1
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Lin J, Cai Y, Wang J, Liu R, Qiu C, Huang Y, Liu B, Yang X, Zhou S, Shen Y, Wang W, Zhu J. Transcriptome sequencing promotes insights on the molecular mechanism of SKP-SC-EVs mitigating denervation-induced muscle atrophy. Mol Biol Rep 2023; 51:9. [PMID: 38085347 DOI: 10.1007/s11033-023-08952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Complex pathophysiological changes accompany denervation-induced skeletal muscle atrophy, but no effective treatment strategies exist. Our previous study indicated that extracellular vesicles derived from skin-derived precursors-derived Schwann cells (SKP-SC-EVs) can effectively mitigate denervation-induced muscle atrophy. However, the specific molecular mechanism remains unclear. METHODS AND RESULTS In this study, we used bioinformatics methods to scrutinize the impact of SKP-SC-EVs on gene expression in denervation-induced skeletal muscle atrophy. We found that SKP-SC-EVs altered the expression of 358 genes in denervated skeletal muscles. The differentially expressed genes were predominantly participated in biological processes, including cell cycle, inflammation, immunity, and adhesion, and signaling pathways, such as FoxO and PI3K.Using the Molecular Complex Detection (MCODE) plugin, we identified the two clusters with the highest score: cluster 1 comprised 37 genes, and Cluster 2 consisted of 24 genes. Then, fifty hub genes were identified using CytoHubba. The intersection of Hub genes and genes obtained by MCODE showed that all 23 genes related to the cell cycle in Cluster 1 were hub genes, and 5 genes in Cluster 2 were hub genes and associated with inflammation. CONCLUSIONS Overall, the differentially expressed genes in denervated skeletal muscle following SKP-SC-EVs treatment are primarily linked to the cell cycle and inflammation. Consequently, promoting proliferation and inhibiting inflammation may be the critical process in which SKP-SC-EVs delay denervation-induced muscle atrophy. Our findings contribute to a better understanding of the molecular mechanism of SKP-SC-EVs delaying denervation-induced muscle atrophy, offering a promising new avenue for muscle atrophy treatment.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Jian Wang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
4
|
Chen H, Chew G, Devapragash N, Loh JZ, Huang KY, Guo J, Liu S, Tan ELS, Chen S, Tee NGZ, Mia MM, Singh MK, Zhang A, Behmoaras J, Petretto E. The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nat Commun 2022; 13:7375. [PMID: 36450710 PMCID: PMC9712659 DOI: 10.1038/s41467-022-34971-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Non-ischemic cardiomyopathy (NICM) can cause left ventricular dysfunction through interstitial fibrosis, which corresponds to the failure of cardiac tissue remodeling. Recent evidence implicates monocytes/macrophages in the etiopathology of cardiac fibrosis, but giving their heterogeneity and the antagonizing roles of macrophage subtypes in fibrosis, targeting these cells has been challenging. Here we focus on WWP2, an E3 ubiquitin ligase that acts as a positive genetic regulator of human and murine cardiac fibrosis, and show that myeloid specific deletion of WWP2 reduces cardiac fibrosis in hypertension-induced NICM. By using single cell RNA sequencing analysis of immune cells in the same model, we establish the functional heterogeneity of macrophages and define an early pro-fibrogenic phase of NICM that is driven by Ccl5-expressing Ly6chigh monocytes. Among cardiac macrophage subtypes, WWP2 dysfunction primarily affects Ly6chigh monocytes via modulating Ccl5, and consequentially macrophage infiltration and activation, which contributes to reduced myofibroblast trans-differentiation. WWP2 interacts with transcription factor IRF7, promoting its non-degradative mono-ubiquitination, nuclear translocation and transcriptional activity, leading to upregulation of Ccl5 at transcriptional level. We identify a pro-fibrogenic macrophage subtype in non-ischemic cardiomyopathy, and demonstrate that WWP2 is a key regulator of IRF7-mediated Ccl5/Ly6chigh monocyte axis in heart fibrosis.
