1
|
Fan Y, Ye L, Wang S, Wang J, Wang K, Li Y. Role of lncRNA TPRG1-AS1 in the development of cervical squamous cell carcinoma and its prognostic value. Discov Oncol 2024; 15:754. [PMID: 39692778 DOI: 10.1007/s12672-024-01654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE Cervical squamous cell carcinoma (CSCC) has a poor prognosis due to persistent HPV infection. LncRNA TPRG1-AS1 is linked to regulating the development of many cancers, so the regulatory mechanism and prognostic value of TPRG1-AS1 in CSCC were explored. METHODS 138 patients with cervical cancer were included. TPRG1-AS1 expression and miR-590-3p were analyzed by qRT-PCR. The association between TPRG1-AS1 and clinicopathological features was investigated. Independent prognostic factors of CSCC were analyzed by multifactorial Cox regression. Patient survival was analyzed using Kaplan-Meier plotter curves. CCK-8 was employed to evaluate the proliferative capacity of the cells. Transwell assays were performed to evaluate the effects of TPRG1-AS1 and miR-590-3p on cell migration and invasion performance, and the target of both was reported by DLR assay. RESULTS TPRG1-AS1 levels were ascended in CSCC, and miR-590-3p levels were reduced. TPRG1-AS1 and miR-590-3p target binding and expression correlated negatively. Knockdown of TPRG1-AS1 expression could facilitate high miR-590-3p expression, which reduced cell proliferation, migration, and invasion ability. TPRG1-AS1 is an independent prognostic factor. CONCLUSION TPRG1-AS1 has potential as a prognostic marker for CSCC. Silencing the expression of TPRG1-AS1 could contribute to the high miR-590-3p expression thereby slowing down the progression of CSCC.
Collapse
Affiliation(s)
- Yang Fan
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia, 750011, China
| | - Lan Ye
- Department of Gynecology, Shanghai Putuo Maternity & Infant Health Hospital, Shanghai, 200062, China
| | - Shuyu Wang
- Chemistry Teaching and Research Section, Henan Medical College, No. 8, Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou, 451191, Henan, China
| | - Junwei Wang
- Shanghai Medicilon Inc., Shanghai, 201299, China
| | - Ke Wang
- Chemistry Teaching and Research Section, Henan Medical College, No. 8, Shuanghu Avenue, Longhu Town, Xinzheng, Zhengzhou, 451191, Henan, China.
| | - Ying Li
- Department of Gynecology, The Second Affiliated Hospital of Xuzhou Medical University, No.99 West Huaihai Road, Quanshan District, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
2
|
Colin Waldo MD, Quintero-Millán X, Negrete-García MC, Ruiz V, Sommer B, Romero-Rodríguez DP, Montes-Martínez E. Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:13746-13766. [PMID: 39727949 DOI: 10.3390/cimb46120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease. These miRNAs, released into the circulation outside the cell through exosomes and proteins, play a crucial role in the pathogenic pathways and mechanisms involved in IPF development. This review focuses on the serum/plasma miRNAs reported in IPF that have been validated by real-time PCR and the published evidence regarding the fibrotic process. First, we describe the mechanisms by which miRNAs travel through the circulation (contained in exosomes and bound to proteins), as well as the mechanism by which miRNAs perform their function within the cell. Subsequently, we summarize the evidence concerning miRNAs reported in serum/plasma, where we find contradictory functions in some miRNAs (dual functions in IPF) when comparing the findings in vitro vs. in vivo. The most relevant finding, for instance, the levels of miRNAs let-7d and miR-21 reported in the serum/plasma in IPF, correspond to those found in studies in lung fibroblasts and the murine bleomycin model, reinforcing the usefulness of these miRNAs as future biomarkers in IPF.
Collapse
Affiliation(s)
- Marisa Denisse Colin Waldo
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Xochipilzihuitl Quintero-Millán
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Maria Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Dámaris P Romero-Rodríguez
- Conahcyt National Laboratory for Research and Diagnosis by Immunocytofluorometry (LANCIDI), National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
3
|
Jin R, Deng Z, Liu F, Lu L, Ding F, Shen Y, Wang HC, Chang M, Peng Z, Liang X. Knockdown of ZEB1 Inhibits Hypertrophic Scarring through Suppressing the Wnt/β-Catenin Signaling Pathway in a Mouse Model. Plast Reconstr Surg 2024; 154:991-1001. [PMID: 37983882 PMCID: PMC11512622 DOI: 10.1097/prs.0000000000011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Hypertrophic scars (HSs) cause functional impairment and cosmetic deformities following operations or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well known. In tissue fibrosis, abnormal up-regulation of zinc finger E-box binding homeobox 1 (ZEB1) is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HSs. The authors hypothesized that ZEB1 knockdown inhibits HS formation. METHODS ZEB1 expression in human HS and transforming growth factor-β1-induced fibroblasts were identified by polymerase chain reaction (PCR) and Western blotting. ZEB1 was knocked down by small interfering RNA in HS fibroblasts (HSFs) and the mouse HS model (C57/BL6 male mice aged 8 to 12 weeks). After 8 hours of transfection, HSFs were subjected to PCR, Western blotting, and Cell Counting Kit-8 apoptosis, migration, and contraction assays. Mouse HSs were analyzed by hematoxylin and eosin staining, PCR, and Western blotting after 56 days. RESULTS ZEB1 was up-regulated in HS tissue (2.0-fold; P < 0.001). ZEB1 knockdown inhibited HSF activity (0.6-fold to 0.7-fold; P < 0.001); the expression of fibrotic markers (0.4-fold to 0.6-fold; P < 0.001); and β-catenin, cyclinD1, and c-Myc expression (0.5-fold; P < 0.001). In mouse HS models, HS skin thickness was less (1.60 ± 0.40 mm versus 4.04 ± 0.36 mm; P < 0.001) after ZEB1 knockdown. CONCLUSIONS ZEB1 knockdown inhibits HS formation both in vitro and in vivo. However, this is an in vitro mouse model, and more validation is needed. CLINICAL RELEVANCE STATEMENT The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.
