1
|
Wu X, Bu J, Niu X, Mahan Y, Zhang Y, Zhang X, Aizezi A, Yu X, Zhang S, Zhou L. Exploring gene expression, alternative splicing events and RNA-binding proteins changes in PBMC from patients with hyperuricemia. Gene 2025; 942:149256. [PMID: 39828062 DOI: 10.1016/j.gene.2025.149256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
AIM The objective of this study was to examine the transcriptomic profile changes in hyperuricemia (HUA) and to investigate the pathogenic mechanisms and biomarkers of HUA from a transcriptomic perspective. METHODS In this study, three patients with HUA were randomly selected and matched with three healthy controls. Six participants provided peripheral blood mononuclear cells (PBMCs) for analysis. RNA sequencing (RNA-seq) was used to identify differentially expressed genes (DEGs) and alternative splicing events (ASEs). Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the functions and pathways of the DEGs and ASEs. Additionally, a co-expression network was constructed to analyze the regulation of DEGs and ASEs by RNA-binding protein (RBP) genes. In addition, important DEGs and ASEs were validated using quantitative real-time PCR (qPCR). RESULTS There were 633 DEGs identified, 348 up-regulated DEGs and 285 down-regulated DEGs, including RGS18, CAVIN2, GZMH, GNLY and MT-TV, which were mainly enriched in inflammatory and immune-related biological processes. A total of 1542 ASEs were significantly differentially expressed in HUA, of which LTB4R and ENTPD4 were closely associated with the development of HUA. In addition, 15 RBP genes were detected to be differentially expressed in HUA. Three RBP genes (IFIT1, IFFIT2, and IFIT3) were highly associated with immunoinflammation and affected HUA by modulating downstream immune responses, inflammatory response-associated DEGs, and ASEs. The selected five DEGs and two ASEs were verified by qPCR, which was consistent with the results of RNA sequencing. CONCLUSIONS In summary, the findings indicate that HUA is associated with significant changes in inflammatory and immune response-related genes (RGS18, CAVIN2, GZMH, GNLY, MT-TV, LTB4R, ENTPD4, IFIT1, IFFIT2, and IFIT3). These findings suggest potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xuanxia Wu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Juan Bu
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoshan Niu
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yeledan Mahan
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yanmin Zhang
- Scientific Research and Education Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaoling Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Abulaiti Aizezi
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xia Yu
- Department of General Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Shengnan Zhang
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Ling Zhou
- Medical and Translational Research Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
McCarrick S, Malmborg V, Gren L, Danielsen PH, Tunér M, Palmberg L, Broberg K, Pagels J, Vogel U, Gliga AR. Pulmonary exposure to renewable diesel exhaust particles alters protein expression and toxicity profiles in bronchoalveolar lavage fluid and plasma of mice. Arch Toxicol 2025; 99:797-814. [PMID: 39739031 PMCID: PMC11775017 DOI: 10.1007/s00204-024-03915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels. Using proximity extension assay (Olink), 92 proteins linked to inflammation, cardiovascular function, and cancer were analyzed in bronchoalveolar lavage fluid (BALF) and plasma in mice 1 day after pulmonary exposure to exhaust particles at doses of 6, 18, and 54 µg/mouse. Particles were generated from combustion of renewable (rapeseed methyl ester, RME13, hydrogen-treated vegetable oil, HVO13; both at 13% O2 engine intake) and petroleum diesel (MK1 ultra-low-sulfur diesel at 13% and 17% O2 intake; DEP13 and DEP17). We identified positive dose-response relationships between exposure and proteins in BALF using linear models: 33 proteins for HVO13, 24 for DEP17, 22 for DEP13, and 12 for RME13 (p value < 0.05). In BALF, 11 proteins indicating cytokine signaling and inflammation (CCL2, CXCL1, CCL3L3, CSF2, IL1A, CCL20, TPP1, GDNF, LGMN, ITGB6, PDGFB) were common for all exposures. Several proteins in BALF (e.g., CCL2, CXCL1, CCL3L3, CSF2, IL1A) correlated (rs ≥ 0.5) with neutrophil cell count and DNA damage in BAL cells. Interestingly, plasma protein profiles were only affected by RME13 and, to lesser extent, by DEP13. Overall, we identified inflammation-related changes in the BALF as a common toxic mechanism for the combustion particles. Our protein-based approach enables sensitive detection of inflammatory protein changes across different matrices enhancing understanding of exhaust particle toxicity.