Collapse
Affiliation(s)
- Huimei Chen
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| | - Gabriel Chew
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Nithya Devapragash
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jui Zhi Loh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Kevin Y. Huang
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Jing Guo
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shiyang Liu
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Elisabeth Li Sa Tan
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Shuang Chen
- grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China ,grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Nicole Gui Zhen Tee
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Masum M. Mia
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Manvendra K. Singh
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore
| | - Aihua Zhang
- grid.452511.6Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jacques Behmoaras
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.413629.b0000 0001 0705 4923Centre for Inflammatory Disease, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Enrico Petretto
- grid.428397.30000 0004 0385 0924Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857 Singapore, Singapore ,grid.254147.10000 0000 9776 7793Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
5
|
Uncovering the anti-angiogenic effect of semisynthetic triterpenoid CDDO-Im on HUVECs by an integrated network pharmacology approach. Comput Biol Med 2021; 141:105034. [PMID: 34802714 DOI: 10.1016/j.compbiomed.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023]
Abstract
AIM To reveal the molecular mechanism of anti-angiogenic activity of semisynthetic triterpenoid CDDO-Im. MATERIALS AND METHODS Using re-analysis of cDNA microarray data of CDDO-Im-treated human vascular endothelial cells (HUVECs) (GSE71622), functional annotation of revealed differentially expressed genes (DEGs) and analysis of their co-expression, the key processes induced by CDDO-Im in HUVECs were identified. Venn diagram analysis was further performed to reveal the common DEGs, i.e. genes both susceptible to CDDO-Im and involved in the regulation of angiogenesis. A list of probable protein targets of CDDO-Im was prepared based on Connectivity Map/cheminformatics analysis and chemical proteomics data, among which the proteins that were most associated with the angiogenesis-related regulome were identified. Finally, identified targets were validated by molecular docking and text mining approaches. KEY FINDINGS The effect of CDDO-Im in HUVECs can be divided into two main phases: the short early phase (0.5-3 h) with an acute FOXD1/CEBPA/JUNB-regulated pro-angiogenic response induced by xenobiotic stress, and the second anti-angiogenic step (6-24 h) with massive suppression of various angiogenesis-related processes, accompanied by the activation of cytoprotective mechanisms. Our analysis showed that the anti-angiogenic activity of CDDO-Im is mediated by its inhibition of the expression of PLAT, ETS1, A2M, SPAG9, RASGRP3, FBXO32, GCNT1 and HDGFRP3 and its direct interactions with EGFR, mTOR, NOS2, HSP90AA1, MDM2, SYK, IRF3, ATR and KIF14. SIGNIFICANCE Our findings provide valuable insights into the understanding of the molecular mechanisms of the anti-angiogenic activity of cyano enone-bearing triterpenoids and revealed a range of novel promising therapeutic targets to control pathological neovascularization.
Collapse
|
6
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
7
|
Aref Z, Quax PHA. In Vivo Matrigel Plug Assay as a Potent Method to Investigate Specific Individual Contribution of Angiogenesis to Blood Flow Recovery in Mice. Int J Mol Sci 2021; 22:ijms22168909. [PMID: 34445616 PMCID: PMC8396178 DOI: 10.3390/ijms22168909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neovascularization restores blood flow recovery after ischemia in peripheral arterial disease. The main two components of neovascularization are angiogenesis and arteriogenesis. Both of these processes contribute to functional improvements of blood flow after occlusion. However, discriminating between the specific contribution of each process is difficult. A frequently used model for investigating neovascularization is the murine hind limb ischemia model (HLI). With this model, it is difficult to determine the role of angiogenesis, because usually the timing for the sacrifice of the mice is chosen to be optimal for the analysis of arteriogenesis. More importantly, the occurring angiogenesis in the distal calf muscles is probably affected by the proximally occurring arteriogenesis. Therefore, to understand and subsequently intervene in the process of angiogenesis, a model is needed which investigates angiogenesis without the influence of arteriogenesis. In this study we evaluated the in vivo Matrigel plug assay in genetic deficient mice to investigate angiogenesis. Mice deficient for interferon regulatory factor (IRF)3, IRF7, RadioProtective 105 (RP105), Chemokine CC receptor CCR7, and p300/CBP-associated factor (PCAF) underwent the in vivo Matrigel model. Histological analysis of the Matrigel plugs showed an increased angiogenesis in mice deficient of IRF3, IRF7, and RP105, and a decreased angiogenesis in PCAF deficient mice. Our results also suggest an involvement of CCR7 in angiogenesis. Comparing our results with results of the HLI model found in the literature suggests that the in vivo Matrigel plug assay is superior in evaluating the angiogenic response after ischemia.
