1
|
Dong J, Shelp GV, Poole EM, Cook WJJ, Michaud J, Cho CE. Prenatal choline supplementation enhances metabolic outcomes with differential impact on DNA methylation in Wistar rat offspring and dams. J Nutr Biochem 2025; 136:109806. [PMID: 39547266 DOI: 10.1016/j.jnutbio.2024.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Choline is an essential nutrient required for proper functioning of organs and serves as a methyl donor. In liver where choline metabolism primarily occurs, glucose homeostasis is regulated through insulin receptor substrates (IRS) 1 and 2. The objective of this research was to determine the role of prenatal choline as a modulator of metabolic health and DNA methylation in liver of offspring and dams. Pregnant Wistar rat dams were fed an AIN-93G diet and received drinking water either with supplemented 0.25% choline (w/w) as choline bitartrate or untreated control. All offspring were weaned to a high-fat diet for 12 weeks. Prenatal choline supplementation led to higher insulin sensitivity in female offspring at weaning as well as lower body weight and food intake and higher insulin sensitivity in female and male adult offspring compared to offspring from untreated dams. Higher hepatic betaine concentrations were observed in dams and female offspring of choline-supplemented dams at weaning and higher glycerophosphocholine in female and male offspring at postweaning compared to the untreated control, suggestive of sustaining different choline pathways. Hepatic gene expression of Irs2 was higher in dams at weaning and female offspring at weaning and postweaning, whereas Irs1 was lower in male offspring at postweaning. Gene-specific DNA methylation of Irs2 was lower in female offspring at postweaning and Irs1 methylation was higher in male offspring at postweaning that exhibited an inverse relationship between methylation and gene expression. In conclusion, prenatal choline supplementation contributes to improved parameters of insulin signaling but these effects varied across time and offspring sex.
Collapse
Affiliation(s)
- Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth M Poole
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - William J J Cook
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jana Michaud
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
3
|
Hao Z, Han B, Zhou X, Jian H, He X, Lu L, Zhang M, Pan H, Yi H, Tang S. Association of DNA methylation, polymorphism and mRNA level of ALAS1 with antituberculosis drug-induced liver injury. Pharmacogenomics 2024; 25:451-460. [PMID: 39263813 PMCID: PMC11492648 DOI: 10.1080/14622416.2024.2392480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
Aim: To investigate the association of DNA methylation, genetic polymorphisms and mRNA level of aminolevulinate synthase 1 (ALAS1) with antituberculosis drug-induced liver injury (AT-DILI) risk.Methods: Based on a 1:1 matched case-control study with 182 cases and 182 controls, one CpG island and three single nucleotide polymorphisms (SNPs) were detected. ALAS1 mRNA level was detected in 34 samples.Results: Patients with methylation status were at high risk of AT-DILI (odds ratio: 1.567, 95% CI: 1.015-2.421, p = 0.043) and SNP rs352169 was associated with AT-DILI risk (GA vs. GG, odds ratio: 1.770, 95% CI: 1.101-2.847, p = 0.019). ALAS1 mRNA level in the cases was significantly lower than that in the controls (0.75 ± 0.34 vs. 1.00 ± 0.42, p = 0.021).Conclusion: The methylation status and SNP rs352169 of ALAS1 were associated with AT-DILI risk.