Collapse
Affiliation(s)
- Sarah McCarrick
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelm Malmborg
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Louise Gren
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | | | - Martin Tunér
- Division of Combustion Engines, Lund University, Lund, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Joakim Pagels
- Division of Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Gurung RL, Zheng H, Koh HWL, M Y, Liu JJ, Liu S, Chan C, Ang K, Tan CSH, Sobota RM, Subramaniam T, Sum CF, Lim SC. Plasma Proteomics of Diabetic Kidney Disease Among Asians With Younger-Onset Type 2 Diabetes. J Clin Endocrinol Metab 2025; 110:e239-e248. [PMID: 38626182 PMCID: PMC11747753 DOI: 10.1210/clinem/dgae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
CONTEXT Patients with younger onset of type 2 diabetes (YT2D) have increased risk for kidney failure compared to those with late onset. However, the mechanism of diabetic kidney disease (DKD) progression in this high-risk group is poorly understood. OBJECTIVE This work aimed to identify novel biomarkers and potential causal proteins associated with DKD progression in patients with YT2D. METHODS Among YT2D (T2D onset age <40 years), 144 DKD progressors (cases) were matched for T2D onset age, sex, and ethnicity with 292 nonprogressors (controls) and divided into discovery and validation sets. DKD progression was defined as decline of estimated glomerular filtration rate (eGFR) of 3 mL/min/1.73 m2 or greater or 40% decline in eGFR from baseline. A total of 1472 plasma proteins were measured through a multiplex immunoassay that uses a proximity extension assay technology. Multivariable logistic regression was used to identify proteins associated with DKD progression. Mendelian randomization (MR) was used to evaluate causal relationship between plasma proteins and DKD progression. RESULTS Forty-two plasma proteins were associated with DKD progression, independent of traditional cardiorenal risk factors, baseline eGFR, and urine albumin-to-creatinine ratio. The proteins identified were related to inflammatory and remodeling biological processes. Our findings suggest angiogenin as one of the top signals (odds ratio = 5.29; 95% CI, 2.39-11.73; P = 4.03 × 10-5). Furthermore, genetically determined plasma angiogenin level was associated with increased odds of DKD progression. CONCLUSION Large-scale proteomic analysis identified novel proteomic biomarkers for DKD progression in YT2D. Genetic evidence suggest a causal role of plasma angiogenin in DKD progression.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore 169857
| | - Huili Zheng
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | | | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Clara Chan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Clara Si Hua Tan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | | | | | - Chee Fang Sum
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore 768828
- Institute of Molecular and Cell Biology, Singapore 138673
- Diabetes Centre, Admiralty Medical Centre, Singapore 730676
- Saw Swee Hock School of Public Heath, Singapore 117549
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232
| |
Collapse
|
4
|
Bhatti R, Sato PY. Exploring the role of pyroptosis in the pathogenicity of heart disease. Front Physiol 2024; 15:1357285. [PMID: 38645692 PMCID: PMC11026861 DOI: 10.3389/fphys.2024.1357285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cell death is an essential cellular mechanism that ensures quality control and whole-body homeostasis. Various modes of cell death have been studied and detailed. Unbalanced cell death can lead to uncontrolled cell proliferation (i.e., tumors) or excessive loss of cells (i.e., ischemia injury tissue loss). Thus, it is imperative for modes of cell death to be balanced and controlled. Here, we will focus on a recent mode of cell death called pyroptosis. While extensive studies have shown the role of this route of cell death in macrophages and monocytes, evidence for pyroptosis have expanded to encompass other pathologies, including cancer and cardiac diseases. Herein, we provide a brief review on pyroptosis and discuss current gaps in knowledge and scientific advances in cardiac pyroptosis in recent years. Lastly, we provide conclusions and prospective on the relevance to various cardiac diseases.
Collapse
Affiliation(s)
| | - Priscila Y. Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Luissint AC, Fan S, Nishio H, Lerario AM, Miranda J, Hilgarth RS, Cook J, Nusrat A, Parkos CA. CXADR-Like Membrane Protein Regulates Colonic Epithelial Cell Proliferation and Prevents Tumor Growth. Gastroenterology 2024; 166:103-116.e9. [PMID: 37716376 DOI: 10.1053/j.gastro.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND & AIMS CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-β-catenin pathways. CONCLUSIONS These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.