Collapse
Affiliation(s)
- Rui Jin
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhizhong Deng
- Department of Plastic and Burns Surgery, West China Hospital, Sichuan University
| | - Fei Liu
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Lin Lu
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Feixue Ding
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yirui Shen
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Hayson Chenyu Wang
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Mengling Chang
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| | - Xiao Liang
- From the Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
4
|
Komal S, Gao Y, Wang ZM, Yu QW, Wang P, Zhang LR, Han SN. Epigenetic Regulation in Myocardial Fibroblasts and Its Impact on Cardiovascular Diseases. Pharmaceuticals (Basel) 2024; 17:1353. [PMID: 39458994 PMCID: PMC11510975 DOI: 10.3390/ph17101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial fibroblasts play a crucial role in heart structure and function. In recent years, significant progress has been made in understanding the epigenetic regulation of myocardial fibroblasts, which is essential for cardiac development, homeostasis, and disease progression. In healthy hearts, cardiac fibroblasts (CFs) play a crucial role in synthesizing the extracellular matrix (ECM) when in a dormant state. However, under pathological and environmental stress, CFs transform into activated fibroblasts known as myofibroblasts. These myofibroblasts produce an excess of ECM, which promotes cardiac fibrosis. Although multiple molecular mechanisms are associated with CF activation and myocardial dysfunction, emerging evidence highlights the significant involvement of epigenetic regulation in this process. Epigenetics refers to the heritable changes in gene expression that occur without altering the DNA sequence. These mechanisms have emerged as key regulators of myocardial fibroblast function. This review focuses on recent advancements in the understanding of the role of epigenetic regulation and emphasizes the impact of epigenetic modifications on CF activation. Furthermore, we present perspectives and prospects for future research on epigenetic modifications and their implications for myocardial fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; (S.K.); (Y.G.); (Z.-M.W.); (Q.-W.Y.); (P.W.); (L.-R.Z.)
| |
Collapse
|
5
|
Rabelo IP, Gujanwski CDA, Viana IS, de Paula VB, Rein A, Rabelo SP, Valadäo CAA. Intranasal vs. intramuscular administration of azaperone, midazolam and ketamine in pigs. Front Vet Sci 2024; 11:1408103. [PMID: 39386244 PMCID: PMC11462642 DOI: 10.3389/fvets.2024.1408103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To compare the efficacy of intranasal (IN) and intramuscular (IM) administrations of azaperone (3 mg kg-1), midazolam (0. 3 mg kg-1), and ketamine (7 mg kg-1) combination (AMK) in pigs. Study design: Randomized clinical trial. Animals: sixteen adult male pigs, immunocastrated, of mixed lineage. Methods In phase I, these animals were randomly assigned to intranasal (GIN, n = 8) and intramuscular (GIM, n = 8) groups for arterial blood sample collection at 10, 20, 30, 45, 60, and 90 min after AMK administrations for gas and electrolyte analysis. In phase II, performed 1 week after phase I, the 16 pigs were allocated to both groups (GIM, n = 16/GIN, n = 16) and submitted to the same chemical restraint (CR) protocol, with a 96-h interval between administrations. Behavioral parameters (degree of CR, muscle relaxation, loss of postural reflex, and sound stimulus response) and vital parameters (pulse rate, respiratory rate, oxygen saturation, and rectal temperature) were evaluated after recumbency (Trec) and at 5, 15, 30, 45, 60, and 90 min after administrations. In addition, the latency period and duration of CR were determined. Results Latency to recumbency and duration of CR in GIN were shorter. CR scores did not vary between groups. Muscle relaxation was more intense in GIN at Trec. An initial tachycardia was observed, followed by a reduction in heart rate from T5 to T90 in both treatments (p < 0.05). The respiratory rate was higher at T45, T60, and T90 in GIN compared to baseline. Rectal temperature reduced in GIM from T45 onwards.PaCO 2 t elevated at T90 in the GIM (p < 0.05) and there was an incidence of mild hypoxemia in 47% of the animals in the GIM. Conclusions and clinical relevance IN administration was as effective as IM administration in promoting safe chemical restraint, with minimal changes in homeostasis, with a shorter duration and latency period.
Collapse
Affiliation(s)
- Isabela Peixoto Rabelo
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Cinthya de Andrade Gujanwski
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Inácio Silva Viana
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Vanessa Barroco de Paula
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Ariadne Rein
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | | | - Carlos Augusto Araújo Valadäo
- Department of Veterinary Internal Medicine and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| |
Collapse
|
6
|
Tudurachi BS, Anghel L, Tudurachi A, Sascău RA, Zanfirescu RL, Stătescu C. Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications. Biomedicines 2024; 12:1314. [PMID: 38927520 PMCID: PMC11201699 DOI: 10.3390/biomedicines12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Radu Andy Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Răzvan-Liviu Zanfirescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| |
Collapse
|
7
|
Jin L, Zhang L, Yan C, Liu M, Dean DC, Liu Y. Corneal injury repair and the potential involvement of ZEB1. EYE AND VISION (LONDON, ENGLAND) 2024; 11:20. [PMID: 38822380 PMCID: PMC11143703 DOI: 10.1186/s40662-024-00387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The cornea, consisting of three cellular and two non-cellular layers, is the outermost part of the eyeball and frequently injured by external physical, chemical, and microbial insults. The epithelial-to-mesenchymal transition (EMT) plays a crucial role in the repair of corneal injuries. Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor involved in EMT, is expressed in the corneal tissues. It regulates cell activities like migration, transformation, and proliferation, and thereby affects tissue inflammation, fibrosis, tumor metastasis, and necrosis by mediating various major signaling pathways, including transforming growth factor (TGF)-β. Dysfunction of ZEB1 would impair corneal tissue repair leading to epithelial healing delay, interstitial fibrosis, neovascularization, and squamous cell metaplasia. Understanding the mechanism underlying ZEB1 regulation of corneal injury repair will help us to formulate a therapeutic approach to enhance corneal injury repair.
Collapse
Affiliation(s)
- Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Lijun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Chunxiao Yan
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Mengxin Liu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, China
| | - Douglas C Dean
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Yongqing Liu
- James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Yu L, Li J, Xiao M. LncRNA SLC7A11-AS1 stabilizes CTCF by inhibiting its UBE3A-mediated ubiquitination to promote melanoma metastasis. Am J Cancer Res 2023; 13:6256-6269. [PMID: 38187043 PMCID: PMC10767361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant melanoma (MM) is one of the most aggressive types of skin cancer. Long non-coding RNAs (lncRNAs) are important regulatory factors in the pathogenesis of various diseases. Here, we found that the lncRNA SLC7A11-AS1 was highly expressed in MM. Therefore, we investigated its regulatory role in the migration and invasion of MM cells and the associated mechanism. SLC7A11-AS1 and CTCF levels in MM cell lines were detected using RT-qPCR and western blotting, and their regulatory effects on the migratory and invasive abilities were determined using CCK-8, EdU, transwell, wound-healing assays and mouse model. RNA pull-down and RIP assays were performed to explore the association of SLC7A11-AS1 and CTCF and the correlation between CTCF and UBE3A. SLC7A11-AS1 and CTCF were highly expressed in MM cells. The knockdown of SLC7A11-AS1 decreased the expression of CTCF. Mechanistically, SLC7A11-AS1 inhibited the degradation of CTCF by inhibiting the ubiquitination by UBE3A. The knockdown of both SLC7A11-AS1 and CTCF inhibited the migration and invasion of MM cells and attenuated MM-to-lung metastasis in a mouse model. Taken together, SLC7A11-AS1 promoted the invasive and migratory abilities of MM cells by inhibiting the UBE3A-regulated ubiquitination of CTCF. Therefore, SLC7A11-AS1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Jing Li
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Ming Xiao
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| |
Collapse
|
9
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Gocer Z, Elek A, Caska H, Bozgeyik I. MicroRNAs and cardiac fibrosis: A comprehensive update on mechanisms and consequences. Pathol Res Pract 2023; 251:154853. [PMID: 37857035 DOI: 10.1016/j.prp.2023.154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Fibrosis is a pathological wound-healing mechanism that results by the overactivation of fibroblasts. Fibrosis can become obstructive and deleterious during regeneration of various body tissues including cardiac muscle. This ultimately results in the development of cardiac fibrosis, characterized by an excessive buildup of extracellular matrix proteins. Thus, it could lead to arrhythmias and heart failure which creates a leading public health burden worldwide. MiRNAs are small non-coding RNAs with great potential for diagnostic and therapeutic purposes. Mounting evidence indicates that miRNAs are involved in the deregulation of tissue homeostasis during myocardial fibrosis. For instance, miRNAs that are implicated in the regulation of TGF-beta signaling pathway have been reported to be significantly altered in myocardial fibrosis. Accordingly, in this comprehensive review, we discuss and highlight recent available data on the role of miRNAs during myocardial fibrosis, providing valuable insights into the miRNA modulation of cardiac fibrosis and miRNAs targets that can be used in the future therapeutic interventions to cardiac fibrosis.
