1
|
Wen J, Li L, Ou D, Li J, Yang Y, Duan L, Zhang X, Zhu Y, Hao J, Tong Y. Higenamine protects against doxorubicin-induced heart failure by attenuating ferroptosis via modulating the Nrf2/GPX4 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156670. [PMID: 40220414 DOI: 10.1016/j.phymed.2025.156670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Higenamine (HG), a benzylisoquinoline alkaloid in Aconiti Lateralis Radix Praeparata (ALRP), has cardioprotective effects. Prior research indicated its potential anti-heart failure (HF) function, yet the molecular mechanism remained elusive. PURPOSE This study aimed to explore the underlying mechanism of HG against doxorubicin (DOX)-induced HF via an integrated approach involving gut microbiota, untargeted metabolomics, network pharmacology, and molecular biology. METHODS DOX was employed to induce HF in rats and H9c2 cardiomyocytes injury models. Cardiac injury was assessed using hemodynamic indices, cardiac injury biomarkers, and oxidative stress markers. Cell counting kit-8 (CCK-8) method and high-content analysis were used to investigate the effects of HG on the cell proliferation, morphology and mitochondrial function of H9c2 cardiomyocytes. 16S rDNA sequencing analysis, untargeted metabolomics, and network pharmacology were performed to identify the multi-target and multi-pathway mechanisms of HG in treating HF. Furthermore, reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry, and Western Blotting was used to investigate its intervention on the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) ferroptosis pathway. RESULTS HG alleviated DOX-mediated myocardial injury by enhancing cardiac and mitochondrial function, reducing oxidative stress levels, and promoting cell proliferation. Effects of HG on changes in the gut microbiota of rats is characterized by a low abundance of Firmicutes and Proteobacteria, along with a high abundance of Bacteroidetes and Actinobacteria, indicating an improvement in DOX-induced dysbiosis. Untargeted metabolomics combined with network pharmacology showed that HG exerted anti-HF effects by regulating eight metabolites, eight pathways, and interacting with ferroptosis-related targets. Molecular biology studies revealed its cardioprotective effects via regulating the Nrf2/GPX4 ferroptosis pathway. CONCLUSION HG could inhibit ferroptosis and protect against HF by regulating the Nrf2/GPX4-mediated "mitochondrial-ferroptosis" pathway, offering a potential treatment strategy for HF.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Lu Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Dinglin Ou
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Jianling Li
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yi Yang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Liting Duan
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinghai Zhang
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Yichan Zhu
- School of Food and Bioengineering, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Sichuan Chongqing Joint Construction of Specialty Food, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuling Tong
- School of Medicine and Food, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.
| |
Collapse
|
2
|
Meng QH, Huang YJ, Xiao LG, Yang XY, He XZ, Liu RQ, Ling SS, Yan H, Fang X, Liu H, Liu HY. Triketone-acylphloroglucinol-monoterpenoid hybrids from Callistemon viminalis, a new structural template of anti-cardiac hypertrophy. Bioorg Chem 2025; 161:108542. [PMID: 40318504 DOI: 10.1016/j.bioorg.2025.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Seven new β-triketone-acylphloroglucinol-monoterpenoid hybrids, namely callistevimones A-G (1-7), were isolated from Callistemon viminalis fruits. Their structures and absolute stereochemistry were accomplished through a comprehensive analytical method involving mass spectrometry, NMR, ECD calculation, QM-NMR calculation, and single-crystal X-ray crystallography. Compounds 1 and 2 are first examples of β-triketone-acylphloroglucinol-phellandrene with an enlarged-ring. Subsequently, the effects of these compounds on cardiac hypertrophy and heart failure were investigated in vitro for the first time. The results showed that compounds 2, and 5-7 significantly reversed isoinduced hypertrophic phenotype and the reduction of mitochondrial membrane potential in AC16 cells. Furthermore, these compounds significantly increased the mRNA expression and protein expression of MPC1 (mitochondrial pyruvate carrier 1), an emerging mediator of heart failure. Concurrently, these compounds increased glucose consumption, glycolysis, and the transportation of pyruvate into mitochondria in AC16 cells using 13C6-labeled glucose and 13C3-labeled pyruvate tracing. In conclusion, compounds 2 and 5-7 are potential for reversing isoinduced cardiac hypertrophy and energy metabolism disorders by increasing MPC1 activity, thus having potential therapeutic implications for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Qing-Hong Meng
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jie Huang
- College of Life Science, Tarim University, Alar, 843300, China
| | - Long-Gao Xiao
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xue-Yu Yang
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Zhi He
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Qi Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Shan-Shan Ling
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yan
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hai-Yang Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Characteristic Plant Extraction Laboratory, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
3
|
Shi H, Cheng L, Li H, Yu L, You T, Xu Z, Zhou Z, Zhao H, Liu C, Shu S. A Narrative Review on Higenamine: Pharmacological Properties and Clinical Applications. Nutrients 2025; 17:1030. [PMID: 40290051 PMCID: PMC11944829 DOI: 10.3390/nu17061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Higenamine, a bioactive alkaloid derived from plants such as Aconitum and Annona squamosa, has been traditionally used in Chinese medicine for treating heart diseases like bradycardia, arrhythmia, and heart failure. It exhibits multiple pharmacological effects, including anti-oxidative stress, improved cellular energy metabolism, anti-apoptosis, and enhanced erectile dysfunction. AIM AND METHODS To investigate the reasons for these functions of higenamine and its application in the clinic, the literature of the database was searched and read in this study. RESULTS As a non-selective β-agonist, higenamine activates both β1- and β2-adrenergic receptors, leading to cardiovascular benefits such as increased heart rate and myocardial contractility, as well as bronchodilation. It has also been studied for its potential in weight loss, anti-inflammatory properties, and antioxidant properties, with applications in treating asthma, cardiovascular diseases, and ischemia-reperfusion injuries. However, its clinical use is limited by the need for further research on its long-term safety, pharmacokinetics, and interactions with other drugs. Despite its promising therapeutic potential, higenamine's inclusion in the World Anti-Doping Agency's banned list highlights concerns over its stimulant effects and safety in athletic contexts. CONCLUSIONS Future studies should focus on optimizing its clinical applications while ensuring safety and efficacy. In terms of clinical applications, future research will also be able to explore more possibilities to use higenamine more in the treatment of diseases.
