1
|
Wang W, Wang J, Ren XX, Yue HL, Li Z. Effects of invigorating-spleen and anticancer prescription on extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway in colon cancer mice model. World J Gastrointest Oncol 2024; 16:4468-4476. [DOI: 10.4251/wjgo.v16.i11.4468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Colon cancer (CC) is one of the most common malignant tumors in the gastrointestinal system. Overall, CC had the third highest incidence but the second highest mortality rate globally in 2020. Nowadays, CC is mainly treated with capecitabine chemotherapy regimen, supplemented by radiotherapy, immunotherapy and targeted therapy, but there are still limitations, so Chinese medicine plays an important role.
AIM To investigate the effects of invigorating-spleen and anticancer prescription (ISAP) on body weight, tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway in CC mice model.
METHODS The CC mice model were established and the mice were randomly divided into 5 groups, including the control group, capecitabine group, the low-dose, medium-dose and high-dose groups of ISAP, with 8 mice in each group, respectively. After 2 weeks of intervention, the body weight and tumor inhibition rate of mice were observed, and the expression of RAS, ERK, phosphorylated ERK (p-ERK), C-MYC and matrix metalloproteinase 2 (MMP2) proteins in the tissues of tumors were detected.
RESULTS Compared with the control group, the differences of body weight before and after treatment was much smaller in the groups of ISAP, with the smallest difference in the high-dose group of ISAP, while the capecitabine group had the greatest difference, indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice. The expression of RAS protein was decreased in the low- and medium-dose groups of ISAP, and the change of p-ERK was significant in the medium- and high- dose groups of ISAP. MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP. There were no significant changes in ERK in the ISAP group compared to the capecitabine group, while RAS, MMP2, and C-MYC protein expression were reduced in the ISAP group. The expression level of C-MYC protein decreased after treated with ISAP, and the decrease was the most significant in the medium-dose group of ISAP.
CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice, and could maintain the general conditions, physical strength and body weight of mice. The expression levels of RAS, p-ERK, MMP2 and c-myc were also decreased to a certain extent. By inhibiting the expression of upstream proteins, the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased. Therefore, it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
Collapse
Affiliation(s)
- Wei Wang
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, China
| | - Jing Wang
- The First Clinical School, Liaoning University of Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Xiu-Xiu Ren
- The First Clinical School, Liaoning University of Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Hai-Long Yue
- The First Clinical School, Liaoning University of Chinese Medicine, Shenyang 110847, Liaoning Province, China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
2
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03451-7. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Dehghanzad M, Mohammadi M, Nejati M, Pouremamali F, Maroufi NF, Akbarzadeh M, Samadi N, Nouri M. The potential therapeutic effect of melatonin in oxaliplatin combination therapy against chemoresistant colorectal cancer cells. Mol Biol Rep 2024; 51:348. [PMID: 38401018 DOI: 10.1007/s11033-024-09316-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/02/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Oxaliplatin is one of the main therapeutics in colorectal cancer (CRC) chemotherapy. However, in light of multidrug resistance (MDR) phenotype development, the efficacy of oxaliplatin has decreased. This study aimed to assess the potential therapeutic effect of melatonin in oxaliplatin combination therapy for drug-resistant colorectal cancer cells. METHODS AND RESULTS Initially, the oxaliplatin-resistant cell line was created of LS174T (LS174T/DR) by using the oxaliplatin IC50 concentration and resting cycles. MTT assays and flow cytometry were applied for assessing cell viability and apoptotic cells. The mRNA expression level of Bax, Bcl2, MT1, MT2, and ABCB1 as well as protein levels of ABCB1, Bcl2, BAX were measured by the qRT-PCR and western blot techniques respectively. P-gp activity was assessed by Rho123 staining. The IC50 concentration of oxaliplatin in resistant cells was increased from 500.7 ± 0.2 nM to 7119 ± 0.1 nM. Bcl2, MT1, MT2, and ABCB1 mRNA plus protein expression levels of Bcl2 and ABCB1 were significantly reduced in resistant cells, along with a marked increase in Bax mRNA and protein levels compared to parental cells. Rho 123 staining revealed a marked reduction in P-gp activities in the combination-treated group compared to the oxaliplatin-treated group. CONCLUSIONS The results of cytotoxicity assays, MTT, and flow cytometry revealed that the combination of melatonin and oxaliplatin exerts synergistic effects on induction of oxaliplatin's cytotoxicity in CRC. Our research suggests that combining the treatments of melatonin and oxaliplatin may be considered as a new approach to overcoming oxaliplatin resistance in CRC patients.
Collapse
Affiliation(s)
- Masoumeh Dehghanzad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Mohammadi
- Department of Medical Laboratory Science, Faculty of Medicine, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohaddeseh Nejati
- Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farhad Pouremamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
- Department of Human Genetics, McGill University, Montreal, Canada
- Victor Philip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, Canada
| | - Maryam Akbarzadeh
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Naser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran
| | - Mohammad Nouri
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Gholgasht Ave, Tabriz, Iran.
| |
Collapse
|
4
|
Yi YJ, Tang H, Pi PL, Zhang HW, Du SY, Ge WY, Dai Q, Zhao ZY, Li J, Sun Z. Melatonin in cancer biology: pathways, derivatives, and the promise of targeted delivery. Drug Metab Rev 2024; 56:62-79. [PMID: 38226647 DOI: 10.1080/03602532.2024.2305764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/β-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.
Collapse
Affiliation(s)
- Yu-Juan Yi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Tang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peng-Lai Pi
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | | | - Si-Yu Du
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wei-Ye Ge
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Qi Dai
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zi-Yan Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jia Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zheng Sun
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Wang L, Song R, Ma M, Chen Y, Jiang Y, Li J, Yang Z, Zhang L, Jing M, Wang X, Zhang M, Fan J. Inhibition of autophagy can promote the apoptosis of bladder cancer cells induced by SC66 through the endoplasmic reticulum stress pathway. Chem Biol Interact 2023; 384:110725. [PMID: 37741534 DOI: 10.1016/j.cbi.2023.110725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Bladder cancer is among the ten most prevalent cancer types worldwide, and its prognosis has not improved significantly in the past three decades because of cognitive limitations in the molecular mechanisms that drive the malignant progression of bladder cancer. Therefore, there is an urgent need to identify new therapeutic drugs or molecular targets to improve the prognosis of patients with bladder cancer. SC66, a novel allosteric inhibitor of AKT, has recently been reported to exert potent anticancer effects on various cancer cells. However, the mechanisms underlying its anticancer effects in bladder cancer remain largely unknown. Consequently, this study aimed to conduct a series of molecular and cellular biology experiments to verify the anticancer effect and potential mechanism of action of SC66 in bladder cancer in vitro. A xenograft tumor model was established to confirm its anticancer role in vivo. Our results showed that SC66 inhibited cell proliferation, triggered mitochondria-mediated apoptosis, and initiated autophagy in bladder cancer cells dose-dependently. In addition, our results suggested that SC66-caused apoptosis and autophagy were endoplasmic reticulum stress-dependent. Interestingly, the activation of autophagy can partially protect bladder cancer cells from apoptosis under endoplasmic reticulum stress induced by SC66 treatment. This study shows that SC66 exerts its anticancer impact on bladder cancer by inhibiting cell proliferation and inducing apoptosis. It also reveals that inhibiting autophagy can increase the cytotoxic effects of SC66 in bladder cancer. Overall, this is the first study on the anticancer effect of SC66 mediated by the endoplasmic reticulum stress pathway and the first report on the AKT-independent anticancer mechanism of SC66 in bladder cancer. Conclusively, exploring the relationship between apoptosis, autophagy, and endoplasmic reticulum stress induced by SC66 indicates that SC66 is a promising novel agent for patients with bladder cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rundong Song
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunzhong Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianpeng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zezhong Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.
| |
Collapse
|
6
|
Shi X, Li H, Dan Z, Shu C, Zhu R, Yang Q, Wang Y, Zhu H. Melatonin Potentiates Sensitivity to 5-Fluorouracil in Gastric Cancer Cells by Upregulating Autophagy and Downregulating Myosin Light-Chain Kinase. J Cancer 2023; 14:2608-2618. [PMID: 37779875 PMCID: PMC10539390 DOI: 10.7150/jca.85353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/23/2023] [Indexed: 10/03/2023] Open
Abstract
5-Fluorouracil is an effective chemotherapeutic drug for gastric cancer. However, the acquisition of chemotherapeutic resistance remains a challenge in treatment. Melatonin can enhance the therapeutic effect of 5-fluorouracil; however, the underlying mechanisms are not well understood. We investigated the effects of combinations of melatonin and 5-fluorouracil on the proliferation, migration and invasion of gastric cancer cells. Melatonin significantly potentiated the 5-fluorouracil-mediated inhibition of proliferation, migration and invasion in gastric cancer cells, which potentiates sensitivity to 5-FU by promoting the activation of Beclin-1-dependent autophagy and targeting the myosin light-chain kinase (MLCK) signaling pathway. Previous studies have shown that autophagy might be associated with the MLCK signaling pathway. The autophagy inhibitor, 3-methyladenine, effectively rescued the migratory and invasive capabilities of gastric cancer cells, while also reducing expression level of MLCK and the phosphorylation level of MLC. This indicates that autophagy is involved in tumor metastasis, which may be related to inhibition of the MLCK signaling pathway. Our findings indicate that melatonin can improve the effectiveness of 5-fluorouracil in gastric cancer and could be used as a supplemental agent in the treatment of gastric cancer with 5-fluorouracil.