Collapse
Affiliation(s)
- Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Halil Caska
- Department of Medical Biology and Genetics, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
11
|
Salvatori F, D’Aversa E, Serino ML, Singh AV, Secchiero P, Zauli G, Tisato V, Gemmati D. miRNAs Epigenetic Tuning of Wall Remodeling in the Early Phase after Myocardial Infarction: A Novel Epidrug Approach. Int J Mol Sci 2023; 24:13268. [PMID: 37686073 PMCID: PMC10487654 DOI: 10.3390/ijms241713268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in Western countries. An early diagnosis decreases subsequent severe complications such as wall remodeling or heart failure and improves treatments and interventions. Novel therapeutic targets have been recognized and, together with the development of direct and indirect epidrugs, the role of non-coding RNAs (ncRNAs) yields great expectancy. ncRNAs are a group of RNAs not translated into a product and, among them, microRNAs (miRNAs) are the most investigated subgroup since they are involved in several pathological processes related to MI and post-MI phases such as inflammation, apoptosis, angiogenesis, and fibrosis. These processes and pathways are finely tuned by miRNAs via complex mechanisms. We are at the beginning of the investigation and the main paths are still underexplored. In this review, we provide a comprehensive discussion of the recent findings on epigenetic changes involved in the first phases after MI as well as on the role of the several miRNAs. We focused on miRNAs function and on their relationship with key molecules and cells involved in healing processes after an ischemic accident, while also giving insight into the discrepancy between males and females in the prognosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Elisabetta D’Aversa
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Maria Luisa Serino
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
| | - Giorgio Zauli
- Department of Environmental Science and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.S.)
- Centre Haemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
- University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Kong X, Meng L, Wei K, Lv X, Liu C, Lin F, Gu X. Exploration and validation of the influence of angiogenesis-related factors in aortic valve calcification. Front Cardiovasc Med 2023; 10:1061077. [PMID: 36824454 PMCID: PMC9941152 DOI: 10.3389/fcvm.2023.1061077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Over the years, bioinformatics tools have been used to identify functional genes. In the present study, bioinformatics analyses were conducted to explore the underlying molecular mechanisms of angiogenic factors in calcific aortic valve disease (CAVD). The raw gene expression profiles were from datasets GSE153555, GSE83453, and GSE51472, and the angiogenesis-related gene set was from the Gene Set Enrichment Analysis database (GSEA). In this study, R was used to screen for differentially expressed genes (DEGs) and co-expressed genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) Pathway enrichment analysis were performed on DEGs and validated in clinical samples. DEGs in CAVD were significantly enriched in numerous immune response pathways, inflammatory response pathways and angiogenesis-related pathways. Nine highly expressed angiogenesis-related genes were identified, of which secretogranin II (SCG2) was the most critical gene. MiRNA and transcription factors (TFs) networks were established centered on five DEGs, and zinc finger E-box binding homeobox 1 (ZEB1) was the most important transcription factor, verified by PCR, immunohistochemical staining and western blotting experiments. Overall, this study identified key genes and TFs that may be involved in the pathogenesis of CAVD and may have promising applications in the treatment of CAVD.
Collapse
Affiliation(s)
- XiangJin Kong
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - LingWei Meng
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - KaiMing Wei
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Lv
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - ChuanZhen Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - FuShun Lin
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - XingHua Gu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China,Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China,*Correspondence: XingHua Gu,
| |
Collapse
|
14
|
Liu Z, Zhai M, Zhang Q, Yang T, Wan Z, Li J, Liu X, Xu B, Du L, Chan RWS, Zhang L, Yeung WSB, Cheung KW, Chiu PCN, Wang WJ, Lee CL, Gao Y. Resolving the gene expression maps of human first-trimester chorionic villi with spatial transcriptome. Front Cell Dev Biol 2022; 10:1060298. [PMID: 36561369 PMCID: PMC9763897 DOI: 10.3389/fcell.2022.1060298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The placenta is important for fetal development in mammals, and spatial transcriptomic profiling of placenta helps to resolve its structure and function. In this study, we described the landscape of spatial transcriptome of human placental villi obtained from two pregnant women at the first trimester using the modified Stereo-seq method applied for paraformaldehyde (PFA) fixation samples. The PFA fixation of human placenta villi was better than fresh villi embedded in optimum cutting temperature (OCT) compound, since it greatly improved tissue morphology and the specificity of RNA signals. The main cell types in chorionic villi such as syncytiotrophoblasts (SCT), villous cytotrophoblasts (VCT), fibroblasts (FB), and extravillous trophoblasts (EVT) were identified with the spatial transcriptome data, whereas the minor cell types of Hofbauer cells (HB) and endothelial cells (Endo) were spatially located by deconvolution of scRNA-seq data. We demonstrated that the Stereo-seq data of human villi could be used for sophisticated analyses such as spatial cell-communication and regulatory activity. We found that the SCT and VCT exhibited the most ligand-receptor pairs that could increase differentiation of the SCT, and that the spatial localization of specific regulons in different cell types was associated with the pathways related to hormones transport and secretion, regulation of mitotic cell cycle, and nutrient transport pathway in SCT. In EVT, regulatory pathways such as the epithelial to mesenchyme transition, epithelial development and differentiation, and extracellular matrix organization were identified. Finally, viral receptors and drug transporters were identified in villi according to the pathway analysis, which could help to explain the vertical transmission of several infectious diseases and drug metabolism efficacy. Our study provides a valuable resource for further investigation of the placenta development, physiology and pathology in a spatial context.