Collapse
Affiliation(s)
| | - Paul H. A. Quax
- Correspondence: ; Tel.: +31-71-526-1584; Fax: +31-71-526-6570
| |
Collapse
|
8
|
Xu S, Mei S, Lu J, Wu H, Dong X, Shi L, Zhou J, Zhang J. Transcriptome Analysis of Microglia Reveals That the TLR2/IRF7 Signaling Axis Mediates Neuroinflammation After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:645649. [PMID: 34276335 PMCID: PMC8278202 DOI: 10.3389/fnagi.2021.645649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Microglia-mediated neuroinflammatory response in the early brain injury after subarachnoid hemorrhage (SAH) has been reported to have an impact on progress, and the mechanism is not completely understood. Here, we performed genome-wide transcriptome analysis of microglia purified from damaged hemisphere of adult mice at 3 days after SAH or sham operation. Robust transcriptional changes were observed between SAH-induced and healthy microglia, indicating rapid activation of microglia after suffering from SAH. We identified 1576 differentially expressed genes (DEGs; 928 upregulated and 648 downregulated) in SAH-induced microglia compared with sham microglia, representing a strong alteration of the genome (6.85% of total ∼23,000 genes). Functional enrichment of these DEGs indicated that cell division, inflammatory response, cytokine production, and leukocyte chemotaxis were strongly activated in SAH-induced microglia. Moreover, we identified and proved that the TLR2/IRF7 signaling axis was involved in the regulation of this microglia-mediated inflammation in SAH mice by performing flow cytometry and immunofluorescence. Together, these results provided a perspective of microglia-mediated neuroinflammatory response in the early stage of SAH and might give a new therapeutic target for SAH.
Collapse
Affiliation(s)
- Shenbin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhao Mei
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Dong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ligen Shi
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Deng Y, Guo SL, Li JQ, Xie SS, Zhou YC, Wei B, Wang Q, Wang F. Interferon regulatory factor 7 inhibits rat vascular smooth muscle cell proliferation and inflammation in monocrotaline-induced pulmonary hypertension. Life Sci 2021; 264:118709. [PMID: 33152351 DOI: 10.1016/j.lfs.2020.118709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Although interferon regulatory factor 7 (IRF7) has known roles in regulating the inflammatory response, vascular smooth muscle cell proliferation, and apoptosis, its role in the pathogenesis of pulmonary hypertension (PH) is unclear. We hypothesized that IRF7 overexpression could inhibit pulmonary vascular remodeling and slow the progression of PH. MAIN METHODS IRF7 mRNA and protein levels in the lung samples and pulmonary artery smooth muscle cells (PASMCs) isolated from monocrotaline (MCT)-induced PH rats were assessed. We evaluated the effects of IRF7 on inflammation, proliferation, and apoptosis using an in vivo MCT-induced PH rat model and in vitro methods. KEY FINDINGS We noted decreased IRF7 mRNA and protein levels in the pulmonary vasculature of MCT-induced PH rats. IRF7 upregulation attenuated pulmonary vascular remodeling, decreased the pulmonary artery systolic pressure, and improved the right ventricular (RV) structure and function. Our findings suggest that nuclear factor kappa-Bp65 (NF-κBp65) deactivation could confer pulmonary vasculature protection, reduce proinflammatory cytokine (tumor necrosis factor-α, interleukin 6) release, and decrease PASMC proliferation and resistance to apoptosis via deactivating transcription factor 3 (ATF3) signaling. ATF3 deactivation induced the downregulation of the proliferation-dependent genes proliferating cell nuclear antigen (PCNA), cyclin D1, and survivin, coupled with increased levels of B cell lymphoma-2-associated X protein (Bax)/B cell lymphoma-2 (Bcl2) ratio, and cleaved caspase-3 in PASMCs. SIGNIFICANCE Our findings showed that IRF7 downregulation could initiate inflammation via NF-κBp65 signaling, causing PASMC proliferation via ATF3 signaling pathway activation. Therefore, IRF7 could be a potential molecular target for PH therapy.
