherapeutic agents, using in vitro and in vivo models of nervous system tumors. It was demonstrated that 1,8-dihydroanthraquinone derivatives induce apoptosis and necrosis in cancerous cells, intercalate into DNA, disrupting transcription and replication in rapidly dividing cells, and alter ROS levels, leading to oxidative stress that damages tumor cells. Additionally, they can influence signaling pathways involved in oncogenesis, such as MAPK, PI3K/Akt, or others crucial for the survival and the proliferation of NSC cells. The exploration of 1,8-dihydroanthraquinone derivatives aims to develop novel therapies that could overcome resistance and improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Estera Okoń
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medical Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Ewelina Bator
- Interdisciplinary Center for Preclinical and Clinical Research, Rzeszow University, 2a Werynia, 36-100 Kolbuszowa, Poland;
| | - Magdalena Michalak-Tomczyk
- Department of Physiology and Toxicology, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708 Lublin, Poland;
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka Str., 20-033 Lublin, Poland;
| | - Beata Antosiewicz-Klimczak
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, 2 Sucharskiego, 35-225 Rzeszów, Poland; (K.G.-B.); (B.A.-K.)
| | - Adrian Odrzywolski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland; (E.O.); (A.J.); (A.O.); (A.W.)
| |
Collapse
|
2
|
Fu Y, Yang L, Liu L, Kong L, Sun H, Sun Y, Yin F, Yan G, Wang X. Rhein: An Updated Review Concerning Its Biological Activity, Pharmacokinetics, Structure Optimization, and Future Pharmaceutical Applications. Pharmaceuticals (Basel) 2024; 17:1665. [PMID: 39770507 PMCID: PMC11679290 DOI: 10.3390/ph17121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Rhein is a natural active ingredient in traditional Chinese medicine that has attracted much attention due to its wide range of pharmacological activities. However, its clinical application is limited by low water solubility, poor oral absorption, and potential toxicity to the liver and kidneys. Recently, advanced extraction and synthesis techniques have made it possible to develop derivatives of rhein, which have better pharmacological properties and lower toxicity. This article comprehensively summarizes the biological activity and action mechanism of rhein. Notably, we found that TGF-β1 is the target of rhein improving tissue fibrosis, while NF-κB is the main target of its anti-inflammatory effect. Additionally, we reviewed the current research status of the pharmacokinetics, toxicology, structural optimization, and potential drug applications of rhein and found that the coupling and combination therapy of rhein and other active ingredients exhibit a synergistic effect, significantly enhancing therapeutic efficacy. Finally, we emphasize the necessity of further studying rhein's pharmacological mechanisms, toxicology, and development of analogs, aiming to lay the foundation for its widespread clinical application as a natural product and elucidate its prospects in modern medicine.
Collapse
Affiliation(s)
- Yuqi Fu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Lei Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; (Y.F.); (L.L.); (L.K.); (F.Y.); (G.Y.)
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou 510006, China; (L.Y.); (Y.S.)