Collapse
Affiliation(s)
| | | | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Tingyu Yang
- BGI-Shenzhen, Shenzhen, China,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Jianlin Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaofeng Liu
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Xu
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Libei Du
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Rachel W. S. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Li Zhang
- Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Philip C. N. Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China,Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China,*Correspondence: Wen-Jing Wang, ; Cheuk-Lun Lee, ; Ya Gao,
| |
Collapse
|
15
|
Bao N, Cheng L, Wang Y, Peng Z, Wang Z, Chen S. Protein-protein interactions between RUNX3 and ZEB1 in chronic lung injury induced by methamphetamine abuse. Front Pharmacol 2022; 13:1025922. [DOI: 10.3389/fphar.2022.1025922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (MA) is the most common and highly addictive substance abuse drug. Runt-related transcription factor 3 (RUNX3) and Zinc finger E-box-binding homeobox 1 (ZEB1) are associated with lung inflammation and fibrosis. However, the protein-protein interactions (PPIs) between RUNX3 and ZEB1 and its involvement in MA-induced chronic lung injury is still unclear. In this study, we evaluated lung injury using echocardiography, hematoxylin and eosin staining, and western blot analysis. The viability of alveolar epithelial cells (AECs) was assessed using cell counting kit-8. Molecular Operating Environment software, Search Tool for the Retrieval of Interacting Genes/Proteins database, co-immunoprecipitation, assay and confocal immunofluorescence assay were used to predict and identify the PPIs between RUNX3 and ZEB1. The expression of RUNX3 and ZEB1 were knockdown in AECs using siRNA. The results revealed that MA exposure increased the peak blood flow velocity of the pulmonary artery and the acceleration time of pulmonary artery blood flow. Further, exposure to MA also causes adhesion and fusion of the alveolar walls and altered AEC activity. A decrease in the expression of RUNX3 and an increase in the expression of ZEB1 and its downstream signaling molecules were observed on MA exposure. The PPIs between RUNX3 and ZEB1 were identified. Further, an increase in the protein binding rate of RUNX3-ZEB1 was observed in MA-induced lung injury. These results show interactions between RUNX3 and ZEB1. RUNX3 protects against lung injury; however, ZEB1 expression and the PPIs between ZEB1 and RUNX3 has deleterious effects on chronic lung injury induced by MA exposure. Our results provide a new therapeutic approach for the treatment of chronic lung injury due to MA exposure.
Collapse
|
16
|
Ma Z, Chen B, Zhang Y, Zeng J, Tao J, Hu Y. Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study. Front Genet 2022; 13:967363. [PMID: 36299595 PMCID: PMC9589260 DOI: 10.3389/fgene.2022.967363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Heart failure (HF) is the main manifestation of cardiovascular disease. Recent studies have shown that various RNA molecules and their complex connections play an essential role in HF’s pathogenesis and pathological progression. This paper aims to mine key RNA molecules associated with HF. We proposed a Prior-knowledge Driven Joint Deep Semi-Negative Matrix Factorization (PD-JDSNMF) model that uses a hierarchical nonlinear feature extraction method that integrates three types of data: mRNA, lncRNA, and miRNA. The PPI information is added to the model as prior knowledge, and the Laplacian constraint is used to help the model resist the noise in the genetic data. We used the PD-JDSNMF algorithm to identify significant co-expression modules. The elements in the module are then subjected to bioinformatics analysis and algorithm performance analysis. The results show that the PD-JDSNMF algorithm can robustly select biomarkers associated with HF. Finally, we built a heart failure diagnostic model based on multiple classifiers and using the Top 13 genes in the significant module, the AUC of the internal test set was up to 0.8714, and the AUC of the external validation set was up to 0.8329, which further confirmed the effectiveness of the PD-JDSNMF algorithm.
Collapse
|
17
|
Zhang Y, Fu C, Zhao S, Jiang H, Li W, Liu X. PRELP promotes myocardial fibrosis and ventricular remodelling after acute myocardial infarction by the wnt/β-catenin signalling pathway. Cardiovasc J Afr 2022; 33:228-233. [PMID: 35788244 PMCID: PMC9887443 DOI: 10.5830/cvja-2022-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/20/2021] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES Proline/arginine-rich end leucine-rich repeat protein (PRELP) has been reported to contribute to the remodelling of cardiovascular tissues in the ischaemia-reperfusion injury model. However, research is lacking on the role of PRELP in myocardial fibrosis and ventricular remodelling, and the mechanism through which PRELP brings about these changes is not clear. This study aimed to evaluate the role of PRELP in ventricular remodelling and myocardial fibrosis following acute myocardial infarction (AMI) and to explore the underlying mechanism. METHODS In this study, we established AMI mouse and cellculture models in an oxygen-glucose deprivation environment. RESULTS We found that over-expression of PRELP increased the infarct size and interstitial fibrotic area. Expression of the wnt/β-catenin pathway molecules, which are downstream of PRELP, increased more in the PRELP over-expression group than in the AMI group. CONCLUSIONS Our results showed that PRELP, through the wnt/β-catenin signalling pathway, led to myocardial fibrosis and ventricular remodelling following AMI.
Collapse
Affiliation(s)
- Yu Zhang
- Shandong Key Laboratory of Cardiovascular Proteomics, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| | - Chunli Fu
- Shandong Key Laboratory of Cardiovascular Proteomics, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Shaohua Zhao
- Shandong Key Laboratory of Cardiovascular Proteomics, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Honglei Jiang
- Department of Cardiology, Shandong Provincial Western Hospital, Jinan, Shandong, People's Republic of China
| | - Wei Li
- Department of Anesthesia, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiangju Liu
- Shandong Key Laboratory of Cardiovascular Proteomics, Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
18
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
19
|
The Traditional Chinese Medicine Formula FTZ Protects against Cardiac Fibrosis by Suppressing the TGFβ1-Smad2/3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5642307. [PMID: 35497919 PMCID: PMC9042631 DOI: 10.1155/2022/5642307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Background Fu fang Zhen Zhu Tiao Zhi (FTZ) is a patented preparation of Chinese herbal medicine that has been used as a natural medicine to treat several chronic diseases including cardiovascular disease. However, its effects on cardiac fibrosis remain unclear. Therefore, this study was designed to investigate the effects and potential mechanisms of FTZ in treating cardiac fibrosis. Methods FTZ was administered to mice by oral gavage daily at a dosage of 1.2 g/kg or 2.4 g/kg of body weight for 7 weeks after a transverse aorta constriction (TAC) surgery. Doppler echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining were used to assess the effect of FTZ on the cardiac structure and function of mice that had undergone TAC. EdU and wound-healing assays were performed to measure the proliferative and migratory abilities of cardiac fibroblasts. Western blotting and qRT-PCR were used to determine the expression of TGFβ1, Col1A2, Col3, and α-SMA proteins and mRNA levels. Results FTZ treatment reduced collagen synthesis, attenuated cardiac fibrosis, and improved cardiac function in mice subjected to TAC. Moreover, FTZ treatment prevented the proliferation and migration of cardiac fibroblasts and reduced Ang-II-induced collagen synthesis. Furthermore, FTZ downregulated the expression of TGFβ1, p-smad2, and p-smad3 and inhibited the TGFβ1-Smad2/3 pathway in the setting of cardiac fibrosis. Conclusion FTZ alleviated the proliferation and migration of cardiac fibroblasts and suppressed collagen synthesis via the TGFβ1-Smad2/3 pathway during the progression of cardiac fibrosis. These findings indicated the therapeutic potential of FTZ in treating cardiac fibrosis.