Collapse
Affiliation(s)
- Hanghao Shi
- College of Physical Education, Shanghai University of Sport, Shanghai 200438, China;
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
| | - Long Cheng
- Russian Sports University, Moscow 105122, Russia
| | - Huixin Li
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Longqi Yu
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Ting You
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Zhiqin Xu
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Zixiang Zhou
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
| | - Chang Liu
- Beijing Sport University, Beijing 100084, China; (H.L.); (L.Y.); (T.Y.); (Z.X.); (Z.Z.)
| | - Shengfang Shu
- College of Physical Education, Shanghai University of Sport, Shanghai 200438, China;
| |
Collapse
|
4
|
Ge M, Ouyang H, Shang Y, Biu AM, Wu X, Li C, Zuo F, Zhu Y, Xue Z, Hao J, He J. Investigation of the drug-drug interaction and incompatibility mechanism between Aconitum carmichaelii Debx and Pinellia ternata (Thunb.) Breit. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118212. [PMID: 38636577 DOI: 10.1016/j.jep.2024.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.
Collapse
Affiliation(s)
- Minglei Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300193, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiwei Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Caixia Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fanjiao Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zixiang Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Hao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, 301617, Tianjin, China.
| |
Collapse
|
5
|
Ding J, Ji R, Wang Z, Jia Y, Meng T, Song X, Gao J, He Q. Cardiovascular protection of YiyiFuzi powder and the potential mechanisms through modulating mitochondria-endoplasmic reticulum interactions. Front Pharmacol 2024; 15:1405545. [PMID: 38978978 PMCID: PMC11228702 DOI: 10.3389/fphar.2024.1405545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death worldwide and represent a major public health challenge. YiyiFuzi Powder (YYFZ), composed of Coicis semen and Fuzi, is a classical traditional Chinese medicine prescription from the Synopsis of Golden Chamber dating back to the Han Dynasty. Historically, YYFZ has been used to treat various CVD, rooted in Chinese therapeutic principles. Network pharmacology analysis indicated that YYFZ may exhibit direct or indirect effects on mitochondria-endoplasmic reticulum (ER) interactions. This review, focusing on the cardiovascular protective effects of Coicis semen and Fuzi, summarizes the potential mechanisms by which YYFZ acts on mitochondria and the ER. The underlying mechanisms are associated with regulating cardiovascular risk factors (such as blood lipids and glucose), impacting mitochondrial structure and function, modulating ER stress, inhibiting oxidative stress, suppressing inflammatory responses, regulating cellular apoptosis, and maintaining calcium ion balance. The involved pathways include, but were not limited to, upregulating the IGF-1/PI3K/AKT, cAMP/PKA, eNOS/NO/cGMP/SIRT1, SIRT1/PGC-1α, Klotho/SIRT1, OXPHOS/ATP, PPARα/PGC-1α/SIRT3, AMPK/JNK, PTEN/PI3K/AKT, β2-AR/PI3K/AKT, and modified Q cycle signaling pathways. Meanwhile, the MCU, NF-κB, and JAK/STAT signaling pathways were downregulated. The PERK/eIF2α/ATF4/CHOP, PERK/SREBP-1c/FAS, IRE1, PINK1-dependent mitophagy, and AMPK/mTOR signaling pathways were bidirectionally regulated. High-quality experimental studies are needed to further elucidate the underlying mechanisms of YYFZ in CVD treatment.
Collapse
Affiliation(s)
- Jingyi Ding
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzhi Jia
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
7
|
Wang H, Cai P, Yu X, Li S, Zhu W, Liu Y, Wang D. Bioinformatics identifies key genes and potential drugs for energy metabolism disorders in heart failure with dilated cardiomyopathy. Front Pharmacol 2024; 15:1367848. [PMID: 38510644 PMCID: PMC10952830 DOI: 10.3389/fphar.2024.1367848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Background: Dysfunction in myocardial energy metabolism plays a vital role in the pathological process of Dilated Cardiomyopathy (DCM). However, the precise mechanisms remain unclear. This study aims to investigate the key molecular mechanisms of energy metabolism and potential therapeutic agents in the progression of dilated cardiomyopathy with heart failure. Methods: Gene expression profiles and clinical data for patients with dilated cardiomyopathy complicated by heart failure, as well as healthy controls, were sourced from the Gene Expression Omnibus (GEO) database. Gene sets associated with energy metabolism were downloaded from the Molecular Signatures Database (MSigDB) for subsequent analysis. Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis were employed to identify key modules and genes related to heart failure. Potential biological mechanisms were investigated through Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the construction of a competing endogenous RNA (ceRNA) network. Molecular docking simulations were then conducted to explore the binding affinity and conformation of potential therapeutic drugs with hub genes. Results: Analysis of the left ventricular tissue expression profiles revealed that, compared to healthy controls, patients with dilated cardiomyopathy exhibited 234 differentially expressed genes and 2 genes related to myocardial energy metabolism. Additionally, Benzoylaconine may serve as a potential therapeutic agent for the treatment of dilated cardiomyopathy. Conclusion: The study findings highlight the crucial role of myocardial energy metabolism in the progression of Dilated Cardiomyopathy. Notably, Benzoylaconine emerges as a potential candidate for treating Dilated Cardiomyopathy, potentially exerting its therapeutic effects by targeted modulation of myocardial energy metabolism through NRK and NT5.
Collapse
Affiliation(s)
- Haixia Wang
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Peifeng Cai
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xiaohan Yu
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Shiqi Li
- Guangzhou University of Traditional Chinese Medicine ShunDe Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Wei Zhu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China
| | - Yuntao Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
| | - Dawei Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Departments of Gynecologic Oncology, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Sun Y, Guo D, Yue S, Zhou M, Wang D, Chen F, Wang L. Afzelin protects against doxorubicin-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway. Toxicol Appl Pharmacol 2023; 477:116687. [PMID: 37703929 DOI: 10.1016/j.taap.2023.116687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Doxorubicin (DOX), a chemotherapeutic drug, could relieve the progressions of various diseases. However, its clinical application is limited due to its cardiotoxicity. This study aimed to investigate the effects of afzelin (a flavonol glycoside found in Houttuynia cordata) on the cardiotoxicity induced by DOX. METHODS In ex-vivo, H9C2 cells were incubated with 20, 40, or 80 μM afzelin for 12 h, followed by the treatment with 1 μM DOX for 12 h. In vivo, C57BL/6 J mice were intraperitoneally injected with 4 mg/kg/day DOX on days 1, 7, and 14. Meanwhile, starting from day 1, mice were intragastrically administrated with 5 mg/kg/day or 10 mg/kg/day afzelin for 20 days. The cardiac function of mice was evaluated by detecting hemodynamic parameters using the M-mode echocardiography. RESULTS DOX decreased the cell survival rate, and elevated apoptotic rate, as well as induced the oxidative stress and mitochondrial dysfunction in H9C2 cells. All these changes were alleviated by afzelin treatment in a concentration-dependent manner. The results were further proven by the mitigation of cardiac injury in vivo, as evidenced by the elevation of fractional shortening, heart weight/tibia length, and the rate of the increase/decrease of left ventricular pressure in mice subjected to DOX-induced cardiotoxicity. Furthermore, afzelin upregulated the expression of p-AMP-activated protein kinase alpha (AMPKα) and sirtuin1 (SIRT1). Dorsomorphin (an AMPKα inhibitor) abrogated the anti-cardiotoxicity effects of afzelin in H9C2 cells induced by DOX. CONCLUSION Afzelin protected against DOX-induced cardiotoxicity by promoting the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Danyang Guo
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 57 Youyi Road, Daoli District, Harbin 150076, Heilongjiang, China
| | - Saiding Yue
- Department of Nephrology, Harbin Jing-En Nephrology Hospital, 11 Xiangbin Road, Xiangfang District, Harbin 150036, Heilongjiang, China
| | - Mingyan Zhou
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Dongxu Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Fengjiao Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin 150081, Heilongjiang, China
| | - Lingling Wang
- Department of Ultrasound, the Sixth Affiliated Hospital of Harbin Medical University, 998 Aiying Avenue, Songbei District, Harbin 150027, Heilongjiang, China.