Collapse
Affiliation(s)
- Xiaorui Shi
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Zhangyong Dan
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
| | - Chuanlin Shu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
| | - Rumeng Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
| | - Qingling Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei 230032, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui 233030, China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Kan L, Yang M, Zhang H. Long noncoding RNA PSMA3-AS1 functions as a competing endogenous RNA to promote gastric cancer progression by regulating the miR-329-3p/ALDOA axis. Biol Direct 2023; 18:36. [PMID: 37403106 PMCID: PMC10318671 DOI: 10.1186/s13062-023-00392-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
LncRNA PSMA3-AS1 functions as an oncogene in several cancers, including ovarian cancer, lung cancer, and colorectal cancer. However, its role in gastric cancer (GC) progression remains unclear. In this study, the levels of PSMA3-AS1, miR-329-3p, and aldolase A (ALDOA) in 20 paired human GC tissues and adjacent nontumorous tissues were measured by real-time PCR. GC cells were transfected with recombinant plasmid carrying full-length PSMA3-AS1 or shRNA targeting PSMA3-AS1. The stable transfectants were selected by G418. Then, the effects of PSMA3-AS1 knockdown or overexpression on GC progression in vitro and in vivo were evaluated. The results showed that PSMA3-AS1 was highly expressed in human GC tissues. Stable knockdown of PSMA3-AS1 significantly restrained proliferation/migration/invasion, enhanced cell apoptosis, and induced oxidative stress in vitro. Tumor growth and matrix metalloproteinase expression in tumor tissues were markedly inhibited, while oxidative stress was enhanced in nude mice after stable PSMA3-AS1 knockdown. Additionally, PSMA3-AS1 negatively regulated miR-329-3p while positively regulated ALDOA expression. MiR-329-3p directly targeted ALDOA-3'UTR. Interestingly, miR-329-3p knockdown or ALDOA overexpression partially attenuated the tumor-suppressive effects of PSMA3-AS1 knockdown. Conversely, PSMA3-AS1 overexpression exhibited the opposite effects. PSMA3-AS1 promoted GC progression by regulating the miR-329-3p/ALDOA axis. PSMA3-AS1 might serve as a promising and effective target for GC treatment.
Collapse
Affiliation(s)
- Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Meiqi Yang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Huijing Zhang
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
8
|
Lai CP, Chen YS, Ying TH, Kao CY, Chiou HL, Kao SH, Hsieh YH. Melatonin acts synergistically with pazopanib against renal cell carcinoma cells through p38 mitogen-activated protein kinase-mediated mitochondrial and autophagic apoptosis. Kidney Res Clin Pract 2023; 42:487-500. [PMID: 37165617 PMCID: PMC10407642 DOI: 10.23876/j.krcp.22.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mounting evidence indicates that melatonin has possible activity against different tumors. Pazopanib is an anticancer drug used to treat renal cell carcinoma (RCC). This study tested the anticancer activity of melatonin combined with pazopanib on RCC cells and explored the underlying mechanistic pathways of its action. METHODS The 786-O and A-498 human RCC cell lines were used as cell models. Cell viability and tumorigenesis were detected with the MTT and colony formation assays, respectively. Apoptosis and autophagy were assessed using TUNEL, annexin V/propidium iodide, and acridine orange staining with flow cytometry. The expression of cellular signaling proteins was investigated with western blotting. The in vivo growth of tumors derived from RCC cells was evaluated using a xenograft mouse model. RESULTS Together, melatonin and pazopanib reduced cell viability and colony formation and promoted the apoptosis of RCC cells. Furthermore, the combination of melatonin and pazopanib triggered more mitochondrial, caspase-mediated, and LC3-II-mediated autophagic apoptosis than melatonin or pazopanib alone. The combination also induced higher activation of the p38 mitogen-activated protein kinase (p38MAPK) in the promotion of autophagy and apoptosis by RCC cells than melatonin or pazopanib alone. Finally, tumor xenograft experiments confirmed that melatonin and pazopanib cooperatively inhibited RCC growth in vivo and predicted a possible interaction between melatonin/pazopanib and LC3-II. CONCLUSION The combination of melatonin and pazopanib inhibits the growth of RCC cells by inducing p38MAPK-mediated mitochondrial and autophagic apoptosis. Therefore, melatonin might be a potential adjuvant that could act synergistically with pazopanib for RCC treatment.
Collapse
Affiliation(s)
- Chien-Pin Lai
- Division of Nephrology, Department of Medicine, Chung-Kang Branch, Cheng Ching General Hospital, Taichung City, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Ling Chiou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Shao-Hsuan Kao
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
9
|
Cheng L, Li S, He K, Kang Y, Li T, Li C, Zhang Y, Zhang W, Huang Y. Melatonin regulates cancer migration and stemness and enhances the anti-tumour effect of cisplatin. J Cell Mol Med 2023. [PMID: 37307404 PMCID: PMC10399526 DOI: 10.1111/jcmm.17809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133- cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.
Collapse
Affiliation(s)
- Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Kailun He
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
10
|
Drobnik M, Tomaszewska A, Ryżko J, Kędzia A, Gałdyszyńska M, Piera L, Rydel J, Szymański J, Drobnik J. Melatonin increases collagen content accumulation and Fibroblast Growth Factor-2 secretion in cultured human cardiac fibroblasts. Pharmacol Rep 2023; 75:560-569. [PMID: 37188903 PMCID: PMC10227126 DOI: 10.1007/s43440-023-00490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND The extracellular matrix serves as a scaffold for cardiomyocytes, allowing them to work in accord. In rats, collagen metabolism within a myocardial infarction scar is regulated by melatonin. The present study determines whether melatonin influences matrix metabolism within human cardiac fibroblast cultures and examines the underlying mechanism. METHODS The experiments were performed on cultures of cardiac fibroblasts. The Woessner method, 1,9-dimethylmethylene blue assay, enzyme-linked immunosorbent assay and quantitative PCR were used in the study. RESULTS Melatonin treatment lowered the total cell count within the culture, elevated necrotic and apoptotic cell count as well as augmented cardiac fibroblast proliferation, and increased total, intracellular, and extracellular collagen within the fibroblast culture; it also elevated type III procollagen α1 chain expression, without increasing procollagen type I mRNA production. The pineal hormone did not influence matrix metalloproteinase-2 (MMP-2) release or glycosaminoglycan accumulation by cardiac fibroblasts. Melatonin increased the release of Fibroblast Growth Factor-2 (FGF-2) by human cardiac fibroblasts, but cardiotrophin release was not influenced. CONCLUSION Within human cardiac fibroblast culture, collagen metabolism is regulated by melatonin. The profibrotic effect of melatonin depends on the elevation of procollagen type III gene expression, and this could be modified by FGF-2. Two parallel processes, viz., cell elimination and proliferation, induced by melatonin, lead to excessive replacement of cardiac fibroblasts.
Collapse
Affiliation(s)
- Marta Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Agnieszka Tomaszewska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Joanna Ryżko
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Aleksandra Kędzia
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Małgorzata Gałdyszyńska
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Justyna Rydel
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Lodz, Ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| |
Collapse
|
11
|
Wang Y, Song J, Li Y, Lin C, Chen Y, Zhang X, Yu H. Melatonin inhibited the progression of gastric cancer induced by Bisphenol S via regulating the estrogen receptor 1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115054. [PMID: 37224786 DOI: 10.1016/j.ecoenv.2023.115054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
In recent years, Bisphenol S (BPS) has increasingly been used as an alternative to Bisphenol A (BPA) in food, paper, and personal care products. It is imperative to clarify the relationship between BPS and tumors in order to treat and prevent diseases. This study discovered a new method for predicting tumor correlations between BPS interactive genes. According to analyses conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, interactive genes were primarily found in gastric cancer. Based on gene-targeted prediction and molecular docking, BPS appears to exert potential gastric cancer-causing effects through estrogen receptor 1 (ESR1). In addition, gastric cancer patients' prognosis could be accurately predicted by a bisphenol-based prognostic prediction model. Subsequently, the proliferation and migration abilities of gastric cancer cells were further demonstrated to be significantly enhanced by BPS. Similarly, molecular docking analysis revealed that melatonin is also highly correlated with gastric cancer and BPS. In cell proliferation and migration assays, melatonin and BPS exposure inhibited the invasion abilities of gastric cancer cells compared to BPS-exposure. Our research provided a new direction for the exploration the correlation between cancer and environmental toxicity.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Jintian Song
- Department of Abdominal Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Yangming Li
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China
| | - Chen Lin
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Yan Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Xu Zhang
- Nanjing Medical University, Nanjing, 210029, China
| | - Hui Yu
- Department of Pharmacy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350000, Fujian Province, China.