| |
Collapse
|
3
|
Wen Y, Yan PJ, Fan PX, Lu SS, Li MY, Fu XY, Wei SB. The application of rhubarb concoctions in traditional Chinese medicine and its compounds, processing methods, pharmacology, toxicology and clinical research. Front Pharmacol 2024; 15:1442297. [PMID: 39170703 PMCID: PMC11335691 DOI: 10.3389/fphar.2024.1442297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study reviews the development of rhubarb processing and the current status of pharmacological research. We summarized the effects of different processing methods on the active compounds, pharmacological effects, and toxicity of rhubarb, as well as the clinical application of different concoctions, providing reference for further pharmacological research and clinical application of rhubarb. Methods A comprehensive literature review was conducted using databases such as Pubmed, Embase, National Science and Technology Library, Web of science, CNKI, China Science and Technology Journal Database, SinoMed, and the Pharmacopoeia of the People's Republic of China. Search terms included "rhubarb", "raw rhubarb", "wine rhubarb", "cooked rhubarb", "rhubarb charcoal", "herbal processing", "compounds", "pharmacological effects", "inflammation", "gastrointestinal bleeding", and "tumor". Results Historical records of rhubarb processing date back to the Han Dynasty, with continual innovations. Currently, the types of rhubarb used in traditional Chinese medicine have stabilized to three species: Rheum palmatum L., Rheum tanguticum Maxim.ex Balf. and Rheum officinale Baill. Common concoctions include raw rhubarb, wine rhubarb, cooked rhubarb and rhubarb charcoal. The active compounds of rhubarb are known to defecation, exhibit antibacterial and anti-inflammatory properties, regulate coagulation, protect the digestive system, and possess anti-tumor activities. Guided by Chinese medicine theory, the use of different rhubarb concoctions can enhance specific effects such as purgation to eliminate accumulation, clearing heat and toxins, cooling blood to stop hemorrhages, activating blood circulation to remove blood stasis, and inducing dampness to descend jaundice, thereby effectively treating various diseases. The therapeutic impact of these concoctions on diseases reflects not only in the changes to the active compounds of rhubarb but also in the formulations of traditional Chinese medicine. Processing has also shown advantages in reducing toxicity. Conclusion Different processing methods alter the active compounds of rhubarb, thereby enhancing its various pharmacological effects and meeting the therapeutic needs of diverse diseases. Selecting an appropriate processing method based on the patient's specific conditions can maximize its pharmacological properties and improve clinical outcomes.
Collapse
Affiliation(s)
- Yi Wen
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Jia Yan
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Xuan Fan
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shan-Shan Lu
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Ya Li
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian-Yun Fu
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Shao-Bin Wei
- Gynecology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
5
|
Trybus W, Król T, Trybus E. Rhein induces changes in the lysosomal compartment of HeLa cells. J Cell Biochem 2022; 123:1506-1524. [PMID: 35901236 DOI: 10.1002/jcb.30311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
Rhein is an anthraquinone found in Rheum palmatum, used in Chinese medicine. Due to potential anticancer properties, the study assessed its effect on the lysosomal compartment, which indirectly influences cell death. The experiment was performed on HeLa cells by treating them with rhein at concentrations of 100-300 µM. LC3-II protein and caspase 3/7 activity, level of apoptosis, the concentration of reactive oxide species (ROS), and mitochondrial potential (Δψm) were evaluated by the cytometric method. To evaluate the permeability of the lysosomal membrane (LMP), staining with acridine orange and the assessment of activity of cathepsin D and L in the lysosomal and extralysosomal fractions were used. Cell viability was assessed by -(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (MTT) and neutral red (NR) assays. Changes in cells were also demonstrated at the level of electron, optical, confocal, and fluorescence microscopy. Inhibition of autophagy was done using chloroquine. Rhein-induced degradation processes were confirmed by an increase in the number of primary lysosomes, autophagosomes, and autolysosomes. At high concentrations, rhein caused the generation of ROS, which induced LMP expressed by quenching of acridine orange fluorescence. These results correlated with a reduction of lysosomes, as visualized in graphical modeling, with the decreased uptake of NR by lysosomes, and increased activity of cathepsin D and L in the extralysosomal fraction. The studies also showed an increase in the activity of caspase 3/7 and a decrease in the expression of Bcl-2 protein, indicative of rhein-stimulated apoptosis. At the same time, we demonstrated that preincubation of cells with chloroquine inhibited rhein-induced autophagy and contributed to increased cytotoxicity to HeLa cells. Rhein also induced DNA damage and led to cycle arrest in the S phase. Our results indicate that rhein, by inducing changes in the lysosomal compartment, indirectly affects apoptosis of HeLa cells and in combination with autophagy inhibitors may be an effective form of anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Teodora Król
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Medical Biology, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
6
|