| |
Collapse
|
9
|
Bao X, Liu X, Wu Q, Ye F, Shi Z, Xu D, Zhang J, Dou Z, Huang G, Zhang H, Sun C. Mitochondrial-Targeted Antioxidant MitoQ-Mediated Autophagy: A Novel Strategy for Precise Radiation Protection. Antioxidants (Basel) 2023; 12:antiox12020453. [PMID: 36830013 PMCID: PMC9952602 DOI: 10.3390/antiox12020453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy (RT) is one of the most effective cancer treatments. However, successful radiation protection for normal tissue is a clinical challenge. Our previous study observed that MitoQ, a mitochondria-targeted antioxidant, was adsorbed to the inner mitochondrial membrane and remained the cationic moiety in the intermembrane space. The positive charges in MitoQ restrained the activity of respiratory chain complexes and decreased proton production. Therefore, a pseudo-mitochondrial membrane potential (PMMP) was developed via maintenance of exogenous positive charges. This study identified that PMMP constructed by MitoQ could effectively inhibit mitochondrial respiration within normal cells, disrupt energy metabolism, and activate adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling to induce autophagy. As such, it could not lead to starvation-induced autophagy among tumor cells due to the different energy phenotypes between normal and tumor cells (normal cells depend on mitochondrial respiration for energy supply, while tumor cells rely on aerobic glycolysis). Therefore, we successfully protected the normal cells from radiation-induced damage without affecting the tumor-killing efficacy of radiation by utilizing selective autophagy. MitoQ-constructed PMMP provides a new therapeutic strategy for specific radiation protection.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qingfeng Wu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fei Ye
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zheng Shi
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dan Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
- Correspondence: (H.Z.); (C.S.); Tel.: +86-(931)-519-6126 (H.Z.); +86-(931)-519-6027 (C.S.)
| |
Collapse
|
10
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
11
|
Zhang J, Li D, Zhong D, Zhou Q, Yin Y, Gao J, Peng C. Processed lateral root of Aconitum carmichaelii Debx.: A review of cardiotonic effects and cardiotoxicity on molecular mechanisms. Front Pharmacol 2022; 13:1026219. [PMID: 36324672 PMCID: PMC9618827 DOI: 10.3389/fphar.2022.1026219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Fuzi, the lateral root of A. carmichaelii Debx., is a typical traditional herbal medicine with both poisonousness and effectiveness, and often used in the treatment of heart failure and other heart diseases. In this review, we searched domestic and foreign literature to sort out the molecular mechanisms of cardiotonic and cardiotoxicity of Fuzi, also including its components. The major bioactive components of Fuzi for cardiotonic are total alkaloids, polysaccharide and the water-soluble alkaloids, with specific mechanisms manifested in the inhibition of myocardial fibrosis, apoptosis and autophagy, and improvement of mitochondrial energy metabolism, which involves RAAS system, PI3K/AKT, JAK/STAT, AMPK/mTOR signaling pathway, etc. Diester-diterpenoid alkaloids in Fuzi can produce cardiotoxic effects by over-activating Na+ and Ca2+ ion channels, over-activating NLRP3/ASC/caspase-3 inflammatory pathway and mitochondria mediated apoptosis pathway. And three clinically used preparations containing Fuzi are also used as representatives to summarize their cardiac-strengthening molecular mechanisms. To sum up, Fuzi has shown valuable cardiotonic effects due to extensive basic and clinical studies, but its cardiotonic mechanisms have not been systematically sorted out. Therefore, it is a need for deeper investigation in the mechanisms of water-soluble alkaloids with low content but obvious therapeutic effect, as well as polysaccharide.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinmei Zhou
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanpeng Yin
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jihai Gao
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jihai Gao, ; Cheng Peng,
| |
Collapse
|
12
|
Chen DT, Rao W, Shen X, Chen L, Wan ZJ, Sheng XP, Fan TY. Pharmacological effects of higenamine based on signalling pathways and mechanism of action. Front Pharmacol 2022; 13:981048. [PMID: 36188548 PMCID: PMC9520082 DOI: 10.3389/fphar.2022.981048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Higenamine (HG) is a chemical compound found in various plants, such as aconite. Recent pharmacological studies have demonstrated its effectiveness in the management of many diseases. Several mechanisms of action of HG have been proposed; however, they have not yet been classified. This review summarises the signalling pathways and pharmacological targets of HG, focusing on its potential as a naturally extracted drug. Articles related to the pharmacological effects, signalling pathways and pharmacological targets of HG were selected by searching the keyword "Higenamine" in the PubMed, Web of Science and Google Scholar databases without limiting the search by publication years. HG possesses anti-oxidant, anti-apoptotic, anti-inflammatory, electrophysiology regulatory, anti-fibrotic and lipid-lowering activities. It is a structural analogue of catecholamines and possesses characteristics similar to those of adrenergic receptor ligands. It can modulate multiple targets, including anti-inflammation- and anti-apoptosis-related targets and some transcription factors, which directly or indirectly influence the disease course. Other naturally occurring compounds, such as cucurbitacin B (Cu B) and 6-gingerol (6-GR), can be combined with HG to enhance its anti-apoptotic activity. Although significant research progress has been made, follow-up pharmacological studies are required to determine the exact mechanism of action, new signalling pathways and targets of HG and the effects of using it in combination with other drugs.