Collapse
MESH Headings
- Activating Transcription Factor 3/metabolism
- Animals
- Apoptosis
- Caspase 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cyclin D1/metabolism
- Dependovirus/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/complications
- Inflammation/pathology
- Interferon Regulatory Factor-7/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction
- Survivin/metabolism
- Up-Regulation
- Vascular Remodeling
- bcl-2-Associated X Protein/metabolism
- Rats
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Sheng-Lan Guo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| | - Shan-Shan Xie
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Zhang Y, Ouyang X, You S, Zou H, Shao X, Zhang G, Zhang C, Hu L. Effect of human amniotic epithelial cells on ovarian function, fertility and ovarian reserve in primary ovarian insufficiency rats and analysis of underlying mechanisms by mRNA sequencing. Am J Transl Res 2020; 12:3234-3254. [PMID: 32774697 PMCID: PMC7407690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Human amniotic epithelial cells (hAECs) show similar features to stem cells and have low immunogenicity. This study aims to investigate the therapeutic effect of hAEC transplantation on cyclophosphamide-induced primary ovarian insufficiency (POI) rats and evaluate the underlying mechanisms by mRNA sequencing of ovarian samples. Notably, hAECs mainly located in the interstitial area of the ovaries rather than follicles. hAEC transplantation led to a slight increase in body and ovary weight, normalized irregular estrous cycles, decreased serum follicle stimulating hormone (FSH) and increased anti-Mullerian hormone (AMH) level and restored follicle pools in POI rats. Ovarian expression of AMH, follicle stimulating hormone receptor (FSHR) and klotho in POI rats was also significantly upregulated following hAEC transplantation. Fetus number was higher in the hAEC transplantation group than the POI group. The mRNA sequencing results showed that hAEC transplantation led to the upregulation of several angiogenesis and inflammation molecules including interferon regulatory factor 7 (IRF7), Mx dynamin-like GTPase 1 (Mx1), vascular endothelial growth factor receptor (VEGFR)1 and VEGFR2. Moreover, hAEC therapy had an effect on ribosomes, protein digestion, protein absorption, neuroactive ligand-receptor interaction, cAMP signaling pathway and steroid biosynthesis pathways. The expression of several steroid biosynthesis proteins was significantly upregulated as measured by quantitative real-time polymerase chain reaction (RT-qPCR), immunohistochemical staining and Western blot analysis. In summary, hAECs can significantly restore ovarian function, and improve both ovarian reserve and fertility. This may be due to the paracrine effect of hAECs in regulating steroid biosynthesis, modulating follicle development from initiation to ovulation, promoting angiogenesis and reducing inflammation.