Collapse
Affiliation(s)
| | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Hikaru Nishio
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Jael Miranda
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Roland S Hilgarth
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jonas Cook
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
He L, Lu F, Zhang F, Fan S, Xu J. Mechanism of lncRNA HOTAIR in attenuating cardiomyocyte pyroptosis in mice with heart failure via the miR-17-5p/RORA axis. Exp Cell Res 2023; 433:113806. [PMID: 37844792 DOI: 10.1016/j.yexcr.2023.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with significant morbidity and mortality. Dysregulation of long non-coding RNA (lncRNA) has been implicated in the pathogenesis of HF. The present study aims to investigate the role of lncRNA HOX transcript antisense RNA (HOTAIR) in cardiomyocyte pyroptosis in a murine HF model. A murine HF model was established through transverse aortic contraction surgery, and an in vitro HF cell model was developed by treating HL-1 cells with H2O2. HOTAIR was overexpressed in TAC mice and HL-1 cells via pcDNA3.1-HOTAIR transfection. Cardiac function was assessed in TAC mice, and myocardial changes were evaluated using HE staining. The expression of NLRP3 was examined by immunohistochemistry. Myocardial injury markers and pyroptosis-related inflammatory cytokines were quantified using ELISA. Protein levels of NLRP3, cleaved-caspase-1, and GSDMD-N were analyzed by Western blot. Dual-luciferase assays and RNA immunoprecipitation were employed to confirm the binding interactions between HOTAIR and miR-17-5p, miR-17-5p and RORA. Functional rescue experiments were conducted by overexpressing miR-17-5p or silencing RORA in HL-1 cells. HOTAIR exhibited reduced expression in TAC mice and H2O2-induced cardiomyocytes. Overexpression of HOTAIR ameliorated cardiac dysfunction, reduced myocardial pathological injury, enhanced cardiomyocyte viability, and decreased myocardial injury and pyroptosis. HOTAIR interacted with miR-17-5p to repress RORA transcription. Overexpression of miR-17-5p or silencing of RORA abolished the inhibitory effect of HOTAIR overexpression on cardiomyocyte pyroptosis. In conclusion, HOTAIR competitively bound to miR-17-5p, relieving its inhibition of RORA transcription and leading to increased RORA expression and suppressed cardiomyocyte pyroptosis in HF models.
Collapse
Affiliation(s)
- Le He
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Fengmin Lu
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Fan Zhang
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Shaobo Fan
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Jing Xu
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
7
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
8
|
Fan Y, Guan B, Xu J, Zhang H, Yi L, Yang Z. Role of toll-like receptor-mediated pyroptosis in sepsis-induced cardiomyopathy. Biomed Pharmacother 2023; 167:115493. [PMID: 37734261 DOI: 10.1016/j.biopha.2023.115493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Sepsis, a life-threatening dysregulated status of the host response to infection, can cause multiorgan dysfunction and mortality. Sepsis places a heavy burden on the cardiovascular system due to the pathological imbalance of hyperinflammation and immune suppression. Myocardial injury and cardiac dysfunction caused by the aberrant host responses to pathogens can lead to cardiomyopathy, one of the most critical complications of sepsis. However, many questions about the specific mechanisms and characteristics of this complication remain to be answered. The causes of sepsis-induced cardiac dysfunction include abnormal cardiac perfusion, myocardial inhibitory substances, autonomic dysfunction, mitochondrial dysfunction, and calcium homeostasis dysregulation. The fight between the host and pathogens acts as the trigger for sepsis-induced cardiomyopathy. Pyroptosis, a form of programmed cell death, plays a critical role in the progress of sepsis. Toll-like receptors (TLRs) act as pattern recognition receptors and participate in innate immune pathways that recognize damage-associated molecular patterns as well as pathogen-associated molecular patterns to mediate pyroptosis. Notably, pyroptosis is tightly associated with cardiac dysfunction in sepsis and septic shock. In line with these observations, induction of TLR-mediated pyroptosis may be a promising therapeutic approach to treat sepsis-induced cardiomyopathy. This review focuses on the potential roles of TLR-mediated pyroptosis in sepsis-induced cardiomyopathy, to shed light on this promising therapeutic approach, thus helping to prevent and control septic shock caused by cardiovascular disorders and improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Yixuan Fan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Jianxing Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Liang Yi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhixu Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive Care Unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH, Hwa J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol 2023; 69:101809. [PMID: 37478801 PMCID: PMC10528349 DOI: 10.1016/j.smim.2023.101809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1β, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Meiling Su
