1
|
Kobylka P, Bakun P, Kuzminska J, Goslinski T, Murias M, Kucinska M. Insights into the Mode of Action of Novel Morpholinated Curcumin Derivatives Exhibiting Potent Antitumor Activity in Bladder Cancer Cells In Vitro. Molecules 2025; 30:295. [PMID: 39860164 PMCID: PMC11767817 DOI: 10.3390/molecules30020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Although curcumin is a well-known natural polyphenol with many biological activities, its clinical application has been limited by low aqueous solubility and stability. Therefore, curcumin derivatives have been proposed to overcome these limitations and increase anticancer activity. This study tested curcumin derivatives with modified feruloyl moieties (2a and 2a-B) and the β-diketo moiety (2a-B) to better understand their anticancer mechanism against human bladder cancer cells. The anticancer activity of 2a and 2a-B was determined using MTT (hypoxic conditions) and LDH (normoxic conditions) assays. An ELISA-based protein panel was used to find the potential molecular targets, while flow cytometric, colorimetric, fluorescent, and luminescent assays were used to investigate the cell death mechanism. It was shown that compound 2a exerted a more potent cytotoxic effect under hypoxic conditions, while compound 2a-B demonstrated a comparable effect in normoxic and hypoxic conditions. The potential molecular targets modified by 2a and 2a-B depending on oxygen concentration were also proposed. Both compounds alter cell cycle progression by blocking the cell cycle in the G2/M phase and decreasing the percentage of cells in the G0/G1 phase. Compound 2a-B led to phosphatidylserine translocation, increased caspase 3/7 activity, and decreased mitochondrial membrane potential, suggesting a mitochondrial apoptosis pathway. We found that the Akt signaling pathway may modulate the activity of compound 2a-B, as evidenced by enhanced cytotoxic activity in combination with MK-2206, an Akt 1/2/3 inhibitor. Thus, our results provide new insights into the anticancer activity of compounds 2a and 2a-B; however, further studies are needed to better understand their therapeutic potential.
Collapse
Affiliation(s)
- Paulina Kobylka
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (P.K.); (M.M.)
| | - Pawel Bakun
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (P.B.); (T.G.)
| | - Joanna Kuzminska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland;
| | - Tomasz Goslinski
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (P.B.); (T.G.)
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (P.K.); (M.M.)
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (P.K.); (M.M.)
| |
Collapse
|
2
|
Skubic C, Trček H, Nassib P, Kreft T, Walakira A, Pohar K, Petek S, Režen T, Ihan A, Rozman D. Knockouts of CYP51A1, DHCR24, or SC5D from cholesterol synthesis reveal pathways modulated by sterol intermediates. iScience 2024; 27:110651. [PMID: 39262789 PMCID: PMC11387598 DOI: 10.1016/j.isci.2024.110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024] Open
Abstract
Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.
Collapse
Affiliation(s)
- Cene Skubic
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Hana Trček
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Petra Nassib
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tinkara Kreft
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Andrew Walakira
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Katka Pohar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Petek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Barjesteh F, Heidari-Kalvani N, Alipourfard I, Najafi M, Bahreini E. Testosterone, β-estradiol, and hepatocellular carcinoma: stimulation or inhibition? A comparative effect analysis on cell cycle, apoptosis, and Wnt signaling of HepG2 cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6121-6133. [PMID: 38421409 DOI: 10.1007/s00210-024-03019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Unlike breast and prostate cancers, which are specifically affected by estrogens or androgens, hepatocellular carcinoma has been reported to be influenced by both sex hormones. Given the coincidental differences of hepatocellular carcinoma in men and women, we investigated the effects of β-estradiol and testosterone on the cell cycle, apoptosis, and Wnt signaling in a model of hepatocellular carcinoma to understand the sex hormone-related etiology. To determine the effective concentration of both hormones, an MTT assay was performed. The effects of β-estradiol and testosterone on cell proliferation and death were evaluated by specific staining and flow cytometry. In addition, gene expression levels of estimated factors involved in GPC3-Wnt survival signaling were analyzed using quantitative real-time polymerase chain reaction. Both hormones inhibited hepatic cell proliferation through arresting the cell cycle at S/G2 and increased the apoptosis rate in HepG2 cells. Both hormones dose-dependently decreased GPC3, Wnt, and DVL expression levels as activators of the Wnt-signaling pathway. In the case of Wnt-signaling inhibitors, the effects of both hormones on WIF were negligible, but they increased DKK1 levels in a dose-dependent manner. In each of the effects mentioned above, β-estradiol was notably more potent than testosterone. In contrast to the primary hypothesis of the project, in which testosterone was considered a stimulating carcinogenic factor in HCC pathogenesis, testosterone inhibited the occurrence of HCC similarly to β-estradiol. However, this inhibitory effect was weaker than that of β-estradiol and requires further study.