Collapse
Affiliation(s)
- De-ta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Shen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-jian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-ping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-you Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Liu X, Xie X, Luo M, Zhao Y, Li M, Peng F, Peng C. The synergistic compatibility mechanisms of fuzi against chronic heart failure in animals: A systematic review and meta-analysis. Front Pharmacol 2022; 13:954253. [PMID: 36188581 PMCID: PMC9515783 DOI: 10.3389/fphar.2022.954253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Fuzi’s compatibilities with other medicines are effective treatments for chronic heart failure. Pre-clinical animal experiments have indicated many possible synergistic compatibility mechanisms of it, but the results were not reliable and reproducible enough. Therefore, we performed this systematic review and meta-analysis of pre-clinical animal studies to integrate evidence, conducted both qualitative and quantitative evaluations of the compatibility and summarized potential synergistic mechanisms. Method: An exhaustive search was conducted for potentially relevant studies in nine online databases. The selection criteria were based on the Participants, Interventions, Control, Outcomes, and Study designs strategy. The SYRCLE risk of bias tool for animal trials was used to perform the methodological quality assessment. RevMan V.5.3 and STATA/SE 15.1 were used to perform the meta-analysis following the Cochrane Handbook for Systematic Reviews of Interventions. Result: 24 studies were included in the systematic review and meta-analysis. 12 outcomes were evaluated in the meta-analysis, including BNP, HR, HWI, ALD, LVEDP, LVSP, EF, FS, +dP/dtmax, −dP/dtmax, TNF-α and the activity of Na + -K + -ATPase. Subgroup analyses were performed depending on the modeling methods and duration. Conclusion: The synergistic Fuzi compatibility therapeutic effects against CHF animals were superior to those of Fuzi alone, as shown by improvements in cardiac function, resistance to ventricular remodeling and cardiac damage, regulation of myocardial energy metabolism disorder and RAAS, alleviation of inflammation, the metabolic process in vivo, and inhibition of cardiomyocyte apoptosis. Variations in CHF modeling methods and medication duration brought out possible model–effect and time-effect relationships.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofang Xie, ; Cheng Peng,
| | - Maozhu Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Li
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofang Xie, ; Cheng Peng,
| |
Collapse
|
14
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
15
|
Chen C, Liu S, Cao G, Hu Y, Wang R, Wu M, Liu M, Yiu KH. Cardioprotective Effect of Paeonol on Chronic Heart Failure Induced by Doxorubicin via Regulating the miR-21-5p/S-Phase Kinase-Associated Protein 2 Axis. Front Cardiovasc Med 2022; 9:695004. [PMID: 35865382 PMCID: PMC9294229 DOI: 10.3389/fcvm.2022.695004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundThis study primarily explored the role of paeonol in doxorubicin (DOX)-induced chronic heart failure (CHF), considering the cardioprotective effect of paeonol on an epirubicin-induced cardiac injury.MethodsDOX-induced CHF-modeled rats were treated with paeonol. Cardiac function and myocardial damage in rats were evaluated by using the multifunction instrument, and the histopathology, apoptosis, and the expression of miR-21-5p and S-phase kinase-associated protein 2 (SKP2) in myocardium were detected. The target gene of miR-21-5p was confirmed by a dual-luciferase reporter assay. After the required transfection or paeonol treatment, the viability, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) of the DOX-induced cardiomyocytes were determined. Reverse-transcription quantitative-PCR (RT-qPCR) and Western blot were performed to quantify the expressions of miR-21-5p, SKP2, and apoptosis-related factors.ResultsPaeonol improved cardiac function and also ameliorated the cardiac damage of CHF-modeled rats, where the downregulation of abnormally elevated myocardial damage markers, including brain natriuretic peptide, lactate dehydrogenase, renin, angiotensin II, aldosterone, and endothelin 1, was observed. Paeonol alleviated the histopathological injury and suppressed the apoptosis in CHF-modeled rats, inhibited miR-21-5p expression, and upregulated SKP2 expression in vitro and in vivo. miR-21-5p targeted SKP2. Paeonol and SKP2 increased the viability and MMP, but reduced apoptosis and ROS in the DOX-induced cardiomyocytes. miR-21-5p exerted effects opposite to PAE and SKP2, and it downregulated the expression of Bcl-2 and mitochondrion-Cytochrome c (Cyt c) and upregulated the expression of Bax, C-caspase-3, and cytoplasm-Cyt c. miR-21-5p reversed the effects of paeonol, and its effects were further reversed by SKP2.ConclusionPaeonol shows a cardioprotective effect on DOX-induced CHF via regulating the miR-21-5p/SKP2 axis.
Collapse
Affiliation(s)
- Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Shuhong Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Gaozhen Cao
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Yang Hu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
| | - Run Wang
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Min Wu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Mingya Liu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Kai Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
- Division of Cardiology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Shenzhen, China
- *Correspondence: Kai Hang Yiu,
| |
Collapse
|
16
|
Ni L, Miao P, Jiang J, Wan F, Li J, Ai M, Kong L, Tu S. Glycyrrhiza uralensis promote the metabolism of toxic components of Aconitum carmichaeli by CYP3A and alleviate the development of chronic heart failure. PLoS One 2022; 17:e0270069. [PMID: 35759460 PMCID: PMC9236245 DOI: 10.1371/journal.pone.0270069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Aconitum, as "the first drug of choice for invigorating Yang and saving lives", has been widely used for the treatment of heart failure. However, toxic components of Aconitum can easily lead to serious arrhythmia, even death (Y. CT., 2009; Zhang XM., 2018). In this study, a High Performance Liquid Chromatography (HPLC) method for the determination of aconitine (AC), mesaconitine (MA) and hypaconitine (HA) was established; The effect of Glycyrrhiza on CYP3A1 / 2 mRNA expression was detected by RT-PCR; SD rats were given Aconitum and compatibility of Glycyrrhizae and Aconitum by gavage respectively, the blood concentration of toxic components were determined by LC-MS / MS; The CHF rat model was established by intraperitoneal injection of adriamycin (2.5 mg / kg), and were randomly divided into model, Aconitum, the compatibility of Glycyrrhizae and Aconitum and Captopril group, 5 mice/group. After 4 weeks of gavage, the corresponding indexes were detected by ELISA and HPLC. The results showed that Ketoconazole significantly inhibited the metabolites of AC, MA and HA; Glycyrrhiza induced CYP3A gene expression; The level of ALD in the compatibility of Glycyrrhizae and Aconitum group was significantly lower than that in Aconitum group. After intervention with the compatibility of Glycyrrhizae and Aconitum, ATP increased, ADP decreased significantly. In conclusion, we found Glycyrrhiza promoted the metabolism of toxic components of Aconitum by up regulating the expression of CYP3A, and reduced the content of BNP, Ang II and ALD, improved the energy metabolism disorder of myocardium, alleviated the development of CHF.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Ping Miao
- Traditional Chinese Medicine Diagnosis and Treatment Center, The Affiliated People’s Hospital of Ningbo University, Zhejiang, China
| | - Jian Jiang
- Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Wan
- Department of Emergency, The Affiliated Wuxi NO.2 People’s Hospital of Nanjing Medical University, Wuxi, PR China
| | - Jiangan Li
- Department of Emergency, The Affiliated Wuxi NO.2 People’s Hospital of Nanjing Medical University, Wuxi, PR China
| | - Min Ai
- Department of Basic Medicine, Jiangnan University, Wuxi, China
| | - Lingzhong Kong
- Department of Rehabilitation Acupuncture Medicine, Bozhou People’s Hospital, Bozhou, Anhui, PR China
| | - Su Tu
- Department of Emergency, The Affiliated Wuxi NO.2 People’s Hospital of Nanjing Medical University, Wuxi, PR China