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, the Hong Kong Special Administrative Region of China
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Hao KL, Zhai QC, Gu Y, Chen YQ, Wang YN, Liu R, Yan SP, Wang Y, Shi YF, Lei W, Shen ZY, Xu Y, Hu SJ. Disturbance of suprachiasmatic nucleus function improves cardiac repair after myocardial infarction by IGF2-mediated macrophage transition. Acta Pharmacol Sin 2023; 44:1612-1624. [PMID: 36747104 PMCID: PMC10374569 DOI: 10.1038/s41401-023-01059-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Suprachiasmatic nucleus (SCN) in mammals functions as the master circadian pacemaker that coordinates temporal organization of physiological processes with the environmental light/dark cycles. But the causative links between SCN and cardiovascular diseases, specifically the reparative responses after myocardial infarction (MI), remain largely unknown. In this study we disrupted mouse SCN function to investigate the role of SCN in cardiac dysfunction post-MI. Bilateral ablation of the SCN (SCNx) was generated in mice by electrical lesion; myocardial infarction was induced via ligation of the mid-left anterior descending artery (LAD); cardiac function was assessed using echocardiography. We showed that SCN ablation significantly alleviated MI-induced cardiac dysfunction and cardiac fibrosis, and promoted angiogenesis. RNA sequencing revealed differentially expressed genes in the heart of SCNx mice from D0 to D3 post-MI, which were functionally associated with the inflammatory response and cytokine-cytokine receptor interaction. Notably, the expression levels of insulin-like growth factor 2 (Igf2) in the heart and serum IGF2 concentration were significantly elevated in SCNx mice on D3 post-MI. Stimulation of murine peritoneal macrophages in vitro with serum isolated from SCNx mice on D3 post-MI accelerated the transition of anti-inflammatory macrophages, while antibody-mediated neutralization of IGF2 receptor blocked the macrophage transition toward the anti-inflammatory phenotype in vitro as well as the corresponding cardioprotective effects observed in SCNx mice post-MI. In addition, disruption of mouse SCN function by exposure to a desynchronizing condition (constant light) caused similar protective effects accompanied by elevated IGF2 expression on D3 post-MI. Finally, mice deficient in the circadian core clock genes (Ckm-cre; Bmal1f/f mice or Per1/2 double knockout) did not lead to increased serum IGF2 concentration and showed no protective roles in post-MI, suggesting that the cardioprotective effect observed in this study was mediated particularly by the SCN itself, but not by self-sustained molecular clock. Together, we demonstrate that inhibition of SCN function promotes Igf2 expression, which leads to macrophage transition and improves cardiac repair post-MI.
Collapse
Affiliation(s)
- Kai-Li Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Qiao-Cheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yue-Qiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Ya-Ning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shi-Ping Yan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Fang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Shi-Jun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
11
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
12
|
Rathjen FG, Jüttner R. The IgSF Cell Adhesion Protein CLMP and Congenital Short Bowel Syndrome (CSBS). Int J Mol Sci 2023; 24:5719. [PMID: 36982793 PMCID: PMC10056934 DOI: 10.3390/ijms24065719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The immunoglobulin-like cell adhesion molecule CLMP is a member of the CAR family of cell adhesion proteins and is implicated in human congenital short-bowel syndrome (CSBS). CSBS is a rare but very severe disease for which no cure is currently available. In this review, we compare data from human CSBS patients and a mouse knockout model. These data indicate that CSBS is characterized by a defect in intestinal elongation during embryonic development and impaired peristalsis. The latter is driven by uncoordinated calcium signaling via gap junctions, which is linked to a reduction in connexin43 and 45 levels in the circumferential smooth muscle layer of the intestine. Furthermore, we discuss how mutations in the CLMP gene affect other organs and tissues, including the ureter. Here, the absence of CLMP produces a severe bilateral hydronephrosis-also caused by a reduced level of connexin43 and associated uncoordinated calcium signaling via gap junctions.