Collapse
Affiliation(s)
- Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Nafiseh Heidari-Kalvani
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614525, Iran.
| |
Collapse
|
4
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
5
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
6
|
Han S, Li Y, Gao J. Peripheral blood MicroRNAs as biomarkers of schizophrenia: expectations from a meta-analysis that combines deep learning methods. World J Biol Psychiatry 2024; 25:65-81. [PMID: 37703215 DOI: 10.1080/15622975.2023.2258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVES This study aimed at identifying reliable differentially expressed miRNAs (DEMs) for schizophrenia in blood via meta-analyses combined with deep learning methods. METHODS First, we meta-analysed published DEMs. Then, we enriched the pool of schizophrenia-associated miRNAs by applying two computational learning methods to identify candidate biomarkers and verified the results in external datasets. RESULTS In total, 27 DEMs were found to be statistically significant (p < .05). Ten candidate schizophrenia-associated miRNAs were identified through computational learning methods. The diagnostic efficiency was verified on a blood-miRNA dataset (GSE54578) with a random forest (RF) model and achieved an area under the curve (AUC) of 0.83 ± 0.14. Moreover, 855 experimentally validated target genes for these candidate miRNAs were retrieved, and 11 hub genes were identified. Enrichment analysis revealed that the main functions in which the target genes were enriched were those related to cell signalling, prenatal infections, cancers, cell deaths, oxidative stress, endocrine disorders, transcription regulation, and kinase activities. The diagnostic ability of the hub genes was reflected in a comparably good average AUC of 0.77 ± 0.09 for an external dataset (GSE38484). CONCLUSIONS A meta-analysis that combines computational and mathematical methods provides a reliable tool for identifying candidate biomarkers of schizophrenia.
Collapse
Affiliation(s)
- Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Thomaidis GV, Papadimitriou K, Michos S, Chartampilas E, Tsamardinos I. A characteristic cerebellar biosignature for bipolar disorder, identified with fully automatic machine learning. IBRO Neurosci Rep 2023; 15:77-89. [PMID: 38025660 PMCID: PMC10668096 DOI: 10.1016/j.ibneur.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 12/01/2023] Open
Abstract
Background Transcriptomic profile differences between patients with bipolar disorder and healthy controls can be identified using machine learning and can provide information about the potential role of the cerebellum in the pathogenesis of bipolar disorder.With this aim, user-friendly, fully automated machine learning algorithms can achieve extremely high classification scores and disease-related predictive biosignature identification, in short time frames and scaled down to small datasets. Method A fully automated machine learning platform, based on the most suitable algorithm selection and relevant set of hyper-parameter values, was applied on a preprocessed transcriptomics dataset, in order to produce a model for biosignature selection and to classify subjects into groups of patients and controls. The parent GEO datasets were originally produced from the cerebellar and parietal lobe tissue of deceased bipolar patients and healthy controls, using Affymetrix Human Gene 1.0 ST Array. Results Patients and controls were classified into two separate groups, with no close-to-the-boundary cases, and this classification was based on the cerebellar transcriptomic biosignature of 25 features (genes), with Area Under Curve 0.929 and Average Precision 0.955. The biosignature includes both genes connected before to bipolar disorder, depression, psychosis or epilepsy, as well as genes not linked before with any psychiatric disease. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed participation of 4 identified features in 6 pathways which have also been associated with bipolar disorder. Conclusion Automated machine learning (AutoML) managed to identify accurately 25 genes that can jointly - in a multivariate-fashion - separate bipolar patients from healthy controls with high predictive power. The discovered features lead to new biological insights. Machine Learning (ML) analysis considers the features in combination (in contrast to standard differential expression analysis), removing both irrelevant as well as redundant markers, and thus, focusing to biological interpretation.
Collapse
Affiliation(s)
- Georgios V. Thomaidis
- Greek National Health System, Psychiatric Department, Katerini General Hospital, Katerini, Greece
| | - Konstantinos Papadimitriou
- Greek National Health System, G. Papanikolaou General Hospital, Organizational Unit - Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Evangelos Chartampilas
- Laboratory of Radiology, AHEPA General Hospital, University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
9
|
Dijkstra J, Neikes HK, Rezaeifard S, Ma X, Voest EE, Tauriello DVF, Vermeulen M. Multiomics of Colorectal Cancer Organoids Reveals Putative Mediators of Cancer Progression Resulting from SMAD4 Inactivation. J Proteome Res 2023; 22:138-151. [PMID: 36450103 PMCID: PMC9830641 DOI: 10.1021/acs.jproteome.2c00551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of metastasis severely reduces the life expectancy of patients with colorectal cancer (CRC). Although loss of SMAD4 is a key event in CRC progression, the resulting changes in biological processes in advanced disease and metastasis are not fully understood. Here, we applied a multiomics approach to a CRC organoid model that faithfully reflects the metastasis-supporting effects of SMAD4 inactivation. We show that loss of SMAD4 results in decreased differentiation and activation of pro-migratory and cell proliferation processes, which is accompanied by the disruption of several key oncogenic pathways, including the TGFβ, WNT, and VEGF pathways. In addition, SMAD4 inactivation leads to increased secretion of proteins that are known to be involved in a variety of pro-metastatic processes. Finally, we show that one of the factors that is specifically secreted by SMAD4-mutant organoids─DKK3─reduces the antitumor effects of natural killer cells (NK cells). Altogether, our data provide new insights into the role of SMAD4 perturbation in advanced CRC.