Collapse
|
20
|
Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med 2022; 9:863238. [PMID: 35498051 PMCID: PMC9043126 DOI: 10.3389/fcvm.2022.863238] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/08/2022] [Indexed: 01/12/2023] Open
Abstract
After an ischemic injury, the heart undergoes a complex process of structural and functional remodeling that involves several steps, including inflammatory and fibrotic responses. In this review, we are focusing on the contribution of microRNAs in the regulation of inflammation and fibrosis after myocardial infarction. We summarize the most updated studies exploring the interactions between microRNAs and key regulators of inflammation and fibroblast activation and we discuss the recent discoveries, including clinical applications, in these rapidly advancing fields.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Stanislovas S. Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Xujun Wang
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, New York, NY, United States
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation (INI), New York, NY, United States
- *Correspondence: Gaetano Santulli,
| |
Collapse
|
21
|
Sun L, Ji D, Zhi F, Fang Y, Zhu Z, Ni T, Zhu Q, Bao J. MiR-494-3p Upregulation Exacerbates Cerebral Ischemia Injury by Targeting Bhlhe40. Yonsei Med J 2022; 63:389-398. [PMID: 35352891 PMCID: PMC8965425 DOI: 10.3349/ymj.2022.63.4.389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Cerebral ischemia is related to insufficient blood supply and is characterized by abnormal reactive oxygen species (ROS) production and cell apoptosis. Previous studies have revealed a key role for basic helix-loop-helix family member e40 (Bhlhe40) in oxidative stress and cell apoptosis. This study aimed to investigate the roles of miR-494-3p in cerebral ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS A mouse middle cerebral artery occlusion (MCAO/R) model was established to mimic cerebral ischemia in vivo. Brain infarct area was assessed using triphenyl tetrazolium chloride staining. Oxygen-glucose deprivation/reoxygenation (OGD/R) operation was adopted to mimic neuronal injury in vitro. Cell apoptosis was analyzed by flow cytometry. The relationship between miR-494-3p and Bhlhe40 was validated by luciferase reporter and RNA immunoprecipitation assays. RESULTS Bhlhe40 expression was downregulated both in MCAO/R animal models and OGD/R-induced SH-SY5Y cells. Bhlhe40 overexpression inhibited cell apoptosis and reduced ROS production in SH-SY5Y cells after OGD/R treatment. MiR-494-3p was verified to bind to Bhlhe40 and negatively regulate Bhlhe40 expression. Additionally, cell apoptosis and ROS production in OGD/R-treated SH-SY5Y cells were accelerated by miR-494-3p overexpression. Rescue experiments suggested that Bhlhe40 could reverse the effects of miR-494-3p overexpression on ROS production and cell apoptosis. CONCLUSION MiR-494-3p exacerbates brain injury and neuronal injury by regulating Bhlhe40 after I/R.
Collapse
Affiliation(s)
- Lingjiang Sun
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Dandan Ji
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Feng Zhi
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Yu Fang
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Zigang Zhu
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Tong Ni
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China
| | - Qin Zhu
- Department of Stomatology, Taixing Third People's Hospital, Taizhou, Jiangsu, China.
| | - Jie Bao
- Department of Critical Care Medicine, Wuxi Second People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
22
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Alterations in plasma miR-21, miR-590, miR-192 and miR-215 in idiopathic pulmonary fibrosis and their clinical importance. Mol Biol Rep 2022; 49:2237-2244. [PMID: 35066768 DOI: 10.1007/s11033-021-07045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Many studies have revealed that microRNA (miRNA) molecules may take part in idiopathic pulmonary fibrosis (IPF). But, the role of miRNAs in the development of IPF is not yet clear. METHODS We investigated the plasma levels of miR-21, miR-590, miR-192, and miR-215 in IPF (n = 88) and healthy control (n = 20) groups in this study. We compared the expression levels of target miRNAs in patients with IPF and healthy participants. We grouped the patients with IPF according to age, forced vital capacity, carbon monoxide diffusing capacity (DLCO), gender-Age-pulmonary physiology (GAP) score, the presence of honeycombing and compared the expression levels of target miRNAs in these clinical subgroups. RESULTS 82 (93.18%) of the patients with IPF were male and the mean age was 66.6 ± 8.6 years. There was no significant difference between the gender and age distributions of IPF and the control group. The mean plasma miR-21 and miR-590 levels in IPF group were significantly higher than in the control group (p < 0.0001, p < 0.0001, respectively). There was no significant difference between the miR-192 and miR-215 expression levels of the IPF and control group. Both miR-21 and miR-590 correlated positively with age (p = 0.041, p = 0.007, respectively) while miR-192 and miR-215 displayed a negative correlation with age (p = 0.0002, p < 0.0001, respectively). The levels of miR-192 and miR-215 increased as the GAP score decreased. The levels of miR-192 in patients with honeycombing were significantly lower than in those without honeycombing (p = 0.003). CONCLUSIONS Our study showed that both miR-21 and miR-590 were overexpressed in IPF. The miR-21 and miR-590 were associated with DLCO, while miR-192 and miR-215 were associated with the GAP score and honeycombing.
Collapse
|
24
|
Dynamic alternative polyadenylation during iPSC differentiation into cardiomyocytes. Comput Struct Biotechnol J 2022; 20:5859-5869. [DOI: 10.1016/j.csbj.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
|
25
|
Huang J, Xu X, Wang X, Yang J, Xue M, Yang Y, Zhang R, Yang X, Yang J. MicroRNA-590-3p inhibits T helper 17 cells and ameliorates inflammation in lupus mice. Immunology 2021; 165:260-273. [PMID: 34775599 DOI: 10.1111/imm.13434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
T helper 17 (Th17) cells have a pathogenic effect in many autoimmune diseases. Inhibition of Th17 cells can alleviate the inflammatory damage in autoimmune diseases. Our previous study found that microRNA-590-3p (miR-590-3p) was involved in the differentiation of Th17 cells in systemic lupus erythematosus (SLE). Here, we demonstrated that an increase in Th17 cells was correlated with low expression of miR-590-3p in patients with SLE and in lupus mice. Upregulation of miR-590-3p reduced the differentiation and promoted apoptosis of Th17 cells. Subsequent experiments demonstrated that miR-590-3p promoted apoptosis in Th17 cells by inhibiting autophagy. Autophagy-related 7 (Atg7) was the direct target of miR-590-3p that blocked the autophagy pathway. Finally, treatment of MRL/lpr mice with miR-590-3p agomir ameliorated lupus nephritis and skin lesions. Our work revealed that miR-590-3p inhibited Th17 cells by suppressing autophagy and that increased miR-590-3p expression was able to ameliorate the clinical symptoms of lupus. Therefore, miR-590-3p may be a promising therapeutic target for SLE and other Th17 cell-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Junxia Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinzhi Xu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuyuan Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yang
- Blood Engineering Lab, Shanghai Blood Center, Shanghai, China
| | - Meijuan Xue
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Yang
- Blood Engineering Lab, Shanghai Blood Center, Shanghai, China
| | - Ruomei Zhang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Epithelial Mesenchymal Transition and its transcription factors. Biosci Rep 2021; 42:230017. [PMID: 34708244 PMCID: PMC8703024 DOI: 10.1042/bsr20211754] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epithelial–mesenchymal transition or EMT is an extremely dynamic process involved in conversion of epithelial cells into mesenchymal cells, stimulated by an ensemble of signaling pathways, leading to change in cellular morphology, suppression of epithelial characters and acquisition of properties such as enhanced cell motility and invasiveness, reduced cell death by apoptosis, resistance to chemotherapeutic drugs etc. Significantly, EMT has been found to play a crucial role during embryonic development, tissue fibrosis and would healing, as well as during cancer metastasis. Over the years, work from various laboratories have identified a rather large number of transcription factors (TFs) including the master regulators of EMT, with the ability to regulate the EMT process directly. In this review, we put together these EMT TFs and discussed their role in the process. We have also tried to focus on their mechanism of action, their interdependency, and the large regulatory network they form. Subsequently, it has become clear that the composition and structure of the transcriptional regulatory network behind EMT probably varies based upon various physiological and pathological contexts, or even in a cell/tissue type-dependent manner.