Berillo D, Kozhahmetova M, Lebedeva L. Overview of the Biological Activity of Anthraquinons and Flavanoids of the Plant Rumex Species. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041204. [PMID: 35208994 PMCID: PMC8880800 DOI: 10.3390/molecules27041204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Rumex confertus belongs to the genus Rumex and is classified as an invasive parasitic plant in agriculture. Despite other Rumex species being widely used in herbal medicine due to their antimicrobial, antioxidant, antitumor, and anti-inflammatory effects, there are almost no information about the potential of Rumex confertus for the treatment of various diseases. In this review we analyzed scientific articles revealing properties of Rumex plant’s substances against cancer, diabetes, pathogenic bacterial invasions, viruses, inflammation, and oxidative stress for the past 20 years. Compounds dominating in each composition of solvents for extraction were discussed, and common thin layer chromatography(TLC) and high performance liquid chromatography(HPLC) methods for efficient separation of the plant’s extract are included. Physico-chemical properties such as solubility, hydrophobicity (Log P), pKa of flavonoids, anthraquinones, and other derivatives are very important for modeling of pharmacokinetic and pharmacodynamics. An overview of clinical studies for abounded selected substances of Rumex species is presented.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence:
| | - Marzhan Kozhahmetova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050040, Kazakhstan;
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Lina Lebedeva
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
7
|
Rhein Inhibits the Progression of Chemoresistant Lung Cancer Cell Lines via the Stat3/Snail/MMP2/MMP9 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7184871. [PMID: 35178453 PMCID: PMC8846980 DOI: 10.1155/2022/7184871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023]
Abstract
Chemotherapy is a common drug for lung cancer. Nevertheless, the development of drug resistance greatly limits their clinical efficacy. Therefore, to reduce drug resistance, we need to constantly explore new treatments. This study is aimed at determining the role of rhein in the proliferation and metastasis of lung cancer cell. Our study found that rhein significantly inhibits the proliferation and migration of lung cancer cells. Additionally, the mRNA expression and protein levels of Snail, MMP2, and MMP9 are decreasing in lung cancer cells treated by rhein. Our results showed that rhein plays a vital role in proliferation and metastasis of chemosensitive and chemoresistant lung cancer cells, and the mechanism may be related to the Stat3/Snail/MMP2/MMP9 pathway.
Collapse
|
8
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
9
|
Yu WK, Xu ZY, Yuan L, Mo S, Xu B, Cheng XD, Qin JJ. Targeting β-Catenin Signaling by Natural Products for Cancer Prevention and Therapy. Front Pharmacol 2020; 11:984. [PMID: 32695004 PMCID: PMC7338604 DOI: 10.3389/fphar.2020.00984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The mutations and deregulation of Wnt signaling pathway occur commonly in human cancer and cause the aberrant activation of β-catenin and β-catenin-dependent transcription, thus contributing to cancer development and progression. Therefore, β-catenin has been demonstrated as a promising target for cancer prevention and therapy. Many natural products have been characterized as inhibitors of the β-catenin signaling through down-regulating β-catenin expression, modulating its phosphorylation, promoting its ubiquitination and proteasomal degradation, inhibiting its nuclear translocation, or other molecular mechanisms. These natural product inhibitors have shown preventive and therapeutic efficacy in various cancer models in vitro and in vivo. In the present review, we comprehensively discuss the natural product β-catenin inhibitors, their in vitro and in vivo anticancer activities, and underlying molecular mechanisms. We also discuss the current β-catenin-targeting strategies and other potential strategies that may be examined for identifying new β-catenin inhibitors as cancer preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Wen-Kai Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shaowei Mo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|
11
|
Du X, He W, He H, Wang H. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway. BMC Vet Res 2020; 16:72. [PMID: 32127006 PMCID: PMC7055115 DOI: 10.1186/s12917-020-02291-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Bovine parainfluenza virus type 3 (BPIV3) is one of the important viral respiratory agents associated with the bovine respiratory disease complex (BRDC) in cattle. Previous study has demonstrated that infection of BPIV3 causes innate immune response within the host cell. β-catenin is a key component of the Wnt/β-catenin signal pathway which is involved in the regulation of interferon-beta (IFN-β) transcription. Some viruses can activate while others can inhibit the Wnt/β-catenin signaling pathway. However, the role of β-catenin in BPIV3 infection remains unclear. Results Here we found that the expression of β-catenin mRNA was up-regulated and β-catenin protein was down-regulated after BPIV3 infection in MDBK cells. Moreover, it was confirmed that overexpression of β-catenin suppressed BPIV3 replication and knockdown of β-catenin promoted viral replication, suggesting that β-catenin inhibits BPIV3 replication. Furthermore, IFN-β signal pathway and virus titer analysis using the GSK3β inhibitor (LiCl) revealed that Wnt/β-catenin can serve as a mechanism to suppress virus replication in infected cells. The results indicated that LiCl promoted the expression and accumulation in the nucleus of β-catenin, which further promoted the expression of IFN-β and OSA1 and suppressed BPIV3 replication. Most importantly, BPIV3 down-regulating β-catenin protein expression was due to degradation of GSK3β mediated proteasome pathway. Conclusions In summary, we discovered the relationship between β-catenin and BPIV3 replication. These results provided further insight into the study of BPIV3 pathogenesis.