Collapse
Affiliation(s)
- Jelmer
J. Dijkstra
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Hannah K. Neikes
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Somayeh Rezaeifard
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Xuhui Ma
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Emile E. Voest
- Department
of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Antoni van Leeuwenhoek
Hospital, 1066 CX Amsterdam, The Netherlands
| | - Daniele V. F. Tauriello
- Department
of Cell Biology, Radboud University Medical Center/Radboud Institute
for Molecular Life Sciences (RIMLS), Radboud
University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands
| | - Michiel Vermeulen
- Department
of Molecular Biology, Faculty of Science, Radboud Institute for Molecular
Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 26−28, 6525
GA Nijmegen, The
Netherlands,
| |
Collapse
|
10
|
Liang J, Sun L, Li Y, Liu W, Li D, Chen P, Wang X, Hui J, Zhou J, Liu H, Cao T, Pang M, Guo M, Wang X, Zhao X, Lu Y. Wnt Signaling Modulator DKK4 Inhibits Colorectal Cancer Metastasis through an AKT/Wnt/β-catenin Negative Feedback Pathway. J Biol Chem 2022; 298:102545. [PMID: 36181792 DOI: 10.1016/j.jbc.2022.102545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin signaling pathway is implicated in most malignant cancers, especially in the initiation and progression of colorectal cancer (CRC). DKK4 is a classical inhibitory molecule of the Wnt/β-catenin pathway, but its role in CRC is ambiguous, and the molecular mechanism remains unclear. Here, we determined DKK4 expression was significantly upregulated in 23 CRC cell lines and 229 CRC tissues when analyzed by quantitative PCR and immunohistochemistry, respectively. Our analysis of tissue samples indicated the survival time of CRC patients with high DKK4 expression was longer than that of patients with medium-low DKK4 expression. We examined the effects of DKK4 on cell proliferation and metastasis by cell counting kit-8 assays, Transwell assays, and subcutaneous and metastatic mouse tumor models, and we discovered that DKK4 silencing promoted the metastasis of CRC cells both in vitro and in vivo. Our RNA-seq analysis revealed that AKT2, FZD6, and JUN, which play important roles in AKT and Wnt signaling, were significantly increased after DKK4 knockdown. DKK4 represses Wnt/β-catenin signaling by repressing FZD6 and AKT2/s552 β-catenin in CRC. Further experiments revealed recombinant Wnt3a and LiCl could induce DKK4 expression. Moreover, our bioinformatics analysis and luciferase reporter assays identified posttranscriptional regulators of DKK4 in CRC cells. In summary, DKK4 is elevated in CRC and inhibits cell metastasis by a novel negative feedback mechanism of the Wnt3a/DKK4/AKT/s552 β-catenin regulatory axis to restrict overactivation of Wnt activity in CRC. Therefore, DKK4 restoration may be applied as a potential CRC therapeutic strategy.
Collapse
Affiliation(s)
- Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lina Sun
- The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yujun Li
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanning Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China; College of Life Sciences, Northwest University, Xi'an, China
| | - Danxiu Li
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Ping Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China; Department of Gastroenterology, Xingping People's Hospital, Xianyang, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China; Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Juan Hui
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinchi Zhou
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hao Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Tianyu Cao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Maogui Pang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Meng Guo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
11
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
12
|
Ma YS, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Wang HM, Wang PY, Lin QL, Li W, Fu D. Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs. Am J Cancer Res 2021; 11:2386-2400. [PMID: 34249406 PMCID: PMC8263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
13
|
Lou X, Meng Y, Hou Y. A literature review on function and regulation mechanism of DKK4. J Cell Mol Med 2021; 25:2786-2794. [PMID: 33586359 PMCID: PMC7957263 DOI: 10.1111/jcmm.16372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Dickkopf-related protein 4 (DKK4) is a member of the dickkopf family and an inhibitor of the Wnt/β-catenin signalling pathway. This review surveyed the single nucleotide polymorphisms (SNPs), copy number variations (CNVs), hypermethylation, regulation mechanism, correlation with clinicopathological parameters and chemotherapeutic resistance of DKK4. The signal pathways involved in DKK4 mainly include Wnt/β-catenin pathway and Wnt-JNK pathway independent β-catenin. DKK4 expression was upregulated in Renal Cell Carcinoma (RCC), Colorectal Cancer, Gastric Cancer (GC), Non-small Cell Lung Cancer (NSCLC) and Epithelial Ovarian Cancer (EOC), while downregulated in Hepatocellular Carcinoma (HCC). DKK4 is not only involved in tumour growth, invasion, migration and chemotherapy resistance, but also in osteoblastogenesis and secondary hair or meibomian gland formation. DKK4 has also been linked to schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Meng
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|