| |
Collapse
|
12
|
Hu Q, Li Z, Li Y, Deng X, Chen Y, Ma X, Zeng J, Zhao Y. Natural products targeting signaling pathways associated with regulated cell death in gastric cancer: Recent advances and perspectives. Phytother Res 2023. [PMID: 37157181 DOI: 10.1002/ptr.7866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Gastric cancer (GC) is one of the most serious gastrointestinal malignancies with high morbidity and mortality. The complexity of GC process lies in the multi-phenotypic linkage regulation, in which regulatory cell death (RCD) is the core link, which largely dominates the fate of GC cells and becomes a key determinant of GC development and prognosis. In recent years, increasing evidence has been reported that natural products can prevent and inhibit the development of GC by regulating RCDs, showing great therapeutic potential. In order to further clarify its key regulatory characteristics, this review focused on specific expressions of RCDs, combined with a variety of signaling pathways and their crosstalk characteristics, sorted out the key targets and action rules of natural products targeting RCD. It is highlighted that a variety of core biological pathways and core targets are involved in the decision of GC cell fate, including the PI3K/Akt signaling pathway, MAPK-related signaling pathways, p53 signaling pathway, ER stress, Caspase-8, gasdermin D (GSDMD), and so on. Moreover, natural products target the crosstalk of different RCDs by modulating above signaling pathways. Taken together, these findings suggest that targeting various RCDs in GC with natural products is a promising strategy, providing a reference for further clarifying the molecular mechanism of natural products treating GC, which warrants further investigations in this area.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Huang Y, Hou Y, Qu P, Dai Y. Editorial: Combating cancer with natural products: Non-coding RNA and RNA modification. Front Pharmacol 2023; 14:1149777. [PMID: 36843946 PMCID: PMC9950725 DOI: 10.3389/fphar.2023.1149777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yongye Huang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China,*Correspondence: Yongye Huang, ; Yue Hou, ; Peng Qu, ; Yun Dai,
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China,*Correspondence: Yongye Huang, ; Yue Hou, ; Peng Qu, ; Yun Dai,
| | - Peng Qu
- National Cancer Institute, Frederick, MD, United States,*Correspondence: Yongye Huang, ; Yue Hou, ; Peng Qu, ; Yun Dai,
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China,*Correspondence: Yongye Huang, ; Yue Hou, ; Peng Qu, ; Yun Dai,
| |
Collapse
|
14
|
Li R, Bi R, Cai H, Zhao J, Sun P, Xu W, Zhou Y, Yang W, Zheng L, Chen XL, Wang G, Wang D, Liu J, Teng H, Li G. Melatonin functions as a broad-spectrum antifungal by targeting a conserved pathogen protein kinase. J Pineal Res 2023; 74:e12839. [PMID: 36314656 DOI: 10.1111/jpi.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Melatonin is a low-cost natural small indole molecule with versatile biological functions. However, melatonin's fungicidal potential has not been fully exploited, and the mechanism remains elusive. Here, we report that melatonin broadly inhibited 13 plant pathogens. In the rice blast fungal pathogen Magnaporthe oryzae, melatonin inhibited fungal growth, formation of infection-specific structures named appressoria, and plant infection, reducing disease severity. Melatonin entered fungal cells efficiently and colocalized with the critical mitogen-activated protein kinase named Mps1, suppressing phosphorylation of Mps1. Melatonin's affinity for Mps1 via two hydrogen bonds was demonstrated using surface plasmon resonance and chemical modifications. To improve melatonin's efficiency, we obtained 20 melatonin derivatives. Tert-butyloxycarbonyl melatonin showed a 25-fold increase in fungicidal activities, demonstrating the feasibility of chemical modifications in melatonin modification. Our study demonstrated the broad-spectrum fungicidal effect of melatonin by suppressing Mps1 as one of the targets. Through further systematic modifications, developing an eco-friendly melatonin derivative of commercial values for agricultural applications appears promising.
Collapse
Affiliation(s)
- Renjian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruiqing Bi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Huanyu Cai
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Juan Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilong Xu
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yaru Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongli Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Center of Crop Nanobiotechnology, The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Fu D, Hu Z, Xu X, Dai X, Liu Z. Key signal transduction pathways and crosstalk in cancer: Biological and therapeutic opportunities. Transl Oncol 2022; 26:101510. [PMID: 36122506 PMCID: PMC9486121 DOI: 10.1016/j.tranon.2022.101510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Several different signaling pathways and molecular mechanisms have been identified as responsible for controlling critical functions in human cancer cells, such as selective growth and proliferative advantage, altered stress response favoring overall survival, vascularization, invasion and metastasis, metabolic rewiring, an abetting microenvironment, and immune modulation. This concise summary will provide a selective review of recent studies of key signal transduction pathways, including mitogen-activated protein kinase (MAPK) pathway, Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling, and Wnt/β-catenin signaling pathway, which are altered in cancer cells, as the novel and promising therapeutic targets.
Collapse
Affiliation(s)
- Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyang Xu
- Zhengzhou Foreign Language School, Zhengzhou, Henan 450001, China
| | - Xiaoyan Dai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, No.280, Waihuan East Road, Guangzhou, Guangdong 511436, China.
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20891, United States.
| |
Collapse
|
16
|
Gómez-Sierra T, Jiménez-Uribe AP, Ortega-Lozano AJ, Ramírez-Magaña KJ, Pedraza-Chaverri J. Antioxidants affect endoplasmic reticulum stress-related diseases. VITAMINS AND HORMONES 2022; 121:169-196. [PMID: 36707134 DOI: 10.1016/bs.vh.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The endoplasmic reticulum (ER) is a complex multifunctional organelle that maintains cell homeostasis. Intrinsic and extrinsic factors alter ER functions, including the rate of protein folding that triggers the accumulation of misfolded proteins and alters homeostasis, thus generating stress in the ER, which activates the unfolded protein response (UPR) pathway to promote cell survival and restore their homeostasis; however, if the damage is not corrected, it could also trigger cell death. In addition, ER stress and oxidative stress are closely related because excessive production of reactive oxygen species (ROS), a well-known inducer of ER stress, promotes the accumulation of misfolded proteins; at the same time, the ER stress enhances ROS production, generating a pathological cycle. Furthermore, it has been described that the dysregulation of the UPR contributes to the progression of various diseases, so the use of compounds capable of regulating ER stress, such as antioxidants, has been used in several experimental models of diseases to alleviate the damage induced by the maladaptive signaling of the UPR, the mechanism of action of antioxidants generally is dose-dependent, and it is specific in each tissue and pathology, could decrease or enhance specific proteins of the UPR to have beneficial or detrimental effects.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Alexis Paulina Jiménez-Uribe
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Ariadna Jazmín Ortega-Lozano
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Antioxidant Biochemistry Laboratory, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico.
| |
Collapse
|
17
|
Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol 2022; 13:1051998. [PMID: 36439106 PMCID: PMC9685561 DOI: 10.3389/fimmu.2022.1051998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 09/01/2023] Open
Abstract
With cancer incidence rates continuing to increase and occurrence of resistance in drug treatment, there is a pressing demand to find safer and more effective anticancer strategy for cancer patients. Natural products, have the advantage of low toxicity and multiple action targets, are always used in the treatment of cancer prevention in early stage and cancer supplement in late stage. Tumor microenvironment is necessary for cancer cells to survive and progression, and immune activation is a vital means for the tumor microenvironment to eliminate cancer cells. A number of studies have found that various natural products could target and regulate immune cells such as T cells, macrophages, mast cells as well as inflammatory cytokines in the tumor microenvironment. Natural products tuning the tumor microenvironment via various mechanisms to activate the immune response have immeasurable potential for cancer immunotherapy. In this review, it highlights the research findings related to natural products regulating immune responses against cancer, especially reveals the possibility of utilizing natural products to remodel the tumor microenvironment to overcome drug resistance.
Collapse
Affiliation(s)
- Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
18
|
Tao Y, Sun D, Ren X, Zhao Y, Zhang H, Jiang T, Guan J, Tang Y, Song W, Li S, Wang L. Bavachin Suppresses Alpha-Hemolysin Expression and Protects Mice from Pneumonia Infection by Staphylococcus aureus. J Microbiol Biotechnol 2022; 32:1253-1261. [PMID: 36224757 PMCID: PMC9668093 DOI: 10.4014/jmb.2207.07048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus (S. aureus) infection causes dramatic harm to human health as well as to livestock development. As an important virulence factor, alpha-hemolysin (hla) is critical in the process of S. aureus infection. In this report, we found that bavachin, a natural flavonoid, not only efficiently inhibited the hemolytic activity of hla, but was also capable of inhibiting it on transcriptional and translational levels. Moreover, further data revealed that bavachin had no neutralizing activity on hla, which did not affect the formation of hla heptamers and exhibited no effects on the hla thermal stability. In vitro assays showed that bavachin was able to reduce the S. aureus-induced damage of A549 cells. Thus, bavachin repressed the lethality of pneumonia infection, lung bacterial load and lung tissue inflammation in mice, providing potent protection to mice models in vivo. Our results indicated that bavachin has the potential for development as a candidate hla inhibitor against S. aureus.