Collapse
Affiliation(s)
- Xinying Du
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
12
|
An autophagy-dependent cell death of MDA-MB-231 cells triggered by a novel Rhein derivative 4F. Anticancer Drugs 2019; 30:1038-1047. [DOI: 10.1097/cad.0000000000000820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Discovery of a novel rhein-SAHA hybrid as a multi-targeted anti-glioblastoma drug. Invest New Drugs 2019; 38:755-764. [PMID: 31414267 DOI: 10.1007/s10637-019-00821-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumor of the central nervous system (CNS). Effective treatments remain limited. Therefore, novel chemotherapy drugs with high efficiency and few adverse effects are urgently needed. Histone deacetylase (HDAC) and serum and glucocorticoid-regulated protein kinase 1 (SGK1) are targets for the prevention and treatment of GBM. Rhein has antitumor and SGK1 suppression effects, although its biological activity is limited by poor bioavailability. To improve the drug-like properties of rhein, we constructed a novel rhein-hydroxyethyl hydroxamic acid derivative (SYSUP007), which combined rhein with the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA). In the present study, the human GBM cell lines, T98G, U87 and U251, were used to investigate the anticancer effects of SYSUP007 in vitro. We found that SYSUP007 was more effective in inhibiting glioma cell proliferation, invasion and migration in vitro compared with the effects of rhein and SAHA. We also confirmed that SYSUP007 increased the expression of Ac-K100 and NDRG1 (targets of HDAC and SGK1). The present study indicates the potential that SYSUP007, as a novel rhein and SAHA derivative, for development as an anti-cancer therapy.
Collapse
|
14
|
Yu CL, Yang SF, Hung TW, Lin CL, Hsieh YH, Chiou HL. Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis 2019; 10:418. [PMID: 31138785 PMCID: PMC6538697 DOI: 10.1038/s41419-019-1639-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the one of the most common cancers worldwide. Because the side effects of current treatments are severe, new effective therapeutic strategies are urgently required. Pterostilbene (PT), a natural analogue of resveratrol, has diverse pharmacologic activities, including antioxidative, anti-inflammatory and antiproliferative activities. Here we demonstrated that PT inhibits HCC cell growth without the induction of apoptosis in an endoplasmic reticulum (ER) stress- and autophagy-dependent manner. Mechanistic studies indicated that the combination of salubrinal and PT modulates ER stress-related autophagy through the phospho-eukaryotic initiation factor 2α/activating transcription factor-4/LC3 pathway, leading to a further inhibition of eIF2α dephosphorylation and the potentiation of cell death. An in vivo xenograft analysis revealed that PT significantly reduced tumour growth in mice with a SK-Hep-1 tumour xenograft. Taken together, our results yield novel insights into the pivotal roles of PT in ER stress- and autophagy-dependent cell death in HCC cells.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tung-Wei Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
15
|
Wu L, Liu X, Cao KX, Ni ZH, Li WD, Chen ZP. Synergistic antitumor effects of rhein and doxorubicin in hepatocellular carcinoma cells. J Cell Biochem 2018; 121:4009-4021. [PMID: 30378155 DOI: 10.1002/jcb.27514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/26/2018] [Indexed: 01/04/2023]
Abstract