Collapse
|
27
|
Jelemenský M, Kovácsházi C, Ferenczyová K, Hofbauerová M, Kiss B, Pállinger É, Kittel Á, Sayour VN, Görbe A, Pelyhe C, Hambalkó S, Kindernay L, Barančík M, Ferdinandy P, Barteková M, Giricz Z. Helium Conditioning Increases Cardiac Fibroblast Migration Which Effect Is Not Propagated via Soluble Factors or Extracellular Vesicles. Int J Mol Sci 2021; 22:10504. [PMID: 34638845 PMCID: PMC8508629 DOI: 10.3390/ijms221910504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
Helium inhalation induces cardioprotection against ischemia/reperfusion injury, the cellular mechanism of which remains not fully elucidated. Extracellular vesicles (EVs) are cell-derived, nano-sized membrane vesicles which play a role in cardioprotective mechanisms, but their function in helium conditioning (HeC) has not been studied so far. We hypothesized that HeC induces fibroblast-mediated cardioprotection via EVs. We isolated neonatal rat cardiac fibroblasts (NRCFs) and exposed them to glucose deprivation and HeC rendered by four cycles of 95% helium + 5% CO2 for 1 h, followed by 1 h under normoxic condition. After 40 h of HeC, NRCF activation was analyzed with a Western blot (WB) and migration assay. From the cell supernatant, medium extracellular vesicles (mEVs) were isolated with differential centrifugation and analyzed with WB and nanoparticle tracking analysis. The supernatant from HeC-treated NRCFs was transferred to naïve NRCFs or immortalized human umbilical vein endothelial cells (HUVEC-TERT2), and a migration and angiogenesis assay was performed. We found that HeC accelerated the migration of NRCFs and did not increase the expression of fibroblast activation markers. HeC tended to decrease mEV secretion of NRCFs, but the supernatant of HeC or the control NRCFs did not accelerate the migration of naïve NRCFs or affect the angiogenic potential of HUVEC-TERT2. In conclusion, HeC may contribute to cardioprotection by increasing fibroblast migration but not by releasing protective mEVs or soluble factors from cardiac fibroblasts.
Collapse
Affiliation(s)
- Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Monika Hofbauerová
- Institute of Physics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia;
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská Cesta 9, 84511 Bratislava, Slovakia
| | - Bernadett Kiss
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary;
| | - Ágnes Kittel
- Institute of Experimental Medicine, Eötvös Loránd Research Network, 1083 Budapest, Hungary;
| | - Viktor Nabil Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
| | - Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Miroslav Barančík
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.J.); (K.F.); (L.K.); (M.B.)
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (C.K.); (B.K.); (V.N.S.); (A.G.); (C.P.); (S.H.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| |
Collapse
|
28
|
MicroRNA-590-3p relieves hypoxia/reoxygenation induced cardiomyocytes apoptosis and autophagy by targeting HIF-1α. Exp Ther Med 2021; 22:1077. [PMID: 34447470 PMCID: PMC8355641 DOI: 10.3892/etm.2021.10511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are key factors in myocardial ischemia/reperfusion (I/R) injury. MicroRNAs (miRNAs or miRs) participate in occurrence and development of myocardial I/R injury by regulating autophagy and apoptosis. The purpose of the present study was to investigate the role of miR-590-3p in the regulation of autophagy and apoptosis in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Following 6 h hypoxia and 6 h reoxygenation in primary rat cardiomyocytes, miR-590-3p was downregulated. Transfection of miR-590-3p mimic inhibited the increased autophagy and apoptosis following H/R treatment. Subsequent experiments demonstrated that miR-590-3p regulated induction of autophagy and apoptosis by targeting hypoxia inducible factor (HIF)-1α. Forced expression of HIF-1α rescued the protective effect of miR-590-3p on H/R-induced cardiomyocytes. In summary, the present study showed that miR-590-3p exhibited a protective effect on H/R-induced cardiomyocyte injury and may be a novel target for the treatment of myocardial ischemia disease.
Collapse
|
29
|
Sun Q, Luo M, Gao Z, Han X, Yan Z, Xie S, Zhao H, Sun H. TUG1 knockdown suppresses cardiac fibrosis after myocardial infarction. Mamm Genome 2021; 32:435-442. [PMID: 34341870 DOI: 10.1007/s00335-021-09895-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Cardiac fibrosis is involved in myocardial remodeling following acute myocardial infarction (AMI), which can result in heart failure, arrhythmias and even sudden cardiac death. Investigating the molecular mechanisms of cardiac fibrosis in acute myocardial infarction (AMI) is essential for better understanding this pathology. The current study aims to investigate the effect of TUG1 on cardiac fibrosis after AMI and elucidated the underlying molecular mechanism of AMI. Rats were randomly divided into four groups (sham-operation group, myocardial infarction group (AMI group), si-NC treated group and si-TUG1 treated group). The biological behavior of cardiac fibroblasts treated with TGF-β1after being transfected by si-TUG1 or miR-590 mimic or miR-590 inhibitor or FGF1 mimic or a combination was evaluated using the cell counting kit-8 (CCK8) and Transwell assays. SatarBase v2.0 was used to predict the target microRNAs binding site candidates with TUG1 and FGF1. Western blot and recovery experiments were used to explore the potential mechanism. TUG1 expression was up-regulated and knockdown of TUG1 improved cardiac function in AMI rats. Knockdown of TUG1 suppressed cell viability and migration and improved collagen production of TGF-β1 treated cardiac fibroblasts. SatarBase v2.0 showed TUG1 served as a sponge for miR-590 and FGF1 is a direct target of miR-590. TUG1 expression was increased in AMI tissue and cardiac fibroblasts treated with TGF-β1. TUG1 knockdown suppressed the biological process of cardiac fibroblasts treated with TGF-β1 by sponging miR-590.
Collapse
Affiliation(s)
- Qingsong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Man Luo
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhiwei Gao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhuan Yan
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shouxiang Xie
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
30
|
Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives. Int J Mol Sci 2021; 22:ijms22115718. [PMID: 34071976 PMCID: PMC8198996 DOI: 10.3390/ijms22115718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.