Collapse
Affiliation(s)
- Ye Tao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Dazhong Sun
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xinran Ren
- School of Pharmaceutical Science, Jilin University, Changchun 130021, P.R. China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Changchun, P.R. China
| | - Hengjian Zhang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Yong Tang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,Corresponding authors W. Song E-mail:
| | - Shuqiang Li
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Changchun 130062, P.R. China,
S. Li E-mail:
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun 130117, P.R. China,
L. Wang E-mail:
| |
Collapse
|
19
|
Yang R, Ma S, Zhuo R, Xu L, Jia S, Yang P, Yao Y, Cao H, Ma L, Pan J, Wang J. Suppression of endoplasmic reticulum stress-dependent autophagy enhances cynaropicrin-induced apoptosis via attenuation of the P62/Keap1/Nrf2 pathways in neuroblastoma. Front Pharmacol 2022; 13:977622. [PMID: 36188599 PMCID: PMC9523313 DOI: 10.3389/fphar.2022.977622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy has dual roles in cancer, resulting in cellular adaptation to promote either cell survival or cell death. Modulating autophagy can enhance the cytotoxicity of many chemotherapeutic and targeted drugs and is increasingly considered to be a promising cancer treatment approach. Cynaropicrin (CYN) is a natural compound that was isolated from an edible plant (artichoke). Previous studies have shown that CYN exhibits antitumor effects in several cancer cell lines. However, it anticancer effects against neuroblastoma (NB) and the underlying mechanisms have not yet been investigated. More specifically, the regulation of autophagy in NB cells by CYN has never been reported before. In this study, we demonstrated that CYN induced apoptosis and protective autophagy. Further mechanistic studies suggested that ER stress-induced autophagy inhibited apoptosis by activating the p62/Keap1/Nrf2 pathways. Finally, in vivo data showed that CYN inhibited tumour growth in xenografted nude mice. Overall, our findings suggested that CYN may be a promising candidate for the treatment of NB, and the combination of pharmacological inhibitors of autophagy may hold novel therapeutic potential for the treatment of NB. Our paper will contribute to the rational utility and pharmacological studies of CYN in future anticancer research.
Collapse
Affiliation(s)
- Randong Yang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Shurong Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Lingqi Xu
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Siqi Jia
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Pengcheng Yang
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Ye Yao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Liya Ma
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| | - Jian Wang
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric Surgery, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Jian Pan, ; Jian Wang,
| |
Collapse
|
20
|
Lu M, Lan X, Wu X, Fang X, Zhang Y, Luo H, Gao W, Wu D. Salvia miltiorrhiza in cancer: Potential role in regulating MicroRNAs and epigenetic enzymes. Front Pharmacol 2022; 13:1008222. [PMID: 36172186 PMCID: PMC9512245 DOI: 10.3389/fphar.2022.1008222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that play important roles in gene regulation by influencing the translation and longevity of various target mRNAs and the expression of various target genes as well as by modifying histones and DNA methylation of promoter sites. Consequently, when dysregulated, microRNAs are involved in the development and progression of a variety of diseases, including cancer, by affecting cell growth, proliferation, differentiation, migration, and apoptosis. Preparations from the dried root and rhizome of Salvia miltiorrhiza Bge (Lamiaceae), also known as red sage or danshen, are widely used for treating cardiovascular diseases. Accumulating data suggest that certain bioactive constituents of this plant, particularly tanshinones, have broad antitumor effects by interfering with microRNAs and epigenetic enzymes. This paper reviews the evidence for the antineoplastic activities of S. miltiorrhiza constituents by causing or promoting cell cycle arrest, apoptosis, autophagy, epithelial-mesenchymal transition, angiogenesis, and epigenetic changes to provide an outlook on their future roles in the treatment of cancer, both alone and in combination with other modalities.
Collapse
Affiliation(s)
- Meng Lu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xi Wu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yegang Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Wenyi Gao
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenyi Gao, ; Donglu Wu,
| |
Collapse
|
21
|
Erdogan CS, Al Hassadi Y, Aru B, Yilmaz B, Gemici B. Combinatorial effects of melatonin and paclitaxel differ depending on the treatment scheme in colorectal cancer in vitro. Life Sci 2022; 308:120927. [PMID: 36063977 DOI: 10.1016/j.lfs.2022.120927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Colorectal carcinoma (CRC) is the third most prevalent cancer with high mortality. Besides regulating the circadian rhythm, melatonin (MTN) exerts anticancer activities. Paclitaxel (PTX) is successful against different malignancies, however, acquired resistance and variability in patient response restrict its use. mTOR and MAPK pathways are often deregulated in human cancers. We aimed to investigate whether MTN enhances or sensitizes the chemotherapeutic activity of PTX and if so, determine the underlying possible mechanisms in CRC in vitro. MAIN METHODS Antiproliferative and cytotoxic activities of PTX and MTN were assessed alone and in combination, as well as with different treatment regimens (renewal or replacement of the treatment after 24 h), up to 48 h. Apoptosis, viability and autophagy were assessed by flow cytometry. mTOR and MAPK pathway activities were investigated by immunoblotting. KEY FINDINGS Both drugs reduced cell viability in a dose-dependent manner at 24 and 48 h. Only the highest dose of MTN (500 μM) potentiated the cytotoxicity of PTX (50 nM). Replacement of PTX after 24 h with MTN was superior in reducing cell viability than vice versa via apoptosis induction. Renewal of MTN treatment every 24 h reduced autophagy compared to the control group, while other treatments did not alter the autophagic activity. A 24 h MTN treatment followed by 24 h PTX treatment increased S6 phosphorylation in a mTOR-independent manner and increased Erk1/2 phosphorylation. SIGNIFICANCE The present study suggests that sequential treatment with MTN and PTX distinctly affect apoptosis and cytotoxicity via regulating mTOR and MAPK pathways differentially in CRC.
Collapse
Affiliation(s)
- Cihan Suleyman Erdogan
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Yasmine Al Hassadi
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Basak Aru
- Yeditepe University, Faculty of Medicine, Department of Immunology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Bayram Yilmaz
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey
| | - Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Kayisdagi cad., 34755 Istanbul, Turkey.
| |
Collapse
|
22
|
Huang Y, Ji J, Zhao Q, Song J. Editorial: Regulation of endoplasmic reticulum and mitochondria in cellular homeostasis. Front Cell Dev Biol 2022; 10:1004376. [PMID: 36111344 PMCID: PMC9468971 DOI: 10.3389/fcell.2022.1004376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- *Correspondence: Yongye Huang, ; Jianguang Ji, ; Qi Zhao, ; Jun Song,
| | - Jianguang Ji
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Yongye Huang, ; Jianguang Ji, ; Qi Zhao, ; Jun Song,
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
- *Correspondence: Yongye Huang, ; Jianguang Ji, ; Qi Zhao, ; Jun Song,
| | - Jun Song
- College of Life Science, Northeast Agriculture University, Harbin, China
- *Correspondence: Yongye Huang, ; Jianguang Ji, ; Qi Zhao, ; Jun Song,
| |
Collapse
|
23
|
Li X, Wang N, Wu Y, Liu Y, Wang R. ALDH6A1 weakens the progression of colon cancer via modulating the RAS/RAF/MEK/ERK pathway in cancer cell lines. Gene X 2022; 842:146757. [PMID: 35907565 DOI: 10.1016/j.gene.2022.146757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 6 family member A1 (ALDH6A1) is associated with multiple diseases, but its pathogenesis in colon cancer (CC) is ambiguous and needs further study so that this research explores the function of ALDH6A1 in CC. METHODS The level of ALDH6A1 in colon adenocarcinoma (COAD), CC tissues, and cells was measured by starBase v2.0, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. Post transfection with overexpressed (oe)-ALDH6A1, cell biological behaviors, as well as apoptosis-, matrix metalloproteinase (MMP)-, and rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway-related markers were measured by cell function experiments, qRT-PCR, and western blot. Next, the effects of small interfering RNA targeting ALDH6A1 (si-ALDH6A1) and RAS/RAF inhibitor (MCP110) on cell biological behaviors, as well as apoptosis-, MMP-, and RAS/RAF/MEK/ERK pathway-related markers were detected again. RESULTS ALDH6A1 was low-expressed in COAD, CC tissues, and cells . Oe-ALDH6A1 weakened cell vitality, migration and invasionbut facilitated apoptosis; while it reduced expression levels of Bcl-2, MMP-2, MMP-9 and the RAS/RAF/MEK/ERK pathway-related markers but promoted Bax level. However, the regulation of si-ALDH6A1 on cell biological behaviors and related genes was opposite to that of oe-ALDH6A1. Moreover, MCP110 rescued the regulation of si-ALDH6A1 on cell biological behaviors, expressions of apoptosis- MMP- as well as RAS/RAF/MEK/ERK pathway-related markers. To sum up, ALDH6A1 attenuated CC progression by down-regulating the expressions of RAS/RAF/MEK/ERK pathway-related markers.