Collapse
Affiliation(s)
- Yulin Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Xiaolan Ouyang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Shuang You
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
| | - Heng Zou
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| | - Xiaoyan Shao
- Shanghai iCELL Biotechnology Co., Ltd.Shanghai 200333, China
| | - Guanghui Zhang
- Chongqing Engineering Technology Research Center of Stem Cell and Neural RegenerationChongqing, China
- Chongqing Guolian Stem Cell Technology Co., Ltd.Chongqing, China
| | - Chanyu Zhang
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| | - Lina Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital, Chongqing Medical UniversityChongqing, China
- Reproduction and Stem Cell Therapy Research Center of ChongqingChina
- Joint International Research Lab for Reproduction and Development, Ministry of EducationChina
| |
Collapse
|
11
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
12
|
Bis(maltolato)oxovanadium(IV) Induces Angiogenesis via Phosphorylation of VEGFR2. Int J Mol Sci 2020; 21:ijms21134643. [PMID: 32629855 PMCID: PMC7370103 DOI: 10.3390/ijms21134643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022] Open
Abstract
VEGFR2 and VEGF-A play a pivotal role in the process of angiogenesis. VEGFR2 activation is regulated by protein tyrosine phosphatases (PTPs), enzymes that dephosphorylate the receptor and reduce angiogenesis. We aim to study the effect of PTPs blockade using bis(maltolato)oxovanadium(IV) (BMOV) on in vivo wound healing and in vitro angiogenesis. BMOV significantly improves in vivo wound closure by 45% in C57BL/6JRj mice. We found that upon VEGFR2 phosphorylation induced by endogenously produced VEGF-A, the addition of BMOV results in increased cell migration (45%), proliferation (40%) and tube formation (27%) in HUVECs compared to control. In a mouse ex vivo, aortic ring assay BMOV increased the number of sprouts by 3 folds when compared to control. However, BMOV coadministered with exogenous VEGF-A increased ECs migration, proliferation and tube formation by only 41%, 18% and 12% respectively and aortic ring sprouting by only 1-fold. We also found that BMOV enhances VEGFR2 Y951 and p38MAPK phosphorylation, but not ERK1/2. The level of phosphorylation of these residues was the same in the groups treated with BMOV supplemented with exogenous VEGF-A and exogenous VEGF-A only. Our study demonstrates that BMOV is able to enhance wound closure in vivo. Moreover, in the presence of endogenous VEGF-A, BMOV is able to stimulate in vitro angiogenesis by increasing the phosphorylation of VEGFR2 and its downstream proangiogenic enzymes. Importantly, BMOV had a stronger proangiogenic effect compared to its effect in coadministration with exogenous VEGF-A.
Collapse
|
13
|
Tuerxun W, Wang Y, Cui C, Yang L, Wang S, Yu Y, Wang L. Expression pattern of the interferon regulatory factor family members in influenza virus induced local and systemic inflammatory responses. Clin Immunol 2020; 217:108469. [PMID: 32479990 DOI: 10.1016/j.clim.2020.108469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Type I interferon is considered to be a key cytokine in influenza virus-induced acute lung injury (ALI), in which IRF3 and IRF7 play particularly important roles. However, whether all nine members of IRF family are involved in influenza virus-induced immune response is currently unknown. In this study, we found that all members of IRF family responded to influenza virus. The IRF family expression profile seems to be related to the pathogenicity of the particular influenza virus strain. The influenza virus mainly relies on endosomal TLR signals and the positive feedback loop of IFN-I to cause either direct or indirect different expression of all IRF family members locally or systemically. Interestingly, IRF6 was somewhat different from other IRF family members during influenza virus infection. Overall, the expression profile of the IRF family may be a valuable reference for the prevention and treatment of influenza complications, which encourage further, more in-depth research.