Collapse
Affiliation(s)
- Zhuolu Hao
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bing Han
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyue Zhou
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongkai Jian
- Department of Internal Medicine, The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, 225400, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, 215500, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, 212021, China
| | - Honggang Yi
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
4
|
Liu J, Wang G, Yang J, Wang Y, Guo R, Li B. Association between FOXP3 polymorphisms and expression and neuromyelitis optica spectrum disorder risk in the Northern Chinese Han population. Transl Neurosci 2024; 15:20220337. [PMID: 38584670 PMCID: PMC10998649 DOI: 10.1515/tnsci-2022-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Background Forkhead box P3 (FOXP3) plays a critical role in the pathogenesis of autoimmune disorders. In the present study, we genotyped three single-nucleotide polymorphisms, namely, rs2232365, rs3761548, and rs3761549, to determine the relationship between FOXP3 polymorphisms and neuromyelitis optica spectrum disorder (NMOSD) susceptibility among the Northern Chinese Han population. Materials and methods We genotyped single nucleotide polymorphisms at loci of the FOXP3 gene (rs2232365, rs3761548, and rs3761549136) in 136 NMOSD patients and 224 healthy subjects using the multiplex SNaPshot technique. Allele, genotype, and haplotype frequencies were compared. qPCR was used to analyze the mRNA expression levels of FOXP3 in the peripheral blood mononuclear cells of 63 NMOSD patients and 35 healthy subjects. Non-parametric tests were used to test the FOXP3 mRNA expression across the different groups. Results The minor allele frequency (MAF) of G in rs2232365 was markedly lower in the NMOSD group than in the control group (odds ratio [OR] = 0.57, 95% confidence interval [95% CI]: 0.41-0.79, p = 0.001). Using genetic (codominant, dominant, and recessive) models and performing haplotype analyses, the MAF of G in rs2232365 was shown to be associated with protection against NMOSD in this population. Furthermore, haplotype analysis revealed that the haplotype GCT and the rs2232365, rs3761548, and rs3761549 alleles predicted protection against NMOSD (OR = 0.63, 95% CI = 0.41-0.97, p = 0.038). The proportions of the three genotypes of rs2232365 (p = 0.001) were not significantly different between the moderate-to-severe (Expanded Disability Status Scale (EDSS) ≥ 3 points) and mild (EDSS < 3 points) groups. Evidently, the proportion of patients with the AA genotype (64.3%) among the rs2232365 patients was significantly greater in the moderate-to-severe group than in the mild group (36.4%). However, the proportion of patients with the GG genotype (15.2%) among the rs2232365 patients was significantly greater in the mild group than in the moderate-to-severe group (2.9%). The mRNA expression of FOXP3 was markedly greater in the NMOSD group than in the control group (p = 0.001). Nevertheless, acute non-treatment patients exhibited lower FOXP3 mRNA expression than healthy controls and patients in the remission group (p = 0.004 and 0.007, respectively). Conclusion FOXP3 polymorphisms and haplotypes are related to NMOSD susceptibility among the Han Chinese population. The minor allele G of FOXP3 rs2232365 and the haplotype GCT are associated with protection against NMOSD. The GG genotype may decrease the severity of NMOSD, whereas the AA genotype is related to moderate-to-severe NMOSD. FOXP3 mRNA expression is greater in patients with NMOSD than in healthy controls. However, it is decreased in acute non-treatment patients compared with healthy controls.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Gaoning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jiahe Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Yulin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
- Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
5
|