- * E-mail:
| |
Collapse
|
17
|
Salaramoli S, Mehri S, Yarmohammadi F, Hashemy SI, Hosseinzadeh H. The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:664-674. [PMID: 35949312 PMCID: PMC9320212 DOI: 10.22038/ijbms.2022.59627.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/06/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome is a multifactorial disorder characterized by hyperglycemia, hyperlipidemia, obesity, and hypertension risk factors. Moreover, metabolic syndrome is the most ordinary risk factor for cardiovascular disease (CVD). Numerous chemical drugs are being synthesized to heal metabolic risk factors. Still, due to their abundant side effects, herbal medicines have a vital role in the treatment of these abnormalities. Ginger (Zingiber officinale Roscoe, Zingiberaceae) plant has been traditionally used in medicine to treat disorders, including CVD. The unique ginger properties are attributed to the presence of [6]-gingerol, [8]-gingerol, [10]-gingerol, and [6]-shogaol, which through different mechanisms can be beneficial in metabolic syndrome. Ginger has a beneficial role in metabolic syndrome treatment due to its hypotensive, anti-obesity, hypoglycemic, and hypolipidemic effects. It can significantly reduce atherosclerotic lesion areas, VLDL and LDL cholesterol levels, and elevate adenosine deaminase activity in platelet and lymphocytes. Also, it promotes ATP/ADP hydrolysis. In the current article review, the critical properties of ginger and its constituents' effects on the metabolic syndrome with a special focus on different molecular and cellular mechanisms have been discussed. This article also suggests that ginger may be introduced as a therapeutic or preventive agent against metabolic syndrome after randomized clinical trials.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Soghra Mehri. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ; Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251;
| | - Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding authors: Soghra Mehri. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. ; Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251;
| |
Collapse
|
18
|
Jin C, Chai Y, Hu Z, Tian W, Ling W, Li J, Wu M. Higenamine Attenuates Doxorubicin-Induced Cardiac Remodeling and Myocyte Apoptosis by Suppressing AMPK Activation. Front Cell Dev Biol 2022; 10:809996. [PMID: 35602605 PMCID: PMC9117701 DOI: 10.3389/fcell.2022.809996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: As an effective antitumor drug, doxorubicin (DOX) is primarily used to treat solid tumors and hematologic malignancies. However, increasing evidence has emerged indicating its cardiotoxicity, and few solutions have been proposed to counter this side effect. Higenamine (HG) is a natural compound widely found in many Chinese herbs and also serves as a component in many healthcare products. Several studies have demonstrated its cardioprotective effect in different models, but little is known about the underlying influences of HG against myocardial damage from DOX-induced chronic cardiotoxicity. Methods and Results: C57BL/6 mice and neonatal rat ventricular cardiomyocytes (NRVMs) were used to evaluate the cardioprotective effect of HG against DOX-induced myocardial damage. In mice, DOX (intraperitoneally injected 5 mg/kg every 3 days for 4 weeks) significantly increased cardiomyocyte apoptosis, cardiac atrophy, and cardiac dysfunction, which were significantly attenuated by HG (intragastrically administered with 10 mg/kg every day for 4 weeks). In NRVMs, DOX (3 μM for 24 h) significantly increased cell apoptosis and the level of reactive oxygen species while reducing the level of superoxide dismutase and mitochondrial membrane potential. Remarkably, HG can reverse these pathological changes caused by DOX. Interestingly, the protective effect of HG on DOX-induced cardiotoxicity was independent of the activation of the beta-2 adrenergic receptor (β2-AR), known for mediating the effect of HG on antagonizing ischemia/reperfusion-induced cardiac apoptosis. Furthermore, HG attenuated the abnormal activation of phosphorylated adenosine-activated protein kinase (AMPK). Consistently, AMPK agonists (AICAR) can eliminate these pharmacological actions of HG. Conclusion: Collectively, our results suggested that HG alleviated DOX-induced chronic myocardial injury by suppressing AMPK activation and ROS production.
Collapse
Affiliation(s)
- Cuiliu Jin
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Chai
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhimin Hu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wencong Tian
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Wang Ling
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Jing Li, ; Meiping Wu,
| | - Meiping Wu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jing Li, ; Meiping Wu,
| |
Collapse
|
19
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
20
|
Liu J, Zhang Q, Tao T, Wang LY, Sun JY, Wu CJ, Zou WJ. Health benefits of spices in individuals with chemotherapeutic drug-induced cardiotoxicity. Curr Opin Pharmacol 2022; 63:102187. [PMID: 35245798 DOI: 10.1016/j.coph.2022.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Cardio-oncology is an emerging field that mainly focuses on a series of cardiovascular diseases caused by chemotherapy and radiotherapy. In the history and culture of human nutrition, spices have been emphasized for their wide range of economic and medical applications in addition to being used as a food-flavoring agent and food preservative. Currently, an increasing number of studies have focused on the health benefits of spices in preventing cardiovascular diseases, particularly their antioxidant effects against cardiovascular damage. This review summarizes the cardioprotective effects of black pepper, cardamom, clove, garlic, ginger, onion, and other spices against chemotherapeutic drug-induced cardiotoxicity and the potential mechanisms. Here, we recommend dietary adjustments with spices for patients with cancer to prevent or mitigate the cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ling-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Jia-Yi Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| | - Wen-Jun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| |
Collapse
|
21
|
Wen J, Li M, Zhang W, Wang H, Bai Y, Hao J, Liu C, Deng K, Zhao Y. Role of Higenamine in Heart Diseases: A Mini-Review. Front Pharmacol 2022; 12:798495. [PMID: 35082678 PMCID: PMC8784381 DOI: 10.3389/fphar.2021.798495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Higenamine, a natural product with multiple targets in heart diseases, is originally derived from Aconitum, which has been traditionally used in China for the treatment of heart disease, including heart failure, arrhythmia, bradycardia, cardiac ischemia/reperfusion injury, cardiac fibrosis, etc. This study is aimed to clarify the role of higenamine in heart diseases. Higenamine has effects on improving energy metabolism of cardiomyocytes, anti-cardiac fibroblast activation, anti-oxidative stress and anti-apoptosis. Accumulating evidence from various studies has shown that higenamine exerts a wide range of cardiovascular pharmacological effects in vivo and in vitro, including alleviating heart failure, reducing cardiac ischemia/reperfusion injury, attenuating pathological cardiac fibrosis and dysfunction. In addition, several clinical studies have reported that higenamine could continuously increase the heart rate levels of healthy volunteers as well as patients with heart disease, but there are variable effects on systolic blood pressure and diastolic blood pressure. Moreover, the heart protection and therapeutic effects of higenamine on heart disease are related to regulating LKB1/AMPKα/Sirt1, mediating the β2-AR/PI3K/AKT cascade, induction of heme oxygenase-1, suppressing TGF-β1/Smad signaling, and targeting ASK1/MAPK (ERK, P38)/NF-kB signaling pathway. However, the interventional effects of higenamine on heart disease and its underlying mechanisms based on experimental studies have not yet been systematically reviewed. This paper reviewed the potential pharmacological mechanisms of higenamine on the prevention, treatment, and diagnosis of heart disease and clarified its clinical applications. The literature shows that higenamine may have a potent effect on complex heart diseases, and proves the profound medicinal value of higenamine in heart disease.