Collapse
|
31
|
MiR-467a-5p aggravates myocardial infarction by modulating ZEB1 expression in mice. J Mol Histol 2021; 52:767-780. [PMID: 33997926 DOI: 10.1007/s10735-021-09978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is a great threat to patients all over the word. MicroRNAs (miRNAs) are a group of non-coding RNAs and can regulate initiation and progression of MI. The current research aimed to investigate the role of miR-467a-5p in MI. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to detective relative expression of miR-467a-5p in cardiac tissues and mouse cardiomyocytes (MCMs). Hematoxylin and eosin staining was used to reveal the histology of the myocardium. Echocardiography was utilized to reveal cardiac function of mice. Flow cytometer analysis was used to reveal cell apoptosis. Luciferase reporter assay was applied for determining the binding capacity between molecules. We discovered that the level of miR-467a-5p was up-regulated in MI mice and in MCMs induced by H2O2 or hypoxia. Functionally, an elevation of left ventricular end-diastolic diameter and left ventricular end-systolic diameter, as well as a decrease of left ventricular ejection fraction and left ventricular fractional shortening were observed in MI mice. In addition, deficiency of miR-467a-5p improved MI in mice by increasing the contents of lactate dehydrogenase, creatine kinase and malondialdehyde and reducing the activity of superoxide dismutase in serum. Moreover, silencing of miR-467a-5p reversed hypoxia-induced apoptosis of MCMs. Mechanistically, zinc finger E-box binding homeobox 1 (ZEB1) was confirmed as the target of miR-467a-5p. Moreover, miR-467a-5p negatively regulated ZEB1 level in MI mice and MCMs. Finally, the promotive effect of miR-467a-5p inhibition on cell apoptosis was reversed by knockdown of ZEB1. All the experimental results demonstrate that miR-467a-5p aggravates MI by modulating ZEB1 expression in mice, which may provide a novel therapeutic strategy for MI.
Collapse
|
32
|
Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, Wang X, Zhi F, Liu D. M2 Macrophage-Derived Exosomal miR-590-3p Attenuates DSS-Induced Mucosal Damage and Promotes Epithelial Repair via the LATS1/YAP/ β-Catenin Signalling Axis. J Crohns Colitis 2021; 15:665-677. [PMID: 33075119 DOI: 10.1093/ecco-jcc/jjaa214] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS M2 phenotype macrophages are involved in the resolution of inflammation and intestinal repair. Exosomes are emerging as important mediators of intercellular communication in the mucosal microenvironment. METHODS M2 macrophages were transfected with or without miR-590-3p. Exosomes derived from M2 macrophages were isolated and identified. Proliferation and wound healing were tested in vitro and compared between groups. The mechanism involving LATS1, and activation of YAP and β-catenin signalling was investigated by using plasmid transfection, western blotting, immunofluorescence and luciferase reporter assays. The effect of exosomes in vivo was detected in dextran saline sulphate [DSS]-induced murine colitis. RESULTS First, we demonstrated that M2 macrophages promoted colonic epithelial cell proliferation in an exosome-dependent manner. Epithelial YAP mediated the effect of M2 macrophage-derived exosomes [M2-exos] in epithelial proliferation. Moreover, miR-590-3p, which was significantly enriched in M2-exos, could be transferred from macrophages into epithelial cells, resulting in the enhanced proliferation and wound healing of epithelial cells. Mechanistically, miR-590-3p suppressed the expression of LATS1 by binding to its coding sequence and subsequently activated the YAP/β-catenin-modulated transcription process to improve epithelial cell wound-healing ability. miR-590-3p also inhibited the induction of pro-inflammatory cytokines, including tumour necrosis factor-α, interleukin-1β [IL-1β] and IL-6. More importantly, repression of miR-590-3p in M2-exos resulted in more severe mucosal damage and impaired colon repair of mice compared with those in M2-exo-treated mice after DSS-induced colitis. CONCLUSION M2 macrophage-derived exosomal miR-590-3p reduces inflammatory signals and promotes epithelial regeneration by targeting LATS1 and subsequently activating YAP/β-catenin-regulated transcription, which could offer a new opportunity for clinical therapy for ulcerative colitis.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Jin Yan
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Jiaxi Lu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Min Luo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Pianpian Xia
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Siliang Liu
- Guangdong Provincial Key Laboratory of Gastroenterology; Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology; Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Center of Digestive Disease, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
34
|
ZEB1: New advances in fibrosis and cancer. Mol Cell Biochem 2021; 476:1643-1650. [PMID: 33417164 DOI: 10.1007/s11010-020-04036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor in epithelial mesenchymal transition (EMT) which participates in the numerous life processes, such as embryonic development, fibrosis and tumor progression. ZEB1 has multiple functions in human body and plays a crucial part in some life processes. ZEB1 is vital for the formation and development of the organs in the embryonic period. The abnormal expression of ZEB1 is a predictor for the poor prognosis or the poor survival in several cancers. ZEB1 contributes to the occurrence of fibrosis, cancer and even chemoresistance. Some research is indicated that fibrosis is finally developed into the cancers. Therefore, ZEB1 is probably taken as a biomarker in fibrosis or cancer. In this review, it is predicted of the structure of ZEB1 and the protein binding sites of ZEB1 with some protein, and it is discussed about the roles of ZEB1 in fibrosis and cancer progression to elaborate the potential applications of ZEB1 in clinic.
Collapse
|
35
|
Hu C, Li J, Du Y, Li J, Yang Y, Jia Y, Peng L, Qin Y, Wei Y. Impact of chronic intermittent hypoxia on the long non-coding RNA and mRNA expression profiles in myocardial infarction. J Cell Mol Med 2021; 25:421-433. [PMID: 33215878 PMCID: PMC7810970 DOI: 10.1111/jcmm.16097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non-coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA-mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.
Collapse
Affiliation(s)
- Chaowei Hu
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Heart Center & Beijing Key Laboratory of HypertensionBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yunhui Du
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Juan Li
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yifan Jia
- Department of CardiologyBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Lu Peng
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Key Laboratory of Remodeling‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
| | - Yongxiang Wei
- Key Laboratory of Upper Airway Dysfunction‐related Cardiovascular DiseasesBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing Anzhen HospitalCapital Medical UniversityBeijingChina
- Otolaryngological Department of Beijing Anzhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
36
|
Wang F, Zhang H, Wang C. MiR-590-3p regulates cardiomyocyte P19CL6 proliferation, apoptosis and differentiation in vitro by targeting PTPN1 via JNK/STAT/NF-kB pathway. Int J Exp Pathol 2020; 101:196-202. [PMID: 33058302 DOI: 10.1111/iep.12377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiomyocyte differentiation is a multi-step process which involves a number of signalling pathways. microRNAs exhibit regulatory functions in various diseases and are involved in the signalling pathways in multiple physiological processes, but the specific functions of particular mRNAs is often not fully understood. of an example of this is that the role of miR-590-3p in the differentiation of cardiomyocytes remains unclear. In the current study, RT-qPCR was used to determine the expression of miR-590-3p in cardiomyocytes differentiated from the embryonic carcinoma cell line P19CL6. MTT, EdU, caspase-3 activity and flow cytometry assays were performed to examine the influence of miR-590-3p on cell behaviour. A luciferase assay was used to confirm binding between miR-590-3p and PTPN1. Western blotting was used to determine the relationship between the JNK/STAT/NF-kB pathway and PTPN1. The results inferred that miR-590-3p became heavily expressed in differentiated P19CL6. Knockdown miR-590-3p suppressed the cell proliferation while at the same time, accelerated apoptosis. Moreover, PTPN1 was identified as the target of miR-590-3p. More importantly, PTPN1 overexpression activated the JNK/STAT/NF-kB pathway and limited the differentiation of P19CL6. Thus the conclusions from this study are that miR-590-3p has the potential to regulate the proliferation, apoptosis and differentiation of cardiomyocyte P19CL6 in vitro by targeting PTPN1 via the JNK/STAT/NF-kB pathway.