Li R, Song J, Zhao A, Diao X, Zhang T, Qi X, Guan Z, An Y, Ren L, Wang C, He Y. Association of APP gene polymorphisms and promoter methylation with essential hypertension in Guizhou: a case-control study. Hum Genomics 2023; 17:25. [PMID: 36941702 PMCID: PMC10026478 DOI: 10.1186/s40246-023-00462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) and DNA methylation are crucial regulators of essential hypertension (EH). Amyloid precursor protein (APP) mutations are implicated in hypertension development. Nonetheless, studies on the association of APP gene polymorphism and promoter methylation with hypertension are limited. Therefore, this case-control aims to evaluate the genetic association of APP gene polymorphism and promoter methylation with EH in Guizhou populations. OBJECTIVE AND METHODS We conducted a case-control study on 343 EH patients and 335 healthy controls (including Miao, Buyi, and Han populations) in the Guizhou province of China to analyze 11 single-nucleotide polymorphisms (rs2040273, rs63750921, rs2211772, rs2830077, rs467021, rs368196, rs466433, rs364048, rs364051, rs438031, rs463946) in the APP gene via MassARRAY SNP. The MassARRAY EpiTYPER was employed to detect the methylation levels of the promoters. RESULTS In the Han population, the rs2211772 genotype distribution was significantly different between disease and control groups (χ2 = 6.343, P = 0.039). The CC genotype reduced the risk of hypertension compared to the TT or TC genotype (OR 0.105, 95%CI 0.012-0.914, P = 0.041). For rs2040273 in the Miao population, AG or GG genotype reduced the hypertension risk compared with the AA genotype (OR 0.533, 95%CI 0.294-0.965, P = 0.038). Haplotype TCC (rs364051-rs438031-rs463946) increased the risk of EH in Guizhou (OR 1.427, 95%CI 1.020-1.996, P = 0.037). Each 1% increase in CpG_19 (- 613 bp) methylation level was associated with a 4.1% increase in hypertension risk (OR 1.041, 95%CI 1.002-1.081, P = 0.039). Each 1% increase in CpG_1 (- 296 bp) methylation level was associated with an 8% decrease in hypertension risk in women (OR 0.920, 95%CI 0.860-0.984, P = 0.015). CpG_19 significantly correlated with systolic blood pressure (r = 0.2, P = 0.03). The methylation levels of CpG_19 in hypertensive patients with rs466433, rs364048, and rs364051 minor alleles were lower than that with wild-type alleles (P < 0.05). Moreover, rs467021 and rs364051 showed strong synergistic interaction with EH (χ2 = 7.633, P = 0.006). CpG_11, CpG_19, and rs364051 showed weak synergistic interaction with EH (χ2 = 19.874, P < 0.001). CONCLUSION In summary, rs2211772 polymorphism and promoter methylation level of APP gene may be linked to EH in Guizhou populations. Our findings will provide novel insights for genetic research of hypertension and Alzheimer's disease.
Collapse
Affiliation(s)
- Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoyan Diao
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yu An
- The Clinical Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lingyan Ren
- Antenatal Diagnosis Centre, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
6
|
Pan H, Tan PF, Lim IY, Huan J, Teh AL, Chen L, Gong M, Tin F, Mir SA, Narasimhan K, Chan JKY, Tan KH, Kobor MS, Meikle PJ, Wenk MR, Chong YS, Eriksson JG, Gluckman PD, Karnani N. Integrative Multi-Omics database (iMOMdb) of Asian Pregnant Women. Hum Mol Genet 2022; 31:3051-3067. [PMID: 35445712 PMCID: PMC9476622 DOI: 10.1093/hmg/ddac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/20/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Asians are underrepresented across many omics databases, thereby limiting the potential of precision medicine in nearly 60% of the global population. As such, there is a pressing need for multi-omics derived quantitative trait loci (QTLs) to fill the knowledge gap of complex traits in populations of Asian ancestry. Here, we provide the first blood-based multi-omics analysis of Asian pregnant women, constituting high-resolution genotyping (N = 1079), DNA methylation (N = 915) and transcriptome profiling (N = 238). Integrative omics analysis identified 219 154 CpGs associated with cis-DNA methylation QTLs (meQTLs) and 3703 RNAs associated with cis-RNA expression QTLs (eQTLs). Ethnicity was the largest contributor of inter-individual variation across all omics datasets, with 2561 genes identified as hotspots of this variation; 395 of these hotspot genes also contained both ethnicity-specific eQTLs and meQTLs. Gene set enrichment analysis of these ethnicity QTL hotspots showed pathways involved in lipid metabolism, adaptive immune system and carbohydrate metabolism. Pathway validation by profiling the lipidome (~480 lipids) of antenatal plasma (N = 752) and placenta (N = 1042) in the same cohort showed significant lipid differences among Chinese, Malay and Indian women, validating ethnicity-QTL gene effects across different tissue types. To develop deeper insights into the complex traits and benefit future precision medicine research in Asian pregnant women, we developed iMOMdb, an open-access database.