The aim of this study was to investigate the synergistic antitumor activity of rhein and doxorubicin (DOX) and to elucidate the underlying mechanisms in hepatocellular SMMC-7721 and HepG2 cells. Cell growth curves, caspase-3 activity, and intracellular DOX accumulation were observed using an IncuCyte real-time video imaging system. Combination index was used to calculate synergistic potential of rhein and DOX. Cell apoptosis was detected by the Annexin V-FITC/PI apoptosis kit. Lactate dehydrogenase and adenosine triphosphate (ATP) levels were assessed using an assay kit. Oxygen consumption rates (OCR) and extracellular acidification rates were assessed by the Seahorse XFe96 Extracellular Flux Analyzer. Mitochondrial inner membrane potential (ΔΨm) was monitored with JC-1 fluorescence. Western blot analysis was used to detect the level of P-glycoprotein. Synergistic antiproliferative and proapoptotic effects were exerted by the combination of rhein at 10 μM and DOX at 2 μM in SMMC-7721 and HepG2 cells. Rhein could influenced the accumulation of DOX in both cells, which was associated with remarkably decreased mitochondrial energy metabolism and ATP levels. Rhein could reduce ΔΨm in both cells. mPTP, opener atractyloside (ATR) could accelerate the loss of ΔΨm, and further suppress the OCR induced by rhein. In contrast, the mPTP blocker cyclosporin A (Cs A) inhibited the loss of ΔΨm and the OCR induced by rhein. Our data indicate that a decline in mitochondrial energy metabolism was responsible for the synergistic antitumor effects of rhein and DOX in hepatocellular carcinoma cells. Reduction of ΔΨm and opening of mPTP inhibited the exchange of ATP/adenosine diphosphate between mitochondrial matrix and cytoplasm is the important mechanism.
Collapse
Affiliation(s)
- Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Xin Cao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi Hui Ni
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Dong Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi Peng Chen
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Bu T, Wang C, Meng Q, Huo X, Sun H, Sun P, Zheng S, Ma X, Liu Z, Liu K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur J Pharmacol 2018; 834:266-273. [PMID: 30031796 DOI: 10.1016/j.ejphar.2018.07.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/15/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the protective effect of rhein, a major metabolite of diacerein, on methotrexate (MTX)-induced hepatotoxicity and clarify the pharmacological mechanism. Rhein significantly reduced the elevation of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) caused by MTX in rat serum and improved liver morphological damage induced by MTX. Moreover, rhein increased the cell survival rate and reduced the number of apoptosis cells in MTX-treated normal human hepatocyte (L02 cells). Rhein treatment in rats up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), heme oxygenase 1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC), and down-regulated Bcl-2 associated x (Bax) in mRNA and protein levels. Furthermore, rhein treatment further decreased protein expression of nuclear factor-kappa B (NF-κB), tumor necrosis factor alpha (TNF-α) and cysteine aspartic acid specific protease 3 (Caspase-3), increased protein expression of B-cell lymphoma-extra large (Bcl-xl), and reduced mRNA expression of Bcl-2 homologous antagonist/killer (Bak) in MTX-treated rat liver in vivo. However, the protein expression changes of Nrf2, HO-1, GCLC, Bcl-2, Bcl-xl and Bax could be abrogated by Nrf2 antagonist brusatol. In addition, protective effect of rhein against MTX-mediated liver damage could also be suppressed by Nrf2 siRNA in L02 cells. Taken together, these findings suggested that rhein ameliorated liver damage mediated by MTX through acting on Nrf2-HO-1 pathway. NF-κB, TNF-α, Caspase-3 and Bcl-2 family were also participated in the protection. As effectively hepatoprotective ability of rhein, it would raise an important issue for patients orally receiving MTX treatment together with diacerein/rhein.
Collapse
Affiliation(s)
- Tianci Bu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Siqi Zheng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
TIPE2 attenuates liver fibrosis by reversing the activated hepatic stellate cells. Biochem Biophys Res Commun 2018; 498:199-206. [PMID: 29196266 DOI: 10.1016/j.bbrc.2017.11.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 01/16/2023]
|