Collapse
Affiliation(s)
- Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany;
| | | |
Collapse
|
13
|
Yanpiset P, Maneechote C, Sriwichaiin S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury: Cumulative evidence for future cardioprotective strategies. Acta Pharm Sin B 2023; 13:29-53. [PMID: 36815034 PMCID: PMC9939317 DOI: 10.1016/j.apsb.2022.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction (MI) and myocardial ischemia/reperfusion (MI/R) injury. Due to the limited regenerative ability of cardiomyocytes, understanding the mechanisms of cardiomyocyte death is necessary. Pyroptosis, one of the regulated programmed cell death pathways, has recently been shown to play important roles in MI and MI/R injury. Pyroptosis is activated by damage-associated molecular patterns (DAMPs) that are released from damaged myocardial cells and activate the formation of an apoptosis-associated speck-like protein containing a CARD (ASC) interacting with NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), resulting in caspase-1 cleavage which promotes the activation of Gasdermin D (GSDMD). This pathway is known as the canonical pathway. GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11. Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury. Although the effects of MI or MI/R injury on pyroptosis have previously been discussed, knowledge concerning the roles of GSDMD in these settings remains limited. In this review, the evidence from in vitro, in vivo, and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed. Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- Panat Yanpiset
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand,Corresponding author. Tel.: +66 53 935329; fax: +66 53 935368.
| |
Collapse
|
14
|
Current knowledge of pyroptosis in heart diseases. J Mol Cell Cardiol 2022; 171:81-89. [PMID: 35868567 DOI: 10.1016/j.yjmcc.2022.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Pyroptosis is a form of pro-inflammatory, necrotic cell death mediated by proteins of the gasdermin family. Various heart diseases, including myocardial ischemia/reperfusion injury, myocardial infarction, and heart failure, involve cardiomyocyte and non-myocyte pyroptosis. Cardiomyocyte pyroptosis also causes the release of pro-inflammatory cytokines. Recent studies have confirmed that pyroptosis is predominantly triggered by both the canonical and non-canonical inflammasome pathways, which independently facilitate caspase-1 or caspase-11/4/5 activation and gasdermin D (GSDMD) cleavage. Cardiac fibroblast and myeloid cell pyroptosis also contributes to the pathogenesis and development of heart diseases. This review summarizes the recent studies on pyroptosis in heart diseases and discusses the associated therapeutic targets.
Collapse
|
15
|
Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-Induced Inflammation and Tissue Damage. J Mol Biol 2022; 434:167301. [PMID: 34653436 PMCID: PMC8844146 DOI: 10.1016/j.jmb.2021.167301] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell deaths are pathways involving cells playing an active role in their own destruction. Depending on the signaling system of the process, programmed cell death can be divided into two categories, pro-inflammatory and non-inflammatory. Pyroptosis is a pro-inflammatory form of programmed cell death. Upon cell death, a plethora of cytokines are released and trigger a cascade of responses from the neighboring cells. The pyroptosis process is a double-edged sword, could be both beneficial and detrimental in various inflammatory disorders and disease conditions. A physiological outcome of these responses is tissue damage, and sometimes death of the host. In this review, we focus on the inflammatory response triggered by pyroptosis, and resulting tissue damage in selected organs.
Collapse
Affiliation(s)
- Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA.