Collapse
Affiliation(s)
- Xiang Li
- The Second Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Nan Wang
- The Tenth Department of Proctology Department, Dalian University Affiliated Xinhua Hospital, China
| | - Yutong Wu
- Graduate School, Dalian Medical University, China
| | - Yidan Liu
- Stomatology Department, Affiliated Zhongshan Hospital of Dalian University, China
| | - Ruoyu Wang
- Oncology Department, Affiliated Zhongshan Hospital of Dalian University, China.
| |
Collapse
|
24
|
Meng Y, Jin M, Yuan D, Zhao Y, Kong X, Guo X, Wang X, Hou J, Wang B, Song W, Tang Y. Solamargine Inhibits the Development of Hypopharyngeal Squamous Cell Carcinoma by Decreasing LncRNA HOXA11-As Expression. Front Pharmacol 2022; 13:887387. [PMID: 35903338 PMCID: PMC9315292 DOI: 10.3389/fphar.2022.887387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is one of the high mortality cancers with a poor prognosis, which is driving the development of new chemotherapeutic agents. We identified the anticancer effects of a natural compound, solamargine (SM), on FaDU cells and explored its mechanism in terms of non-coding RNA. It was observed that SM inhibited the proliferation of FaDU cells with an IC50 of 5.17 μM. High-throughput sequencing data revealed that lncRNA HOXA11-AS was significantly downregulated in cells co-incubated with SM. Further assays demonstrated that SM-induced downregulation of lncRNA HOXA11-AS showed important implications for apoptosis. Given the properties of HOXA11-AS as a miR-155 sponge, we further confirmed that SM upregulated the expression of miR-155 in FaDU cells. C-Myc is a transcription factor that regulates cell differentiation and apoptosis, whose mRNA is considered to be targeted by miR-155. We showed that c-Myc expression was downregulated by SM and accompanied by increased apoptosis, which was consistent with the findings of transcriptome sequencing. Furthermore, SM administration suppressed xenograft tumor growth in a xenograft mouse model in vivo. In the light of the aforementioned findings, our results suggested that SM downregulated the expression of HOXA11-AS, which in turn induces apoptosis by downregulating c-Myc in FaDU, providing evidence for the anticancer effect of SM on HSCC and uncovering the effect of SM on non-coding RNAs as, at least partly, a mechanism of action.
Collapse
Affiliation(s)
- Ying Meng
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Mengli Jin
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dai Yuan
- College of Integrated Chinese and Western Medicine, College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- Center of Infections Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, First Hospital of Jilin University, Changchun, China
| | - Xiangri Kong
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xuerui Guo
- School of Pharmacy, Jilin University, Changchun, China
| | - Xingye Wang
- College of Integrated Chinese and Western Medicine, College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- College of Integrated Chinese and Western Medicine, College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Bingmei Wang, ; Wu Song, ; Yong Tang,
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Bingmei Wang, ; Wu Song, ; Yong Tang,
| | - Yong Tang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Bingmei Wang, ; Wu Song, ; Yong Tang,
| |
Collapse
|
25
|
Liang W, Yi H, Mao C, Meng Q, Wu X, Li S, Xue J. Research Progress of RNA Methylation Modification in Colorectal Cancer. Front Pharmacol 2022; 13:903699. [PMID: 35614935 PMCID: PMC9125385 DOI: 10.3389/fphar.2022.903699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that RNA methylation, as the most common modification of mRNA, is of great significance in tumor progression and metastasis. Colorectal cancer is a common malignant tumor of the digestive system that seriously affects the health of middle-aged and elderly people. Although there have been many studies on the biological mechanism of the occurrence and development of colorectal cancer, there are still major deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of RNA methylation, it was found that RNA modification is highly related to colorectal cancer tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-methylguanine, pseudouridine and their modification enzymes followed by summarizing their functions in colorectal cancer.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongyang Yi
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Chenyu Mao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
26
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
27
|
Li Y, Xiong H. Correlation of LAGE3 with unfavorable prognosis and promoting tumor development in HCC via PI3K/AKT/mTOR and Ras/RAF/MAPK pathways. BMC Cancer 2022; 22:298. [PMID: 35313850 PMCID: PMC8939149 DOI: 10.1186/s12885-022-09398-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common clinical malignancies quite susceptible to recurrence and metastasis. Despite several improvements in therapeutic approaches, the prognosis remains poor due to the limited treatment options. A bioinformatics analysis based on TCGA databases revealed that the recombinant human L antigen family member 3 (LAGE3) might function as an effective prognostic and diagnostic biomarker for HCC, as LAGE3, a protein-coding gene, maintains several important biological functions and has a physiological significance in the CTAG family while simultaneously being involved in regulating the occurrence and invasion of numerous types of tumors. However, the LAGE3 gene’s functional and regulatory mechanism in the progression of HCC remains unclear. Methods The LAGE3 level was investigated in 79 HCC tissues cases, ten HCC adjacent tissue cases, and six cases of normal liver tissues by IHC, while the LAGE3 level was evaluated in BEL-7404, SMCC-7721, Huh-7, HepG2, and MIHA cell lines by qRT-PCR and Western blot tests. Although the proliferation, migration, invasion, and apoptotic abilities of HCC cells were measured in vitro after silencing assay to probe the role of LAGE3 in HCC cells, the tumor xenograft growth experiment was used to verify the in vivo effect of LAGE3 gene knockdown on the growth of HCC tumors combined with bioinformatics analysis to study the LAGE3 mechanisms regulating HCC proliferation. Results Our results implied that LAGE3 was extensively expressed in HCC cell lines like BEL-7404, SMCC-7721, and Huh-7 cells as well as HCC tissues, but a lower expression was observed in HepG2 cells. Additionally, LAGE3 restrains cellular proliferation, promotes apoptotic pathways in HCC cells, and inhibits the growth of HCC tumors in vivo. Lastly, it was stated that LAGE3 might promote tumor development in HCC via PI3K/AKT/mTOR and Ras/RAF/MAPK pathways. Conclusion This study shows that the development of specific LAGE3 target drugs might become new effective treatment modalities for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09398-3.
Collapse
Affiliation(s)
- Yun Li
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hui Xiong
- Department of General Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| |
Collapse
|
28
|
Li T, Hao Z, Tang Z, Li C, Cheng L, Wang T, Zhu X, He Y, Huang Y, Wang B. BAP31 Regulates Wnt Signaling to Modulate Cell Migration in Lung Cancer. Front Oncol 2022; 12:859195. [PMID: 35359416 PMCID: PMC8960194 DOI: 10.3389/fonc.2022.859195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
B-cell receptor-associated protein 31 (BAP31) has been shown to overexpress in a wide range type of cancers. The present study aims to investigate the role of BAP31 on migration in lung cancer. Results showed that the migration of BAP31 knockdown cells was weaken than the control cells. Applying TGFβ to treat BAP31 knockdown cells could reduce cell migration. The enhancement on proliferation by TGFβ treatment was downregulated after BAP31 knockdown. The cell death and G0/G1 phase arrest was increased in the cells with TGFβ and BAP31 siRNA treatment when compared with TGFβ treatment alone. Gene expression analysis showed that Bax/Bcl2, MLKL and LC3 was upregulated in the cells with combinatorial treatment of TGFβ and BAP31 siRNA. In addition, BAP31 was shown to regulate multiple signaling pathways, especially for Wnt signaling. It found that BAP31 knockdown cells treated with TGFβ decreased β-catenin cytosolic expression and nuclear localization. Wnt signaling activator BIO could restore the downregulation of proliferation by BAP31 knockdown. This finding suggested that BAP31 regulated cancer cell migration is possibly involved with cell death mechanisms and Wnt signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bing Wang
- *Correspondence: Yongye Huang, ; Bing Wang,
| |
Collapse
|
29
|
Wu D, Zhang Y, Tang H, Yang J, Li M, Liu H, Li Q. [Melatonin inhibits growth and metastasis of MDA-MB-231 breast cancer cells by activating autophagy]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:278-285. [PMID: 35365454 DOI: 10.12122/j.issn.1673-4254.2022.02.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of melatonin on the growth and metastasis of MDA-MB-231 breast cancer cells and explore the mechanism. METHODS MDA-MB-231 cells were treated with 1, 3 or 5 mmol/L melatonin, and the changes in cell proliferation were examined using CCK-8 assay. Colony-forming assay and wound healing assay were used to assess the effects of melatonin treatmnent on colony-forming ability and migration of the cells. Flow cytometry and immunofluoresnce assay were employed to examine apoptosis and positive staining for autophagy-related proteins in the cells treated with 3 mmol/L melatonin. The effects of melatonin treatment alone or in combination with 3-methyladenine (3-MA) on the expressions of the proteins associated with autophagy (LC3, P62 and Beclin1), apoptosis (Bcl2 and Bax) and epithelial-mesenchymal transition (E-cadherin and Snail) were examined with Western blotting. RESULTS Melatonin treatment significantly inhibited the proliferation of breast cancer cells in a concentration- and time-dependent manner (P < 0.05), suppressed colony-forming ability and migration (P < 0.01), and promoted apoptosis of the cells (P < 0.01). Melatonin treatment alone significantly increased the expressions of Bax (P < 0.05), E-cadherin, LC3-II/LC3-I, and Beclin1 and lowered the expressions of Bcl2 (P < 0.05), Snail, P62 (P < 0.05), and Bcl2/Bax ratio (P < 0.01) in the cells, and caused enhanced positive staining of Beclin1 protein and attenuated staining of P62 protein. Compared with melatonin treatment alone, melatonin treatment combined with 3-MA significantly decreased the expressions of Beclin1 (P < 0.001), LC3-II/LC3-I (P < 0.05), Bax (P < 0.01), and E-cadherin (P < 0.001) and increased the expressions of Bcl2 (P < 0.05), Snail, and Bcl2/Bax ratio (P < 0.01). CONCLUSION Melatonin can induce autophagy of MDA-MB-231 breast cancer cells to inhibit cell proliferation and metastasis and promote cell apoptosis, and suppressing autophagy can weaken the inhibitory effect of melatonin on the growth and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- D Wu