Collapse
Affiliation(s)
- Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Mingjie Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenwen Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Haoyu Wang
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yan Bai
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Junjie Hao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Chuan Liu
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Fe3O4@Au-rGO Nanocomposite/Ionic Liquid Modified Sensor for Ultrasensitive and Selective Sensing of Doxorubicin. Top Catal 2022. [DOI: 10.1007/s11244-021-01504-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Shao-Mei W, Li-Fang Y, Li-Hong W. Traditional Chinese medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2021; 146:112538. [PMID: 34922111 DOI: 10.1016/j.biopha.2021.112538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/02/2022] Open
Abstract
The prognosis of various cardiovascular diseases eventually leads to heart failure (HF). An energy metabolism disorder of cardiomyocytes is important in explaining the molecular basis of HF; this will aid global research regarding treatment options for HF from the perspective of myocardial metabolism. There are many drugs to improve myocardial metabolism for the treatment of HF, including angiotensin receptor blocker-neprilysin inhibitor (ARNi) and sodium glucose cotransporter 2 (SGLT-2) inhibitors. Although Western medicine has made considerable progress in HF therapy, the morbidity and mortality of the disease remain high. Therefore, HF has attracted attention from researchers worldwide. In recent years, the application of traditional Chinese medicine (TCM) in HF treatment has been gradually accepted, and many studies have investigated the mechanism whereby TCM improves myocardial metabolism; the TCMs studied include Danshen yin, Fufang Danshen dripping pill, and Shenmai injection. This enables the clinical application of TCM in the treatment of HF by improving myocardial metabolism. We systematically reviewed the efficacy of TCM for improving myocardial metabolism during HF as well as the pharmacological effects of active TCM ingredients on the cardiovascular system and the potential mechanisms underlying their ability to improve myocardial metabolism. The results indicate that TCM may serve as a complementary and alternative approach for the prevention of HF. However, further rigorously designed randomized controlled trials are warranted to assess the effect of TCM on long-term hard endpoints in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Wang Shao-Mei
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Ye Li-Fang
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China
| | - Wang Li-Hong
- Cardiovascular Medicine Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
24
|
Tabrizi FB, Yarmohammadi F, Hayes AW, Karimi G. The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicin-induced cardiotoxicity: A review. J Biochem Mol Toxicol 2021; 36:e22946. [PMID: 34747550 DOI: 10.1002/jbt.22946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Doxorubicin (DOX) is a potent antitumor agent with a broad spectrum of activity; however, irreversible cardiotoxicity resulting from DOX treatment is a major issue that limits its therapeutic use. Sirtuins (SIRTs) play an essential role in several physiological and pathological processes including oxidative stress, apoptosis, and inflammation. It has been reported that SIRT1 and SIRT3 can act as a protective molecular against DOX-induced myocardial injury through targeting numerous signaling pathways. Several natural compounds (NCs), such as resveratrol, sesamin, and berberine, with antioxidative, anti-inflammation, and antiapoptotic effects were evaluated for their potential to suppress the cardiotoxicity induced by DOX via targeting SIRT1 and SIRT3. Numerous NCs exerted their therapeutic effects on DOX-mediated cardiac damage via targeting different signaling pathways, including SIRT1/LKB1/AMPK, SIRT1/PGC-1α, SIRT1/NLRP3, and SIRT3/FoxO. SIRT3 also ameliorates cardiotoxicity by enhancing mitochondrial fusion.
Collapse
Affiliation(s)
- Fatemeh B Tabrizi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Anaeigoudari A, Azdaki N, Khazdair MR. A comprehensive review of cardiotoxic effects of selected plants. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1766506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Akbar Anaeigoudari
- Department of Physiology, Jiroft University of Medical Sciences, Jirof, Iran
| | - Nahid Azdaki
- Department of Cardiology, School of Medicine Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
27
|
Ma SQ, Guo Z, Liu FY, Hasan SG, Yang D, Tang N, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. 6-Gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway. Acta Pharmacol Sin 2021; 42:1575-1586. [PMID: 33462378 PMCID: PMC8463710 DOI: 10.1038/s41401-020-00587-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023]
Abstract
6-Gingerol, a pungent ingredient of ginger, has been reported to possess anti-inflammatory and antioxidant activities, but the effect of 6-gingerol on pressure overload-induced cardiac remodeling remains inconclusive. In this study, we investigated the effect of 6-gingerol on cardiac remodeling in in vivo and in vitro models, and to clarify the underlying mechanisms. C57BL/6 mice were subjected to transverse aortic constriction (TAC), and treated with 6-gingerol (20 mg/kg, ig) three times a week (1 week in advance and continued until the end of the experiment). Four weeks after TAC surgery, the mice were subjected to echocardiography, and then sacrificed to harvest the hearts for analysis. For in vitro study, neonatal rat cardiomyocytes and cardiac fibroblasts were used to validate the protective effects of 6-gingerol in response to phenylephrine (PE) and transforming growth factor-β (TGF-β) challenge. We showed that 6-gingerol administration protected against pressure overload-induced cardiac hypertrophy, fibrosis, inflammation, and dysfunction in TAC mice. In the in vitro study, we showed that treatment with 6-gingerol (20 μM) blocked PE-induced-cardiomyocyte hypertrophy and TGF-β-induced cardiac fibroblast activation. Furthermore, 6-gingerol treatment significantly decreased mitogen-activated protein kinase p38 (p38) phosphorylation in response to pressure overload in vivo and extracellular stimuli in vitro, which was upregulated in the absence of 6-gingerol treatment. Moreover, transfection with mitogen-activated protein kinase kinase 6 expressing adenoviruses (Ad-MKK6), which specifically activated p38, abolished the protective effects of 6-gingerol in both in vitro and in vivo models. In conclusion, 6-gingerol improves cardiac function and alleviates cardiac remodeling induced by pressure overload in a p38-dependent manner. The present study demonstrates that 6-gingerol is a promising agent for the intervention of pathological cardiac remodeling.