| | - Ling Yang
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Ankit Pandeya
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Jian Cui
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.,Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou,China
| | - Zhenyu Li
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
16
|
Chen G, Xu Y, Fan R, Liu Y, Yao Y, Jiang H, Wu Q, Li L, Chen W, Chen X. IKKε protects against starvation-induced NLRP3 inflammasome and pyroptosis in H9c2 cells by alleviating mitochondrial injury. Biochem Biophys Res Commun 2021; 589:267-274. [PMID: 34933200 DOI: 10.1016/j.bbrc.2021.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022]
Abstract
The deprivation of myocardial nutrition causes cardiomyocyte death and disturbance of energy metabolism. IKKε plays an important regulatory role in many biological events such as inflammation, redox reaction, cell death, etc. However, the more in-depth mechanism by which IKKε contributes to cardiomyocytes death in nutrition deprivation remains poorly understood. IKKε expression was knocked down by siRNA in H9c2 cells, and cells were cultured under starvation conditions to simulate ischemic conditions. Starvation triggered greater NLRP3 activation, accompanied by more IL-1β, IL-18 and caspase-1 release in the siIKKε H9c2 cells compared with the control H9c2 cells. Western blot and immunofluorescence showed that the IKKε konckdown promoted NLRP3 expressions and ROS release under starvation conditions. Furthermore, electron micrography and JC-1 analysis revealed that IKKε konckdown resulted in aggravated mitochondrial damage and more mitochondrial ROS (mtROS) released in vitro. Notably, Western blot analysis showed that IKKε deficiency activated the TBK1 and IRF3 signaling pathways to promote pyroptosis in vitro. Collectively, our results indicate that IKKε protects against cardiomyocyte injury by reducing mitochondrial damage and NLRP3 expression following nutrition deprivation via regulation of the TBK1/IRF3 signaling pathway. This study further revealed the mechanism of IKKε in inflammation and myocardial nutrition deprivation.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Rui Fan
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210006, China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hongwei Jiang
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Qiyong Wu
- Department of Thoracic and Cardiovascular Surgery, Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, 213000, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
17
|
Zheng X, Chen W, Gong F, Chen Y, Chen E. The Role and Mechanism of Pyroptosis and Potential Therapeutic Targets in Sepsis: A Review. Front Immunol 2021; 12:711939. [PMID: 34305952 PMCID: PMC8293747 DOI: 10.3389/fimmu.2021.711939] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/22/2021] [Indexed: 01/15/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Recently was been found that pyroptosis is a unique form of proinflammatory programmed death, that is different from apoptosis. A growing number of studies have investigated pyroptosis and its relationship with sepsis, including the mechanisms, role, and relevant targets of pyroptosis in sepsis. While moderate pyroptosis in sepsis can control pathogen infection, excessive pyroptosis can lead to a dysregulated host immune response and even organ dysfunction. This review provides an overview of the mechanisms and potential therapeutic targets underlying pyroptosis in sepsis identified in recent decades, looking forward to the future direction of treatment for sepsis.
Collapse
Affiliation(s)
| | | | | | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang E, Liu Y, Han C, Fan C, Wang L, Chen W, Du Y, Han D, Arnone B, Xu S, Wei Y, Mobley J, Qin G. Visualization and Identification of Bioorthogonally Labeled Exosome Proteins Following Systemic Administration in Mice. Front Cell Dev Biol 2021; 9:657456. [PMID: 33898459 PMCID: PMC8058422 DOI: 10.3389/fcell.2021.657456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Exosomes transport biologically active cargo (e.g., proteins and microRNA) between cells, including many of the paracrine factors that mediate the beneficial effects associated with stem-cell therapy. Stem cell derived exosomes, in particular mesenchymal stem cells (MSCs), have been shown previously to largely replicate the therapeutic activity associated with the cells themselves, which suggests that exosomes may be a useful cell-free alternative for the treatment of cardiovascular disorders. However, the mechanisms that govern how exosomes home to damaged cells and tissues or the uptake and distribution of exosomal cargo are poorly characterized, because techniques for distinguishing between exosomal proteins and proteins in the targeted tissues are lacking. Here, we report the development of an in vivo model that enabled the visualization, tracking, and quantification of proteins from systemically administered MSC exosomes. The model uses bioorthogonal chemistry and cell-selective metabolic labeling to incorporate the non-canonical amino acid azidonorleucine (ANL) into the MSC proteome. ANL incorporation is facilitated via expression of a mutant (L274G) methionyl-tRNA-synthetase (MetRS∗) and subsequent incubation with ANL-supplemented media; after which ANL can be covalently linked to alkyne-conjugated reagents (e.g., dyes and resins) via click chemistry. Our results demonstrate that when the exosomes produced by ANL-treated, MetRS∗-expressing MSCs were systemically administered to mice, the ANL-labeled exosomal proteins could be accurately and reliably identified, isolated, and quantified from a variety of mouse organs, and that myocardial infarction (MI) both increased the abundance of exosomal proteins and redistributed a number of them from the membrane fraction of intact hearts to the cytosol of cells in infarcted hearts. Additionally, we found that Desmoglein-1c is enriched in MSC exosomes and taken up by ischemic myocardium. Collectively, our results indicate that this newly developed bioorthogonal system can provide crucial insights into exosome homing, as well as the uptake and biodistribution of exosomal proteins.
Collapse
Affiliation(s)
- Eric Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yanwen Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chaoshan Han
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chengming Fan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Lu Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wangping Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yipeng Du
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Dunzheng Han
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Baron Arnone
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Shiyue Xu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, United States
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|