Collapse
Affiliation(s)
- Hong Pan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Pei Fang Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Ives Y Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Jason Huan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Min Gong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Felicia Tin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Sartaj Ahmad Mir
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Kothandaraman Narasimhan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore.,Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore
| | - Kok Hian Tan
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore.,Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Australia
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Department of Obstetrics and Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Finland
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore.,Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
7
|
Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, Marí S, Quintela I, Mason D, Cadiou S, Casas M, Andrusaityte S, Gutzkow KB, Vafeiadi M, Wright J, Lepeule J, Grazuleviciene R, Chatzi L, Carracedo Á, Estivill X, Marti E, Escaramís G, Vrijheid M, González JR, Bustamante M. Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children's blood. eLife 2022; 11:e65310. [PMID: 35302492 PMCID: PMC8933004 DOI: 10.7554/elife.65310] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background The identification of expression quantitative trait methylation (eQTMs), defined as associations between DNA methylation levels and gene expression, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis eQTMs in children's blood, using data from 832 children of the Human Early Life Exposome (HELIX) project. Methods Blood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (1 Mb window centered at the transcription start site, TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and blood cell composition. Results We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was located at <250 kb from eGene's TSS; and 58.8% of all eQTMs showed an inverse relationship between the methylation and expression levels. Only around half of the autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the closest gene. eCpGs had less measurement error and were enriched for active blood regulatory regions and for CpGs reported to be associated with environmental exposures or phenotypic traits. In 40.4% of the eQTMs, the CpG and the eGene were both associated with at least one genetic variant. The overlap of autosomal cis eQTMs in children's blood with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be proximal to the TSS and enriched for genetic variants. Conclusions This catalogue of autosomal cis eQTMs in children's blood can help the biological interpretation of EWAS findings and is publicly available at https://helixomics.isglobal.org/ and at Dryad (doi:10.5061/dryad.fxpnvx0t0). Funding The study has received funding from the European Community's Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE project); from the European Union's Horizon 2020 research and innovation programme under grant agreement no 733206 (LIFECYCLE project), and from the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL and Instituto de Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The genotyping was supported by the projects PI17/01225 and PI17/01935, funded by the Instituto de Salud Carlos III and co-funded by European Union (ERDF, "A way to make Europe") and the Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII). BiB received core infrastructure funding from the Wellcome Trust (WT101597MA) and a joint grant from the UK Medical Research Council (MRC) and Economic and Social Science Research Council (ESRC) (MR/N024397/1). INMA data collections were supported by grants from the Instituto de Salud Carlos III, CIBERESP, and the Generalitat de Catalunya-CIRIT. KANC was funded by the grant of the Lithuanian Agency for Science Innovation and Technology (6-04-2014_31V-66). The Norwegian Mother, Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The Rhea project was financially supported by European projects (EU FP6-2003-Food-3-NewGeneris, EU FP6. STREP Hiwate, EU FP7 ENV.2007.1.2.2.2. Project No 211250 Escape, EU FP7-2008-ENV-1.2.1.4 Envirogenomarkers, EU FP7-HEALTH-2009- single stage CHICOS, EU FP7 ENV.2008.1.2.1.6. Proposal No 226285 ENRIECO, EU- FP7- HEALTH-2012 Proposal No 308333 HELIX), and the Greek Ministry of Health (Program of Prevention of obesity and neurodevelopmental disorders in preschool children, in Heraklion district, Crete, Greece: 2011-2014; "Rhea Plus": Primary Prevention Program of Environmental Risk Factors for Reproductive Health, and Child Health: 2012-15). We acknowledge support from the Spanish Ministry of Science and Innovation through the "Centro de Excelencia Severo Ochoa 2019-2023" Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program. MV-U and CR-A were supported by a FI fellowship from the Catalan Government (FI-DGR 2015 and #016FI_B 00272). MC received funding from Instituto Carlos III (Ministry of Economy and Competitiveness) (CD12/00563 and MS16/00128).