Collapse
Affiliation(s)
- Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Shahzad-Gul Hasan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
- Department of Medicine, Bahawal Victoria Hospital, Bahawalpur, 63100, Pakistan
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| |
Collapse
|
28
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
29
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
30
|
Mi L, Li YC, Sun MR, Zhang PL, Li Y, Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin J Nat Med 2021; 19:505-520. [PMID: 34247774 DOI: 10.1016/s1875-5364(21)60050-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/24/2022]
Abstract
The tubers and roots of Aconitum (Ranunculaceae) are widely used as heart medicine or analgesic agents for the treatment of coronary heart disease, chronic heart failure, rheumatoid arthritis and neuropathic pain since ancient times. As a type of natural products mainly extracted from Aconitum plants, Aconitum alkaloids have complex chemical structures and exert remarkable biological activity, which are mainly responsible for significant effects of Aconitum plants. The present review is to summarize the progress of the pharmacological, toxicological, and pharmacokinetic studies of Aconitum alkaloids, so as to provide evidence for better clinical application. Research data concerning pharmacological, toxicological and pharmacokinetic studies of Aconitum alkaloids were collected from different scientific databases (PubMed, CNKI, Google Scholar, Baidu Scholar, and Web of Science) using the phrase Aconitum alkaloids, as well as generic synonyms. Aconitum alkaloids are both bioactive compounds and toxic ingredients in Aconitum plants. They produce a wide range of pharmacological activities, including protecting the cardiovascular system, nervous system, and immune system and anti-cancer effects. Notably, Aconitum alkaloids also exert strong cardiac toxicity, neurotoxicity and liver toxicity, which are supported by clinical studies. Finally, pharmacokinetic studies indicated that cytochrome P450 proteins (CYPs) and efflux transporters (ETs) are closely related to the low bioavailability of Aconitum alkaloids and play an important role in their metabolism and detoxification in vivo.
Collapse
Affiliation(s)
- Li Mi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Chen Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Ru Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei-Lin Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Tian C, Yang Y, Bai B, Wang S, Liu M, Sun RC, Yu T, Chu XM. Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity. Int J Biol Sci 2021; 17:1328-1338. [PMID: 33867849 PMCID: PMC8040474 DOI: 10.7150/ijbs.58786] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (DOX) is a kind of representative anthracyclines. It has greatly prolonged lifespan of cancer patients. However, a long course of DOX chemotherapy could induce various forms of deaths of cardiomyocytes, such as apoptosis, pyroptosis and ferroptosis, contributing to varieties of cardiac complications called cardiotoxicity. It has become a major concern considering the large number of cancer patients' worldwide and increased survival rates after chemotherapy. Exosomes, a subgroup of extracellular vesicles (EVs), are secreted by nearly all cells and consist of lipid bilayers, nucleic acids and proteins. They can serve as mediators between intercellular communication via the transfer of bioactive molecules from secretory to recipient cells, modulating multiple pathophysiological processes. It has been proven that exosomes in body fluids can serve as biomarkers for doxorubicin-induced cardiotoxicity (DIC). Moreover, exosomes have attracted considerable attention because of their capacity as carriers of certain proteins, genetic materials (miRNA and lncRNA), and chemotherapeutic drugs to decrease the dosage of DOX and alleviate cardiotoxicity. This review briefly describes the characteristics of exosomes and highlights their clinical application potential as diagnostic biomarkers and drug delivery vehicles for DIC, thus providing a strategy for addressing it based on exosomes.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao 266071, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Rui-Cong Sun
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266021, China
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao 266000, China
| | - Xian-ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao 266032, China
| |
Collapse
|
32
|
Effect of Traditional Chinese Medicine Poge Heart-Saving Decoction on Cardiac Function in Heart Failure Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8762509. [PMID: 33628294 PMCID: PMC7895586 DOI: 10.1155/2020/8762509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Background Poge heart-saving decoction (PHSD) has been used as a medicine treating heart failure in China for many years. The study aimed to explore the effect of PHSD on cardiac function in heart failure conditions and its underlying mechanism. Methods Adriamycin was used to induce the model of heart failure (HF) in rats. Sixty rats were randomly divided into six groups: blank control group, sham group, 9.33 g/kg group (low-PHSD, test group), 13.995 g/kg group (moderate-PHSD, test group), 18.66 g/kg group (high-PHSD, test group), and fosinopril group (4.67 mg/kg, comparison test group). Cardiac ultrasound was used to evaluate the cardiac function of the rats, and radioimmunoassay was used to measure aldosterone (ALD) and angiotensin II (AngII) levels in the serum. Results Compared with the blank control group, the left ventricular end-diastolic dimension (LVEDd) and left ventricular end-systolic dimension (LVEDs) in the sham group were increased (1.04 ± 0.12 vs. 0.67 ± 0.13 cm; 0.75 ± 0.13 vs. 0.28 ± 0.10 cm; P < 0.05), and the left ventricular ejection fraction was decreased (36.65 ± 5.74 vs. 76.09 ± 4.23%; P < 0.05). The ejection fraction of HF rats was increased in 9.33 g/kg group, 13.995 g/kg group, and 18.66 g/kg group compared with those of the sham group (57.13 ± 1.63, 58.43 ± 1.98, and 59.21 ± 1.37 vs. 36.65 ± 5.74%; P < 0.05). PHSD also improved cardiac function by reducing the LVEDd and LVEDs (0.88 ± 0.11, 0.75 ± 0.13, and 0.72 ± 0.18 vs. 1.04 ± 0.12 cm; 0.62 ± 0.10, 0.63 ± 0.17, and 0.45 ± 0.11 vs. 0.75 ± 0.13 cm; P < 0.05). The levels of ALD and AngII in the serum of rats in the sham group were significantly higher than those in the blank control group (371.58 ± 39.25 vs. 237.12 ± 17.35 μg/L; 232.18 ± 16.33 vs. 159.44 ± 18.42 pg/L; P < 0.05). The ALD and AngII of the rats in all of the three PHSD groups and the fosinopril group were decreased (276.81 ± 25.63, 277.18 ± 21.35, 268.19 ± 19.28, and 271.47 ± 28.96 vs. 371.58 ± 39.25 μg/L; 169.41 ± 27.53, 168.81 ± 19.78, 164.23 ± 21.34, and 174.27 ± 22.84 vs. 232.18 ± 16.33 pg/L; P < 0.05). The histopathological changes of the myocardium in the sham group showed the disorganized fiber, shaded staining, fracture, and zonation. The fracture of the myocardium was relieved in all groups except the sham group and the blank control group. Conclusion Therefore, PHSD could shorten LVEDd and LVEDs of rats and reverse ventricular remodeling. The mechanism might be related to the inhibition of the activation level of renin-angiotensin-aldosterone system (especially ALD and AngII) and decreasing the postload of the heart.