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - Y Zhang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - H Tang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - J Yang
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China
| | - M Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - H Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100000, China
| | - Q Li
- Department of Clinical Biochemistry, School of Medical Laboratory Science, Guiyang 550004, China.,Guizhou Provincial Prenatal Diagnosis Center, Guiyang 550004, China
| |
Collapse
|
30
|
Li T, Tang Z, Li C, Liu X, Cheng L, Yang Z, Zhu X, Liu W, Huang Y. Magnesium-Assisted Cisplatin Inhibits Bladder Cancer Cell Survival by Modulating Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2022; 12:804615. [PMID: 35153759 PMCID: PMC8829071 DOI: 10.3389/fphar.2021.804615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/30/2021] [Indexed: 12/25/2022] Open
Abstract
Magnesium, an essential mineral micronutrient, plays a role in the activation of various transporters and enzymes. The present study aimed to investigate the possibility of applying magnesium to enhance the efficacy of cisplatin which is still ranked as one of the major chemotherapeutic drugs for bladder cancer patients. Results showed that the survival rate and colony formation of bladder cancer cells were reduced by combinatorial treatment with cisplatin and magnesium chloride (MgCl2). The proportion of apoptotic cells was also increased in UC3 bladder cancer cells treated with a combination of cisplatin and MgCl2. Most importantly, a marked decrease in nuclear β-catenin was observed in cells that received cisplatin treatment. In addition, the nuclear β-catenin in cisplatin treated cells was further down-regulated by supplementing MgCl2. 6-bromoindirubin-3′-oxime (BIO), an inhibitor of glycogen synthase kinase-3 (GSK-3) that activates the Wnt/β-catenin signaling pathway by modulating β-catenin activity, was thus applied to further exploit the role of this signaling pathway in magnesium aided cancer treatment. The survival rate of bladder cancer cells was decreased by BIO treatment at concentrations of 1.0, 2.5 and 5.0 μM accompanied by increased β-catenin expression. However, the expression of β-catenin in MgCl2-treated cells was lower than in untreated cells under the same BIO concentration. The expression of cleaved caspase-3, cleaved caspase-9 and microtubule-associated protein 1 light chain 3- II (LC3-II) was highest in cells treated with MgCl2 and 5.0 μM BIO among the examined groups. Our findings reveal that magnesium could contribute to cisplatin-based chemotherapy by moderately regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zihan Tang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaoya Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhijing Yang
- Department of Oral and Maxillofacia Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaojin Zhu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacia Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
31
|
Li T, Zhang X, Cheng L, Li C, Wu Z, Luo Y, Zhou K, Li Y, Zhao Q, Huang Y. Modulation of lncRNA H19 enhances resveratrol-inhibited cancer cell proliferation and migration by regulating endoplasmic reticulum stress. J Cell Mol Med 2022; 26:2205-2217. [PMID: 35166018 PMCID: PMC8995452 DOI: 10.1111/jcmm.17242] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
The phytoalexin resveratrol exhibits anti-tumour activity in many types of cancer. In this study, we showed that resveratrol suppressed the survival of gastric tumour cells both in vivo and in vitro. Resveratrol promoted apoptosis, autophagy and endoplasmic reticulum (ER) stress in a dose-dependent manner. RNA-seq analysis showed that multiple cell death signalling pathways were activated after resveratrol treatment, while the use of ER stress activators (tunicamycin and thapsigargin) in combinatorial with resveratrol led to further inhibition of cancer cell survival. Results also showed that resveratrol altered the expression of several long non-coding RNAs (lncRNAs), including MEG3, PTTG3P, GAS5, BISPR, MALAT1 and H19. Knockdown of H19 in resveratrol-treated cells further enhanced the effects of resveratrol on apoptosis, ER stress and cell cycle S-phase arrest. Furthermore, the migratory ability of resveratrol-treated cells was dramatically decreased after H19 knockdown. In conclusion, resveratrol inhibited cancer cell survival, while knockdown of lncRNA H19 resulted in increased sensitivity to resveratrol therapy.
Collapse
Affiliation(s)
- Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinyue Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zihan Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingqi Luo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kunpeng Zhou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanlin Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
32
|
Zhou H, Wang H, Ding Y, Tang J. Multivariate Information Fusion for Identifying Antifungal Peptides with
Hilbert-Schmidt Independence Criterion. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210727161003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antifungal Peptides (AFP) have been found to be effective against many fungal
infections.
Objective:
However, it is difficult to identify AFP. Therefore, it is great practical significance to identify
AFP via machine learning methods (with sequence information).
Method:
In this study, a Multi-Kernel Support Vector Machine (MKSVM) with Hilbert-Schmidt Independence
Criterion (HSIC) is proposed. Proteins are encoded with five types of features (188-bit,
AAC, ASDC, CKSAAP, DPC), and then construct kernels using Gaussian kernel function. HSIC are
used to combine kernels and multi-kernel SVM model is built.
Results:
Our model performed well on three AFPs datasets and the performance is better than or comparable
to other state-of-art predictive models.
Conclusion:
Our method will be a useful tool for identifying antifungal peptides.
Collapse
Affiliation(s)
- Haohao Zhou
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Hao Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou,
215009, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of
China, Quzhou, 324000, China
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055,
China
| |
Collapse
|
33
|
Guo X, Zhou W, Yu Y, Cai Y, Zhang Y, Du A, Lu Q, Ding Y, Li C. Multiple Laplacian Regularized RBF Neural Network for Assessing Dry Weight of Patients With End-Stage Renal Disease. Front Physiol 2021; 12:790086. [PMID: 34966294 PMCID: PMC8711098 DOI: 10.3389/fphys.2021.790086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Dry weight (DW) is an important dialysis index for patients with end-stage renal disease. It can guide clinical hemodialysis. Brain natriuretic peptide, chest computed tomography image, ultrasound, and bioelectrical impedance analysis are key indicators (multisource information) for assessing DW. By these approaches, a trial-and-error method (traditional measurement method) is employed to assess DW. The assessment of clinician is time-consuming. In this study, we developed a method based on artificial intelligence technology to estimate patient DW. Based on the conventional radial basis function neural (RBFN) network, we propose a multiple Laplacian-regularized RBFN (MLapRBFN) model to predict DW of patient. Compared with other model and body composition monitor, our method achieves the lowest value (1.3226) of root mean square error. In Bland-Altman analysis of MLapRBFN, the number of out agreement interval is least (17 samples). MLapRBFN integrates multiple Laplace regularization terms, and employs an efficient iterative algorithm to solve the model. The ratio of out agreement interval is 3.57%, which is lower than 5%. Therefore, our method can be tentatively applied for clinical evaluation of DW in hemodialysis patients.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Yu
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yinghua Cai
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Zhang
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Aiyan Du
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qun Lu
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Chao Li
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| |
Collapse
|
34
|
Min F, Liu X, Li Y, Dong M, Qu Y, Liu W. Carnosic Acid Suppresses the Development of Oral Squamous Cell Carcinoma via Mitochondrial-Mediated Apoptosis. Front Oncol 2021; 11:760861. [PMID: 34900710 PMCID: PMC8662526 DOI: 10.3389/fonc.2021.760861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) predominantly consists of squamous cells and is the tumor with the highest incidence of the head and neck. Carnosic acid (CA), a natural monomer drug obtained from rosemary and salvia, shows various pharmacological effects, including of tumor development. This study aimed to assess for an effect of CA on the development of OSCC and the underlying mechanisms. In CAL27 and SCC9 cells, CA inhibited cell proliferation and migration, increased intracellular levels of reactive oxygen species (ROS) and Ca2+, decreased the mitochondrial membrane potential (MMP), and promoted apoptosis. In CAL27- and SCC9-xenotransplanted BALB/c nude mice, CA inhibited the tumor growth without affecting the body weight and tissue morphology. CA upregulated Bax, Bad, cleaved Caspase-3 and -9 levels, and the cleaved PARP1/PARP1 ratio but downregulated Bcl-2 in CA-treated OSCC cells and OSCC cells-xenotransplanted BALB/c nude mice. These results indicate that CA suppresses OSCC at least via the mitochondrial apoptotic pathway and offers this natural compound as a potential therapeutic against OSCC.