Collapse
Affiliation(s)
- Carlos Ruiz-Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Carles Hernandez-Ferrer
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- ISGlobalBarcelonaSpain
| | - Marta Vives-Usano
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Sergi Marí
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Ines Quintela
- Medicine Genomics Group, University of Santiago de CompostelaSantiago de CompostelaSpain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - Solène Cadiou
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory HealthGrenobleFrance
| | - Maribel Casas
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus UniversityKaunasLithuania
| | | | - Marina Vafeiadi
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- Department of Social Medicine, University of CreteCreteGreece
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation TrustBradfordUnited Kingdom
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory HealthGrenobleFrance
| | | | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los AngelesLos AngelesUnited States
| | - Ángel Carracedo
- Medicine Genomics Group, CIBERER, University of Santiago de CompostelaSantiago de CompostelaSpain
- Galician Foundation of Genomic MedicineSantiago de CompostelaSpain
| | - Xavier Estivill
- Quantitative Genomics Medicine Laboratories (qGenomics), Esplugues del LlobregaBarcelonaSpain
| | - Eulàlia Marti
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
- Departament de Biomedicina, Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Geòrgia Escaramís
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
- Departament de Biomedicina, Institut de Neurociències, Universitat de BarcelonaBarcelonaSpain
| | - Martine Vrijheid
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Juan R González
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| | - Mariona Bustamante
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ISGlobalBarcelonaSpain
- CIBER Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
| |
Collapse
|
8
|
Xu B, Xu Z, Chen Y, Lu N, Shu Z, Tan X. Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors. BMC Med Genomics 2021; 14:240. [PMID: 34615528 PMCID: PMC8496081 DOI: 10.1186/s12920-021-01094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both DNA genotype and methylation of antisense non-coding RNA in the INK4 locus (ANRIL) have been robustly associated with coronary artery disease (CAD), but the interdependent mechanisms of genotype and methylation remain unclear. METHODS Eighteen tag single nucleotide polymorphisms (SNPs) of ANRIL were genotyped in a matched case-control study (cases 503 and controls 503). DNA methylation of ANRIL and the INK4/ARF locus (p14ARF, p15INK4b and p16INK4a) was measured using pyrosequencing in the same set of samples (cases 100 and controls 100). RESULTS Polymorphisms of ANRIL (rs1004638, rs1333048 and rs1333050) were significantly associated with CAD (p < 0.05). The incidence of CAD, multi-vessel disease, and modified Gensini scores demonstrated a strong, direct association with ANRIL gene dosage (p < 0.05). There was no significant association between ANRIL polymorphisms and myocardial infarction/acute coronary syndrome (MI/ACS) (p > 0.05). Methylation levels of ANRIL were similar between the two studied groups (p > 0.05), but were different in the rs1004638 genotype, with AA and AT genotype having a higher level of ANRIL methylation (pos4, p = 0.006; pos8, p = 0.019). Further Spearman analyses indicated that methylation levels of ANRIL were positively associated with systolic blood pressure (pos6, r = 0.248, p = 0.013), diastolic blood pressure (pos3, r = 0.213, p = 0.034; pos6, r = 0.220, p = 0.028), and triglyceride (pos4, r = 0.253, p = 0.013), and negatively associated with high-density lipoprotein cholesterol (pos2, r = - 0.243, p = 0.017). Additionally, we identified 12 transcription factor binding sites (TFBS) within the methylated ANRIL region, and functional annotation indicated these TFBS were associated with basal transcription. Methylation at the INK4/ARF locus was not associated with ANRIL genotype. CONCLUSIONS These results indicate that ANRIL genotype (tag SNPs rs1004638, rs1333048 and rs1333050) mainly affects coronary atherosclerosis, but not MI/ACS. There may be allele-related DNA methylation and allele-related binding of transcription factors within the ANRIL promoter.