Collapse
|
33
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
34
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Metabolomics coupled with integrated approaches reveal the therapeutic effects of higenamine combined with [6]-gingerol on doxorubicin-induced chronic heart failure in rats. Chin Med 2020; 15:120. [PMID: 33292391 PMCID: PMC7670783 DOI: 10.1186/s13020-020-00403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background This study was aimed to investigate the therapeutic effects and potential mechanism of higenamine combined with [6]-gingerol (HG/[6]-GR) against doxorubicin (DOX)—induced chronic heart failure (CHF) in rats. Materials and methods Therapeutic effects of HG/[6]-GR on hemodynamics indices, serum biochemical indicators, histopathology and TUNEL staining of rats were assessed. Moreover, a UHPLC-Q-TOF/MS-based serum metabolic approach was performed to identify the metabolites and possible pathways of HG/[6]-GR on DOX-induced CHF. Results HG/[6]-GR had effects on regulating hemodynamic indices, alleviating serum biochemical indicators, improving the pathological characteristics of heart tissue and reducing the apoptosis of myocardial cells. Serum metabolisms analyses indicated that the therapeutic effects of HG and [6]-GR were mainly associated with the regulation of eight metabolites, including acetylphosphate, 3-Carboxy-1-hydroxypropylthiamine diphosphate, coenzyme A, palmitic acid, PE(O-18:1(1Z)/20:4(5Z,8Z,11Z,14Z)), oleic acid, lysoPC(18:1(9Z)), and PC(16:0/16:0). Pathway analysis showed that HG/[6]-GR on CHF treatment was related to twelve pathways, including glycerophospholipid metabolism, fatty acid metabolism, pantothenate and CoA biosynthesis, citrate cycle (TCA cycle), pyruvate metabolism, and arachidonic acid metabolism. Serum metabolites and metabolic pathways regulated by HG/[6]-GR appear to be related to energy metabolism. Conclusion Multivariate statistical analysis has provided new insights for understanding CHF and investigating the therapeutic effects and mechanisms of HG/[6]-GR, which influencing the metabolites and pathways related to energy metabolism pathway.
Collapse
|
36
|
Orosomucoid 1 Attenuates Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Nrf2 Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5923572. [PMID: 33134382 PMCID: PMC7591952 DOI: 10.1155/2020/5923572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/22/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer drug, but its therapeutic use is limited by its cardiotoxicity. The principal mechanisms of DOX-induced cardiotoxicity are oxidative stress and apoptosis in cardiomyocytes. Orosomucoid 1 (ORM1), an acute-phase protein, plays important roles in inflammation and ischemic stroke; however, the roles and mechanisms of ORM1 in DOX-induced cardiotoxicity remain unknown. Therefore, in the present study, we aimed to investigate the function of ORM1 in cardiomyocytes experiencing DOX-induced oxidative stress and apoptosis. A DOX-induced cardiotoxicity animal model was established in C57BL/6 mice by administering an intraperitoneal injection of DOX (20 mg/kg), and the control group was intraperitoneally injected with the same volume of sterilized saline. The effects were assessed after 7 d. Additionally, H9c2 cells were stimulated with DOX (10 μM) for 24 h. The results showed decreased ORM1 and increased oxidative stress and apoptosis after DOX stimulation in vivo and in vitro. ORM1 overexpression significantly reduced DOX-induced oxidative stress and apoptosis in H9c2 cells. ORM1 significantly increased the expression of nuclear factor-like 2 (Nrf2) and its downstream protein heme oxygenase 1 (HO-1) and reduced the expression of the lipid peroxidation end product 4-hydroxynonenal (4-HNE) and the level of cleaved caspase-3. In addition, Nrf2 silencing reversed the effects of ORM1 on DOX-induced oxidative stress and apoptosis in cardiomyocytes. In conclusion, ORM1 inhibited DOX-induced oxidative stress and apoptosis in cardiomyocytes by regulating the Nrf2/HO-1 pathway, which might provide a new treatment strategy for DOX-induced cardiotoxicity.
Collapse
|
37
|
Wen J, Zhang L, Wang J, Wang J, Wang L, Wang R, Li R, Liu H, Wei S, Li H, Zou W, Zhao Y. Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function. J Cell Mol Med 2020; 24:4036-4050. [PMID: 32073745 PMCID: PMC7171398 DOI: 10.1111/jcmm.15041] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Higenamine (HG) is a natural benzylisoquinoline alkaloid isolated from Aconitum with positive inotropic and chronotropic effects. This study aimed to investigate the possible cardioprotective effects of HG combined with [6]-gingerol (HG/[6]-GR) against DOX-induced chronic heart failure (CHF) by comprehensive approaches. DOX-induced cardiotoxicity model in rats and H9c2 cells was established. Therapeutic effects of HG/[6]-GR on haemodynamics, serum indices and histopathology of cardiac tissue were analysed. Cell mitochondrial energy phenotype and cell mitochondrial fuel flex were measured by a Seahorse XFp analyser. Moreover, UHPLC-Q-TOF/MS was performed to explore the potential metabolites affecting the therapeutic effects and pathological process of CHF. To further investigate the potential mechanism of HG/[6]-GR, mRNA and protein expression levels of RAAS and LKB1/AMPK/Sirt1-related pathways were detected. The present data demonstrated that the therapeutic effects of HG/[6]-GR combination on CHF were presented in ameliorating heart function, down-regulation serum indices and alleviating histological damage of heart tissue. Besides, HG/[6]-GR has an effect on increasing cell viability of H9c2 cells, ameliorating DOX-induced mitochondrial dysfunction and elevating mitochondrial OCR and ECAR value. Metabolomics analyses showed that the therapeutic effect of HG/[6]-GR combination is mainly associated with the regulation of fatty acid metabolites and energy metabolism pathways. Furthermore, HG/[6]-GR has an effect on down-regulating RAAS pathway-related molecules and up-regulating LKB1/AMPKα/Sirt1-related pathway. The present work demonstrates that HG/[6]-GR prevented DOX-induced cardiotoxicity via the cardiotonic effect and promoting myocardial energy metabolism through the LKB1/AMPKα/Sirt1 signalling pathway, which promotes mitochondrial energy metabolism and protects against CHF.
Collapse
Affiliation(s)
- Jianxia Wen
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Department of PharmacyThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Lu Zhang
- College of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Jian Wang
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Jiabo Wang
- Integrative Medical CenterThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Lifu Wang
- Department of Traditional Chinese MedicineThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Ruilin Wang
- Department of Traditional Chinese MedicineThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Ruisheng Li
- Research Center for Clinical and Translational MedicineThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Honghong Liu
- Department of Traditional Chinese MedicineThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Shizhang Wei
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Department of PharmacyThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Haotian Li
- Department of PharmacyThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Wenjun Zou
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yanling Zhao
- Department of PharmacyThe Fifth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|