Collapse
Affiliation(s)
- Fenghe Min
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Xin Liu
- School of Life Sciences, Jilin University, Changchun, China
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
35
|
Zhang X, Liu D, Gao Y, Lin C, An Q, Feng Y, Liu Y, Liu D, Luo H, Wang D. The Biology and Function of Extracellular Vesicles in Cancer Development. Front Cell Dev Biol 2021; 9:777441. [PMID: 34805181 PMCID: PMC8602830 DOI: 10.3389/fcell.2021.777441] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) exert their biological functions by delivering proteins, metabolites, and nucleic acids to recipient cells. EVs play important roles in cancer development. The anti-tumor effect of EVs is by their cargos carrying proteins, metabolites, and nucleic acids to affect cell-to-cell communication. The characteristics of cell-to-cell communication can potentially be applied for the therapy of cancers, such as gastric cancer. In addition, EVs can be used as an effective cargos to deliver ncRNAs, peptides, and drugs, to target tumor tissues. In addition, EVs have the ability to regulate cell apoptosis, autophagy, proliferation, and migration of cancer cells. The ncRNA and peptides that were engaged with EVs were associated with cell signaling pathways in cancer development. This review focuses on the composition, cargo, function, mechanism, and application of EVs in cancers.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qingwu An
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ye Feng
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
36
|
Zeya B, Nafees S, Imtiyaz K, Uroog L, Fakhri KU, Rizvi MMA. Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol Rep 2021; 47:4. [PMID: 34738632 DOI: 10.3892/or.2021.8215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/09/2021] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is one of the most commonly diagnosed malignancies, which begins as a polyp and grows to become cancer. Diosmin (DS) and naringenin (NR) are naturally occurring flavonoids that exhibit various pharmacological activities. Although several studies have illustrated the effectiveness of these flavonoids as anti‑cancerous agents individually, the combinatorial impact of these compounds has not been explored. In the present study, the combined effect of DS and NR (DiNar) in colon cancer cell lines HCT116 and SW480 were assessed by targeting apoptosis and inflammatory pathways. The MTT assay was used to evaluate the effect of DiNar on cell proliferation, while Chou‑Talalay analysis was employed to determine the combination index of DS and NR. Moreover, flow cytometry was used to monitor cell cycle arrest and population study. The onset of apoptosis was assessed by DAPI staining, DNA fragmentation, and Annexin V‑fluorescein isothiocyanate/propidium iodide (Annexin V‑FITC/PI). The expression levels of apoptotic pathway markers, Bcl‑2, Bax, caspase3, caspase8, caspase9 and p53, and inflammatory markers, NF‑κβ, IKK‑α and IKK‑β, were assessed using western blotting and reverse transcription‑quantitative PCR. These results suggested that DiNar treatment acts synergistically and induces cytotoxicity with a concomitant increase in chromatin condensation, DNA fragmentation and cell cycle arrest in the G0/G1 phase. Annexin V‑FITC/PI apoptosis assay also showed increased number of cells undergoing apoptosis in the DiNar treatment group. Furthermore, the expression of apoptosis and inflammatory markers was also more effectively regulated under the DiNar treatment. Thereby, these findings demonstrated that DiNar treatment could be a potential novel chemotherapeutic alternative in colon cancer.
Collapse
Affiliation(s)
- Bushra Zeya
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Sana Nafees
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Khalid Imtiyaz
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Laraib Uroog
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - Khalid Umar Fakhri
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| | - M Moshahid A Rizvi
- The Genome Biology Laboratory, Department of Biosciences, Ramanujan Block, Jamia Millia Islamia, Jamia Nagar, New Delhi, Delhi 110025, India
| |
Collapse
|
37
|
Li X, Liang W, Zhao H, Jin Z, Shi G, Xie W, Wang H, Wu X. Immune Cell Infiltration Landscape of Ovarian Cancer to Identify Prognosis and Immunotherapy-Related Genes to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:749157. [PMID: 34805159 PMCID: PMC8595115 DOI: 10.3389/fcell.2021.749157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer (OC) is the second leading cause of death in gynecological cancer. Multiple study have shown that the efficacy of tumor immunotherapy is related to tumor immune cell infiltration (ICI). However, so far, the Immune infiltration landscape of tumor microenvironment (TME) in OC has not been elucidated. In this study, We organized the transcriptome data of OC in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, evaluated the patient's TME information, and constructed the ICI scores to predict the clinical benefits of patients undergoing immunotherapy. Immune-related genes were further used to construct the prognostic model. After clustering analysis of ICI genes, we found that patients in ICI gene cluster C had the best prognosis, and their tumor microenvironment had the highest proportion of macrophage M1 and T cell follicular helper cells. This result was consistent with that of multivariate cox (multi-cox) analysis. The prognostic model constructed by immune-related genes had good predictive performance. By estimating Tumor mutation burden (TMB), we also found that there were multiple genes with statistically different mutation frequencies in the high and low ICI score groups. The model based on the ICI score may help to screen out patients who would benefit from immunotherapy. The immune-related genes screened may be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | | | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Jin
- ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Guoqi Shi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Xie
- The Precise Medicine Center, Department of Basic Medical College, Shenyang Medical College, Shenyang, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
38
|
Chen Y, Wang L, Liu T, Qiu Z, Qiu Y, Liu D. Inhibitory effects of Panax ginseng glycoproteins in models of doxorubicin-induced cardiac toxicity in vivo and in vitro. Food Funct 2021; 12:10862-10874. [PMID: 34617939 DOI: 10.1039/d1fo01307f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective antineoplastic drug; however, its clinical application is limited owing to the side effect of fatal heart dysfunction on its use. Panax ginseng glycoproteins have antioxidant, antiapoptotic, and anti-inflammatory properties. Thus, the aim of this study was to investigate the effects and possible action mechanisms of P. ginseng glycoproteins against DOX-induced cardiotoxicity. To this end, we used an in vitro model of DOX-treated H9C2 cells and an in vivo model of DOX-treated rats. We found that P. ginseng glycoproteins markedly increased H9C2 cell viability, decreased creatine kinase and lactate dehydrogenase levels, and improved histopathological and electrocardiogram changes in rats, protecting them from DOX-induced cardiotoxicity. Furthermore, P. ginseng glycoproteins significantly inhibited myocardial oxidative insult through adjusting the intracellular ROS, MDA, SOD, and GSH levels in vitro and in vivo. In conclusion, our data suggest that P. ginseng glycoproteins alleviated DOX-induced myocardial oxidative stress-related cardiotoxicity. This natural product could be developed as a new candidate for alleviating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yajun Chen
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Lei Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tianjia Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
39
|
Huang Y, Hou Y, Qu P, Cai Y. Editorial: Combating Cancer With Natural Products: What Would Non-Coding RNAs Bring? Front Oncol 2021; 11:747586. [PMID: 34604091 PMCID: PMC8484867 DOI: 10.3389/fonc.2021.747586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Peng Qu
- Cancer and Inflammation Program, National Cancer Institute (NCI), Frederick, MD, United States
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
40
|
|
41
|
Wu S, Li T, Liu W, Huang Y. Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Front Cell Dev Biol 2021; 9:733751. [PMID: 34568341 PMCID: PMC8455874 DOI: 10.3389/fcell.2021.733751] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell death induction has become popular as a novel cancer treatment. Ferroptosis, a newly discovered form of cell death, features regulated, iron-dependent accumulation of lipid hydroperoxides. Since this word “ferroptosis” was coined, numerous studies have examined the complex relationship between ferroptosis and cancer. Here, starting from the intrinsic hallmarks of cancer and cell death, we discuss the theoretical basis of cell death induction as a cancer treatment. We review various aspects of the relationship between ferroptosis and cancer, including the genetic basis, epigenetic modification, cancer stem cells, and the tumor microenvironment, to provide information and support for further research on ferroptosis. We also note that exosomes can be applied in ferroptosis-based therapy. These extracellular vesicles can deliver different molecules to modulate cancer cells and cell death pathways. Using exosomes to control ferroptosis occurring in targeted cells is promising for cancer therapy.
Collapse
Affiliation(s)
- Shuang Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
42
|
Melatonin Induces Autophagy via Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress Pathway in Colorectal Cancer Cells. Molecules 2021; 26:molecules26165038. [PMID: 34443626 PMCID: PMC8400139 DOI: 10.3390/molecules26165038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5′–adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
Collapse
|
43
|
Yang H, Ding Y, Tang J, Guo F. Identifying potential association on gene-disease network via dual hypergraph regularized least squares. BMC Genomics 2021; 22:605. [PMID: 34372777 PMCID: PMC8351363 DOI: 10.1186/s12864-021-07864-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Identifying potential associations between genes and diseases via biomedical experiments must be the time-consuming and expensive research works. The computational technologies based on machine learning models have been widely utilized to explore genetic information related to complex diseases. Importantly, the gene-disease association detection can be defined as the link prediction problem in bipartite network. However, many existing methods do not utilize multiple sources of biological information; Additionally, they do not extract higher-order relationships among genes and diseases. RESULTS In this study, we propose a novel method called Dual Hypergraph Regularized Least Squares (DHRLS) with Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL), in order to detect all potential gene-disease associations. First, we construct multiple kernels based on various biological data sources in gene and disease spaces respectively. After that, we use CAK-MKL to obtain the optimal kernels in the two spaces respectively. To specific, hypergraph can be employed to establish higher-order relationships. Finally, our DHRLS model is solved by the Alternating Least squares algorithm (ALSA), for predicting gene-disease associations. CONCLUSION Comparing with many outstanding prediction tools, DHRLS achieves best performance on gene-disease associations network under two types of cross validation. To verify robustness, our proposed approach has excellent prediction performance on six real-world networks. Our research work can effectively discover potential disease-associated genes and provide guidance for the follow-up verification methods of complex diseases.