Collapse
Affiliation(s)
- Bayi Xu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhixia Xu
- Department of Medical Service, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Nan Lu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zhouwu Shu
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
9
|
Shidal C, Shu X, Wu J, Wang J, Huang S, Long J, Bauer JA, Ping J, Guo X, Zheng W, Shu XO, Cai Q. Functional Genomic Analyses of the 21q22.3 Locus Identifying Functional Variants and Candidate Gene YBEY for Breast Cancer Risk. Cancers (Basel) 2021; 13:cancers13092037. [PMID: 33922500 PMCID: PMC8122893 DOI: 10.3390/cancers13092037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Previous research has revealed a genetic predisposition to breast carcinogenesis. Thus, identifying causal genetic variants and their associated gene networks may improve breast cancer diagnostics and risk assessment. Our study investigated YBEY, an uncharacterized gene in humans, and its functions in breast cancer risk and progression. We identified two genetic variants associated with YBEY expression that may have causal functions in breast cancer risk. We performed in vitro functional assays using MCF-7, T47D, and MDA-MB-231 breast cancer cell lines and showed that knockdown of YBEY expression significantly inhibited proliferation, colony formation, and invasion/migration. We utilized RNA sequencing to identify gene networks associated with YBEY knockdown including inflammation and metabolic pathways. Further, we used data available in The Cancer Genome Atlas to explore trends in YBEY expression patterns in normal and tumor tissues. Our study provides a role for YBEY in breast carcinogenesis, and further studies investigating its mechanistic functions are warranted. Abstract We previously identified a locus at 21q22.3, tagged by the single nucleotide polymorphism (SNP) rs35418111, being associated with breast cancer risk at a genome-wide significance level; however, the underlying causal functional variants and gene(s) responsible for this association are unknown. We performed functional genomic analyses to identify potential functional variants and target genes that may mediate this association. Functional annotation for SNPs in high linkage disequilibrium (LD, r2 > 0.8) with rs35418111 in Asians showed evidence of promoter and/or enhancer activities, including rs35418111, rs2078203, rs8134832, rs57385578, and rs8126917. These five variants were assessed for interactions with nuclear proteins by electrophoretic mobility shift assays. Our results showed that the risk alleles for rs2078203 and rs35418111 altered DNA-protein interaction patterns. Cis-expression quantitative loci (cis-eQTL) analysis, using data from the Genotype-Tissue Expression database (GTEx) European-ancestry female normal breast tissue, indicated that the risk allele of rs35418111 was associated with a decreased expression of the YBEY gene, a relatively uncharacterized endoribonuclease in humans. We investigated the biological effects of YBEY on breast cancer cell lines by transient knock-down of YBEY expression in MCF-7, T47D, and MDA-MB-231 cell lines. Knockdown of YBEY mRNA in breast cancer cell lines consistently decreased cell proliferation, colony formation, and migration/invasion, regardless of estrogen receptor status. We performed RNA sequencing in MDA-MB-231 cells transfected with siRNA targeting YBEY and subsequent gene set enrichment analysis to identify gene networks associated with YBEY knockdown. These data indicated YBEY was involved in networks associated with inflammation and metabolism. Finally, we showed trends in YBEY expression patterns in breast tissues from The Cancer Genome Atlas (TCGA); early-stage breast cancers had elevated YBEY expression compared with normal tissue, but significantly decreased expression in late-stage disease. Our study provides evidence of a significant role for the human YBEY gene in breast cancer pathogenesis and the association between the rs35418111/21q22.3 locus and breast cancer risk, which may be mediated through functional SNPs, rs35418111 and rs2078203, that regulate expression of YBEY.
Collapse
Affiliation(s)
- Chris Shidal
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Xiang Shu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
- Memorial Sloan Kettering Cancer Center, Department of Epidemiology & Biostatistics, New York, NY 10075, USA
| | - Jie Wu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Jifeng Wang
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Shuya Huang
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
- Department of Breast Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Jirong Long
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Joshua A. Bauer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37203, USA;
| | - Jie Ping
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Xingyi Guo
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Department of Medicine, Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; (C.S.); (X.S.); (J.W.); (J.W.); (S.H.); (J.L.); (J.P.); (X.G.); (W.Z.); (X.-O.S.)