Collapse
Affiliation(s)
- Wuqiekun Tuerxun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Department of Cell Biology, College of Basic Medical Sciences, Xinjiang Medical University, Wulumuqi 830054, PR China
| | - Ying Wang
- Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Shengnan Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China; Institute of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
14
|
Wang G, de Vries MR, Sol WMPJ, van Oeveren-Rietdijk AM, de Boer HC, van Zonneveld AJ, Quax PHA, Rabelink TJ, van den Berg BM. Loss of Endothelial Glycocalyx Hyaluronan Impairs Endothelial Stability and Adaptive Vascular Remodeling After Arterial Ischemia. Cells 2020; 9:cells9040824. [PMID: 32235347 PMCID: PMC7226746 DOI: 10.3390/cells9040824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
We recently reported that loss of hyaluronan (HA) from the endothelial glycocalyx leads to loss of vessel stability in specific microcirculatory vascular beds. Here we hypothesized that such derangements in the glycocalyx may also impair the adaptive response to vascular ischemia. Endothelial specific conditional hyaluronan synthase 2-KO (Has2-cKO) mice revealed reduced endothelial HA expression and lower hindlimb perfusion at baseline compared to control mice. After a single ligation of the common femoral artery in these mice, we observed dysregulated angiogenesis in the gastrocnemius muscle which did not restore capillary perfusion. Mechanistically, decreased endothelial binding of the pericyte-derived molecule angiopoietin1 (Ang1) could be observed in the Has2-cKO mouse. In vitro angiogenesis assays with an endothelial cell-pericyte coculture confirmed such disturbed Ang1-TIE2 signaling resulting in excessive angiogenesis upon loss of HA. These data could be of relevance to diabetes patients, where we confirm loss of endothelial HA in the microcirculation of muscle tissue, indicating that this may contribute to the known disturbed adaptation to ischemia in these patients. In summary, loss of endothelial HA results in impaired microvascular perfusion and endothelial stability in ischemic gastrocnemius muscle. Endothelial HA is a potential target to improve angiogenic therapy in diabetic patients with critical limb ischemia.
Collapse
Affiliation(s)
- Gangqi Wang
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Margreet R. de Vries
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; (M.R.d.V.); (P.H.A.Q.)
| | - Wendy M. P. J. Sol
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Annemarie M. van Oeveren-Rietdijk
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Hetty C. de Boer
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Anton Jan van Zonneveld
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Paul H. A. Quax
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; (M.R.d.V.); (P.H.A.Q.)
| | - Ton J. Rabelink
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
| | - Bernard M. van den Berg
- The Einthoven laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (G.W.); (W.M.P.J.S.); (A.M.v.O.-R.); (H.C.d.B.); (A.J.v.Z.); (T.J.R.)
- Correspondence: ; Tel.: +31-71-52-65024
| |
Collapse
|
15
|
Simons KH, de Vries MR, de Jong RCM, Peters HAB, Jukema JW, Quax PHA. IRF3 and IRF7 mediate neovascularization via inflammatory cytokines. J Cell Mol Med 2019; 23:3888-3896. [PMID: 30932349 PMCID: PMC6533520 DOI: 10.1111/jcmm.14247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To elucidate the role of interferon regulatory factor (IRF)3 and IRF7 in neovascularization. METHODS Unilateral hind limb ischaemia was induced in Irf3-/- , Irf7-/- and C57BL/6 mice by ligation of the left common femoral artery. Post-ischaemic blood flow recovery in the paw was measured with laser Doppler perfusion imaging. Soleus, adductor and gastrocnemius muscles were harvested to investigate angiogenesis and arteriogenesis and inflammation. RESULTS Post-ischaemic blood flow recovery was decreased in Irf3-/- and Irf7-/- mice compared to C57BL/6 mice at all time points up to and including sacrifice, 28 days after surgery (t28). This was supported by a decrease in angiogenesis and arteriogenesis in soleus and adductor muscles of Irf3-/- and Irf7-/- mice at t28. Furthermore, the number of macrophages around arterioles in adductor muscles was decreased in Irf3-/- and Irf7-/- mice at t28. In addition, mRNA expression levels of pro-inflammatory cytokines (tnfα, il6, ccl2) and growth factor receptor (vegfr2), were decreased in gastrocnemius muscles of Irf3-/- and Irf7-/- mice compared to C57BL/6 mice. CONCLUSION Deficiency of IRF3 and IRF7 results in impaired post-ischaemic blood flow recovery caused by attenuated angiogenesis and arteriogenesis linked to a lack of inflammatory components in ischaemic tissue. Therefore, IRF3 and IRF7 are essential regulators of neovascularization.
Collapse
Affiliation(s)
- Karin H. Simons
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Margreet R. de Vries
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rob C. M. de Jong
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Hendrika A. B. Peters
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - J. Wouter Jukema
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of CardiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Paul H. A. Quax
- Department of SurgeryLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|