Collapse
Affiliation(s)
- Hongpeng Yang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yijie Ding
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China.
| |
Collapse
|
44
|
Immunomodulation: An immune regulatory mechanism in carcinoma therapeutics. Int Immunopharmacol 2021; 99:107984. [PMID: 34303999 DOI: 10.1016/j.intimp.2021.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 01/01/2023]
Abstract
Cancer has been generally related to the possession of numerous mutations which interrupt important signaling pathways. Nevertheless, deregulated immunological signaling is considered as one of the key factors associated with the development and progression of cancer. The signaling pathways operate as modular network with different components interacting in a switch-like fashion with two proteins interplaying between each other leading to direct or indirect inhibition or stimulation of down-stream factors. Genetic, epigenetic, and transcriptomic alterations maintain the pathological conduit of different signaling pathways via affecting diverse mechanisms including cell destiny. At present, immunotherapy is one of the best therapies opted for cancer treatment. The cancer immunotherapy strategy includes harnessing the specificity and killing mechanisms of the immunological system to target and eradicate malignant cells. Targeted therapies utilizing several little molecules including Galunisertib, Astragaloside-IV, Melatonin, and Jervine capable of regulating key signaling pathways can effectively help in the management of different carcinomas.
Collapse
|
45
|
Sun X, Cheng L, Liu J, Xie C, Yang J, Li F. Predicting lncRNA-Protein Interaction With Weighted Graph-Regularized Matrix Factorization. Front Genet 2021; 12:690096. [PMID: 34335693 PMCID: PMC8322775 DOI: 10.3389/fgene.2021.690096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely concerned because of their close associations with many key biological activities. Though precise functions of most lncRNAs are unknown, research works show that lncRNAs usually exert biological function by interacting with the corresponding proteins. The experimental validation of interactions between lncRNAs and proteins is costly and time-consuming. In this study, we developed a weighted graph-regularized matrix factorization (LPI-WGRMF) method to find unobserved lncRNA-protein interactions (LPIs) based on lncRNA similarity matrix, protein similarity matrix, and known LPIs. We compared our proposed LPI-WGRMF method with five classical LPI prediction methods, that is, LPBNI, LPI-IBNRA, LPIHN, RWR, and collaborative filtering (CF). The results demonstrate that the LPI-WGRMF method can produce high-accuracy performance, obtaining an AUC score of 0.9012 and AUPR of 0.7324. The case study showed that SFPQ, SNHG3, and PRPF31 may associate with Q9NUL5, Q9NUL5, and Q9UKV8 with the highest linking probabilities and need to further experimental validation.
Collapse
Affiliation(s)
- Xibo Sun
- Yidu Central Hospital of Weifang, Weifang, China
| | | | - Jinyang Liu
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Cuinan Xie
- Geneis Beijing Co., Ltd., Beijing, China.,Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jiasheng Yang
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Fu Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
46
|
Huang Y, Zhou Z, Zhang J, Hao Z, He Y, Wu Z, Song Y, Yuan K, Zheng S, Zhao Q, Li T, Wang B. lncRNA MALAT1 participates in metformin inhibiting the proliferation of breast cancer cell. J Cell Mol Med 2021; 25:7135-7145. [PMID: 34164906 PMCID: PMC8335702 DOI: 10.1111/jcmm.16742] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years, the repurposing of conventional and chemotherapeutic drugs is recognized as an alternative strategy for health care. The main purpose of this study is to strengthen the application of non‐oncological drug metformin on breast cancer treatment in the perspective of epigenetics. In the present study, metformin was found to inhibit cell proliferation, promote apoptosis and induce cell cycle arrest in breast cancer cells at a dose‐dependent manner. In addition, metformin treatment elevated acH3K9 abundance and decreased acH3K18 level. The expression of lncRNA MALAT1, HOTAIR, DICER1‐AS1, LINC01121 and TUG1 was up‐regulated by metformin treatment. In metformin‐treated cells, MALAT1 knock‐down increased the Bax/Bcl2 ratio and enhanced p21 but decreased cyclin B1 expression. The expression of Beclin1, VDAC1, LC3‐II, CHOP and Bip was promoted in the cells received combinatorial treatment of metformin and MALAT1 knock‐down. The reduced phosphorylation of c‐Myc was further decreased in the metformin‐treated cells in combination with MALAT1 knock‐down than metformin treatment alone. Taken together, these results provide a promising repurposed strategy for metformin on cancer treatment by modulating epigenetic modifiers.
Collapse
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ziyan Zhou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jin Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhenzhen Hao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yunhao He
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zihan Wu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yiquan Song
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kexun Yuan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shanyu Zheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
47
|
Chen L, Wu C, Wang H, Chen S, Ma D, Tao Y, Wang X, Luan Y, Wang T, Shi Y, Song G, Zhao Y, Dong X, Wang B. Analysis of Long Noncoding RNAs in Aila-Induced Non-Small Cell Lung Cancer Inhibition. Front Oncol 2021; 11:652567. [PMID: 34235076 PMCID: PMC8255921 DOI: 10.3389/fonc.2021.652567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 01/24/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality among all carcinomas. However, it is difficult to diagnose in the early stage, and current therapeutic efficacy is not ideal. Although numerous studies have revealed that Ailanthone (Aila), a natural product, can inhibit multiple cancers by reducing cell proliferation and invasion and inducing apoptosis, the mechanism by which Aila represses NSCLC progression in a time-dependent manner remains unclear. In this study, we observed that most long noncoding RNAs (lncRNAs) were either notably up- or downregulated in NSCLC cells after treatment with Aila. Moreover, alterations in lncRNA expression induced by Aila were crucial for the initiation and metastasis of NSCLC. Furthermore, in our research, expression of DUXAP8 was significantly downregulated in NSCLC cells after treatment with Aila and regulated expression levels of EGR1. In conclusion, our findings demonstrate that Aila is a potent natural suppressor of NSCLC by modulating expression of DUXAP8 and EGR1.
Collapse
Affiliation(s)
- Lin Chen
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China.,College of Animal Science, Jilin University, Changchun, China
| | - Cui Wu
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ye Tao
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yan Shi
- School of Pharmacy, Jilin University, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yicheng Zhao
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xijun Dong
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China.,Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
48
|
Chen L, Li Q, Jiang Z, Li C, Hu H, Wang T, Gao Y, Wang D. Chrysin Induced Cell Apoptosis Through H19/let-7a/ COPB2 Axis in Gastric Cancer Cells and Inhibited Tumor Growth. Front Oncol 2021; 11:651644. [PMID: 34150620 PMCID: PMC8209501 DOI: 10.3389/fonc.2021.651644] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells. Methods Through the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo. Results Our results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth. Conclusions This study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
49
|
Ma D, Chen S, Wang H, Wei J, Wu H, Gao H, Cheng X, Liu T, Luo SH, Zhao Y, Song G. Baicalein Induces Apoptosis of Pancreatic Cancer Cells by Regulating the Expression of miR-139-3p and miR-196b-5p. Front Oncol 2021; 11:653061. [PMID: 33996574 PMCID: PMC8120266 DOI: 10.3389/fonc.2021.653061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is a common malignant tumor with a high incidence and mortality rate. The prognosis of patients with pancreatic cancer is considerably poor due to the lack of effective treatment in clinically. Despite numerous studies have revealed that baicalein, a natural product, is responsible for suppressing multiple cancer cells proliferation, motility and invasion. The mechanism by which baicalein restraining pancreatic cancer progression remains unclear. In this study, we firstly verified that baicalein plays a critical role in inhibiting pancreatic tumorigenesis in vitro and in vivo. Then we analyzed the alteration of microRNAs (miRNAs) expression levels in Panc-1 cells incubated with DMSO, 50 and 100 μM baicalein by High-Throughput sequencing. Intriguingly, we observed that 20 and 39 miRNAs were accordingly up- and down-regulated through comparing Panc-1 cells exposed to 100 μM baicalein with the control group. Quantitative PCR analysis confirmed that miR-139-3p was the most up-regulated miRNA after baicalein treatment, while miR-196b-5p was the most down-regulated miRNA. Further studies showed that miR-139-3p induced, miR-196b-5p inhibited the apoptosis of Panc-1 cells via targeting NOB1 and ING5 respectively. In conclusion, we demonstrated that baicalein is a potent inhibitor against pancreatic cancer by modulating the expression of miR-139-3p or miR-196b-5p.
Collapse
Affiliation(s)
- Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hong Gao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhao
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
50
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|