- Correspondence: ; Tel.: +1-615-936-1351; Fax: +1-615-936-8291
| |
Collapse
|
10
|
Chidambaran V, Zhang X, Pilipenko V, Chen X, Wronowski B, Geisler K, Martin LJ, Barski A, Weirauch MT, Ji H. Methylation quantitative trait locus analysis of chronic postsurgical pain uncovers epigenetic mediators of genetic risk. Epigenomics 2021; 13:613-630. [PMID: 33820434 DOI: 10.2217/epi-2020-0424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Overlap of pathways enriched by single nucleotide polymorphisms and DNA-methylation underlying chronic postsurgical pain (CPSP), prompted pilot study of CPSP-associated methylation quantitative trait loci (meQTL). Materials & methods: Children undergoing spine-fusion were recruited prospectively. Logistic-regression for genome- and epigenome-wide CPSP association and DNA-methylation-single nucleotide polymorphism association/mediation analyses to identify meQTLs were followed by functional genomics analyses. Results: CPSP (n = 20/58) and non-CPSP groups differed in pain-measures. Of 2753 meQTLs, DNA-methylation at 127 cytosine-guanine dinucleotides mediated association of 470 meQTLs with CPSP (p < 0.05). At PARK16 locus, CPSP risk meQTLs were associated with decreased DNA-methylation at RAB7L1 and increased DNA-methylation at PM20D1. Corresponding RAB7L1/PM20D1 blood eQTLs (GTEx) and cytosine-guanine dinucleotide-loci enrichment for histone marks, transcription factor binding sites and ATAC-seq peaks suggest altered transcription factor-binding. Conclusion: CPSP-associated meQTLs indicate epigenetic mechanisms mediate genetic risk. Clinical trial registration: NCT01839461, NCT01731873 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Vidya Chidambaran
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Valentina Pilipenko
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Wronowski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristie Geisler
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Artem Barski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hong Ji
- Department of Anatomy, Physiology & Cell biology, California National Primate Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Lu YH, Wang BH, Jiang F, Mo XB, Wu LF, He P, Lu X, Deng FY, Lei SF. Multi-omics integrative analysis identified SNP-methylation-mRNA: Interaction in peripheral blood mononuclear cells. J Cell Mol Med 2019; 23:4601-4610. [PMID: 31106970 PMCID: PMC6584519 DOI: 10.1111/jcmm.14315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 11/29/2022] Open
Abstract
Genetic variants have potential influence on DNA methylation and thereby regulate mRNA expression. This study aimed to comprehensively reveal the relationships among SNP, methylation and mRNA, and identify methylation-mediated regulation patterns in human peripheral blood mononuclear cells (PBMCs). Based on in-house multi-omics datasets from 43 Chinese Han female subjects, genome-wide association trios were constructed by simultaneously testing the following three association pairs: SNP-methylation, methylation-mRNA and SNP-mRNA. Causal inference test (CIT) was used to identify methylation-mediated genetic effects on mRNA. A total of 64,184 significant cis-methylation quantitative trait loci (meQTLs) were identified (FDR < 0.05). Among the 745 constructed trios, 464 trios formed SNP-methylation-mRNA regulation chains (CIT). Network analysis (Cytoscape 3.3.0) constructed multiple complex regulation networks among SNP, methylation and mRNA (eg a total of 43 SNPs simultaneously connected to cg22517527 and further to PRMT2, DIP2A and YBEY). The regulation chains were supported by the evidence from 4DGenome database, relevant to immune or inflammatory related diseases/traits, and overlapped with previous eQTLs from dbGaP and GTEx. The results provide new insights into the regulation patterns among SNP, DNA methylation and mRNA expression, especially for the methylation-mediated effects, and also increase our understanding of functional mechanisms underlying the established associations.
Collapse
Affiliation(s)
- Yi-Hua Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Department of Epidemiology and Health Statistics, School of Public Health, Nantong University, Nantong, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Bing-Hua Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Fei Jiang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, P. R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, P. R. China
| |
Collapse
|