Collapse
Affiliation(s)
- Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hongqiang Zhang
- Department of Cardiac Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
37
|
Liu JJ, Li Y, Yang MS, Chen R, Cen CQ. SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis. Arch Biochem Biophys 2020; 695:108611. [PMID: 33002446 DOI: 10.1016/j.abb.2020.108611] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sepsis-induced cardiac dysfunction is one of the leading complications of sepsis, contributing to the high morbidity and mortality of septic patients. Several lines of evidence have demonstrated that autophagy and pyroptosis may be involved in septic cardiac dysfunction. In this study, we examined the impact of zinc finger antisense 1 (ZFAS1) on sepsis-induced myocardial dysfunction via regulating pyroptosis and autophagy. METHOD Mice with cecal ligation and puncture (CLP)-induced sepsis was constructed in vivo. Myocardial injury was assessed by H&E staining, immunohistochemistry (IHC) for NLRP3, caspase 1, and interleukin (IL)-1β, as well as ELISA assay for serum levels of creatine kinase (CK), CK-MB, tumor necrosis factor α (TNF-α), and IL-1β. Primary cardiomyocytes exposed to lipopolysaccharide (LPS) were established to simulate sepsis-induced cardiac dysfunction in vitro. Cell viability was examined by MTT assay and concentration of TNF-α and IL-1β was measured by ELISA. Flow cytometry, immunofluorescent staining and western blotting were performed to assess pyroptosis and autophagy. The transcriptional regulation of SP1 on ZFAS1 was determined using ChIP assay. Luciferase reporter assay was performed to verify the ZFAS1/miR-590-3p interaction. Besides, activation of AMPK/mTOR signaling was detected using western blotting. RESULTS Highly expressed ZFAS1 was observed in sepsis-induced cardiac dysfunction in the in vivo and in vitro model. Knockdown of ZFAS1 robustly abolished LPS-induced pyroptosis and attenuated the inhibition of autophagy. SP1 was identified to be an essential transcription factor to positively regulate ZFAS1 expression. Moreover, miR-590-3p functioned as a downstream effector to reverse ZFAS1-mediated sepsis-induced cardiac dysfunction. AMPK/mTOR signaling was involved in miR-590-3p-regulated autophagy and pyroptosis of cardiomyocytes. Furthermore, the regulatory network of ZFAS1/miR-590-3p on AMPK/mTOR signaling was verified in vivo. CONCLUSION ZFAS1, activated by SP1, aggravates the progression of sepsis-induced cardiac dysfunction via targeting miR-590-3p/AMPK/mTOR signaling-mediated autophagy and pyroptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Jing-Jing Liu
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yong Li
- Department of Emergency Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ming-Shi Yang
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, PR China
| | - Rui Chen
- Department of Orthopedics, The First Naval Hospital Southern Theater Command, Zhanjiang, 524000, Guangdong Province, PR China
| | - Chao-Qun Cen
- Department of Emergency Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|
38
|
Wang L, Tan A, An X, Xia Y, Xie Y. Quercetin Dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed Pharmacother 2020; 127:110205. [PMID: 32403046 DOI: 10.1016/j.biopha.2020.110205] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac fibroblasts play a key role in the process of myocardial remodeling and myocardial fibrosis, which will eventually lead to heart failure. Quercetin Dihydrate has been studied in cardiovascular disease, but its effect on myocardial fibrosis is not clear. Here, cardiac remodeling was induced by infusion of Ang II (1000 ng/kg/min) for 2 weeks in mice. Quercetin Dihydrate was injected intraperitoneally for 25 mM/kg body weight (BW) once two days. We found that Quercetin Dihydrate significantly reduced cardiac contractile function, fibrosis, inflammation and myocardial hypertrophy induced by Ang II. Quercetin Dihydrate could inhibit the expression of Collagen I and Collagen III, which are the markers of fibroblast differentiation. We also verified the inhibitory effect of Quercetin Dihydrate on the proliferation and differentiation of fibroblasts induced by angiotensin II in vitro. Our results show that quercetin dihydrate plays a key role in the progression of myocardial fibrosis and suggests that Quercetin Dihydrate may be a promising drug for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China; Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
| | - Aiping Tan
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China.
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, PR China.
| |
Collapse
|
39
|
Yuan X, Pan J, Wen L, Gong B, Li J, Gao H, Tan W, Liang S, Zhang H, Wang X. MiR-590-3p regulates proliferation, migration and collagen synthesis of cardiac fibroblast by targeting ZEB1. J Cell Mol Med 2019; 24:227-237. [PMID: 31675172 PMCID: PMC6933374 DOI: 10.1111/jcmm.14704] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies have implicated the attractive and promising role of miR‐590‐3p to restore the cardiac function following myocardial infarction (MI). However, the molecular mechanisms for how miR‐590‐3p involves in cardiac fibrosis remain largely unexplored. Using human cardiac fibroblasts (HCFs) as the cellular model, luciferase report assay, mutation, EdU assay and transwell migration assay were applied to investigate the biological effects of miR‐590‐3p on the proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts. We found that miR‐590‐3p significantly suppressed cell proliferation and migration of HCFs. The mRNA and protein expression levels of α‐SMA, Col1A1 and Col3A were significantly decreased by miR‐590‐3p. Moreover, miR‐590‐3p directly targeted at the 3’UTR of ZEB1 to repress the translation of ZEB1. Interfering with the expression of ZEB1 significantly decreased the cell proliferation, migration activity, mRNA and protein expressions of α‐SMA, Col1A1 and Col3A. Furthermore, the expressions of miR‐590‐3p and ZEB1 were identified in infarct area of MI model in pigs. Collectively, miR‐590‐3p suppresses the cell proliferation, differentiation, migration and collagen synthesis of cardiac fibroblasts by targeting ZEB1. These works will provide useful biological information for future studies on potential roles of miR‐590‐3p as the therapeutic target to recover cardiac function following MI.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinchun Pan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lijuan Wen
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoyong Gong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jiaqi Li
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongbin Gao
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Weijiang Tan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shi Liang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Hao Zhang
- National Engineering Research Center for Swine Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xilong Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|