1
|
Burg N, Malpass R, Alex L, Tran M, Englebrecht E, Kuo A, Pannelini T, Minett M, Athukorala K, Worgall T, Faust HJ, Goodman S, Mehta B, Brenner M, Vestweber D, Wei K, Blobel C, Hla T, Salmon JE. Endothelial cell sphingosine 1-phosphate receptor 1 restrains VE-cadherin cleavage and attenuates experimental inflammatory arthritis. JCI Insight 2024; 9:e171467. [PMID: 38855867 PMCID: PMC11382883 DOI: 10.1172/jci.insight.171467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024] Open
Abstract
In rheumatoid arthritis, inflammatory mediators extravasate from blood into joints via gaps between endothelial cells (ECs), but the contribution of ECs is not known. Sphingosine 1-phosphate receptor 1 (S1PR1), widely expressed on ECs, maintains the vascular barrier. Here, we assessed the contribution of vascular integrity and EC S1PR1 signaling to joint damage in mice exposed to serum-induced arthritis (SIA). EC-specific deletion of S1PR1 or pharmacological blockade of S1PR1 promoted vascular leak and amplified SIA, whereas overexpression of EC S1PR1 or treatment with an S1PR1 agonist delayed SIA. Blockade of EC S1PR1 induced membrane metalloproteinase-dependent cleavage of vascular endothelial cadherin (VE-cadherin), a principal adhesion molecule that maintains EC junctional integrity. We identified a disintegrin and a metalloproteinase domain 10 (ADAM10) as the principal VE-cadherin "sheddase." Mice expressing a stabilized VE-cadherin construct had decreased extravascular VE-cadherin and vascular leakage in response to S1PR1 blockade, and they were protected from SIA. Importantly, patients with active rheumatoid arthritis had decreased circulating S1P and microvascular expression of S1PR1, suggesting a dysregulated S1P/S1PR1 axis favoring vascular permeability and vulnerability. We present a model in which EC S1PR1 signaling maintains homeostatic vascular barrier function by limiting VE-cadherin shedding mediated by ADAM10 and suggest this signaling axis as a therapeutic target in inflammatory arthritis.
Collapse
Affiliation(s)
- Nathalie Burg
- Hospital for Special Surgery, New York, New York, USA
| | - Ryan Malpass
- Hospital for Special Surgery, New York, New York, USA
| | - Linda Alex
- Hospital for Special Surgery, New York, New York, USA
| | - Miles Tran
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Englebrecht
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Tilla Worgall
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Heather J Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Goodman
- Hospital for Special Surgery, New York, New York, USA
| | - Bella Mehta
- Hospital for Special Surgery, New York, New York, USA
| | - Michael Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carl Blobel
- Hospital for Special Surgery, New York, New York, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane E Salmon
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
2
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
3
|
Chen Z, Lin B, Yao X, Weng J, Liu J, He Q, Song K, Zhou C, Zuo Z, Huang X, Liu Z, Huang Q, Xu Q, Guo X. Endothelial β-catenin upregulation and Y142 phosphorylation drive diabetic angiogenesis via upregulating KDR/HDAC9. Cell Commun Signal 2024; 22:182. [PMID: 38491522 PMCID: PMC10941375 DOI: 10.1186/s12964-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Diabetic angiogenesis is closely associated with disabilities and death caused by diabetic microvascular complications. Advanced glycation end products (AGEs) are abnormally accumulated in diabetic patients and are a key pathogenic factor for diabetic angiogenesis. The present study focuses on understanding the mechanisms underlying diabetic angiogenesis and identifying therapeutic targets based on these mechanisms. METHODS In this study, AGE-induced angiogenesis serves as a model to investigate the mechanisms underlying diabetic angiogensis. Mouse aortic rings, matrigel plugs, and HUVECs or 293T cells were employed as research objects to explore this pathological process by using transcriptomics, gene promoter reporter assays, virtual screening and so on. RESULTS Here, we found that AGEs activated Wnt/β-catenin signaling pathway and enhanced the β-catenin protein level by affecting the expression of β-catenin degradation-related genes, such as FZDs (Frizzled receptors), LRPs (LDL Receptor Related Proteins), and AXIN1. AGEs could also mediate β-catenin Y142 phosphorylation through VEGFR1 isoform5. These dual effects of AGEs elevated the nuclear translocation of β-catenin and sequentially induced the expression of KDR (Kinase Insert Domain Receptor) and HDAC9 (Histone Deacetylase 9) by POU5F1 and NANOG, respectively, thus mediating angiogenesis. Finally, through virtual screening, Bioymifi, an inhibitor that blocks VEGFR1 isoform5-β-catenin complex interaction and alleviates AGE-induced angiogenesis, was identified. CONCLUSION Collectively, this study offers insight into the pathophysiological functions of β-catenin in diabetic angiogenesis.
Collapse
Affiliation(s)
- Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingqi Lin
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodan Yao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Weng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinlian Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi He
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Song
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuyu Zhou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zirui Zuo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiulin Xu
- Department of Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
5
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Hou Y, Hou X, Nie Q, Xia Q, Hu R, Yang X, Song G, Ren L. Association of Bone Turnover Markers with Type 2 Diabetes Mellitus and Microvascular Complications: A Matched Case-Control Study. Diabetes Metab Syndr Obes 2023; 16:1177-1192. [PMID: 37139349 PMCID: PMC10149773 DOI: 10.2147/dmso.s400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The aim of this study was to evaluate the association of bone turnover markers (BTMs) with type 2 diabetes mellitus (T2DM) and microvascular complications. Methods A total of 166 T2DM patients and 166 non-diabetic controls matched by gender and age were enrolled. T2DM patients were sub-classified into groups based on whether they had diabetic peripheral neuropathy (DPN), diabetic retinopathy (DR), and diabetic kidney disease (DKD). Clinical data including demographic characteristics and blood test results [serum levels of osteocalcin (OC), N-terminal propeptide of type 1 procollagen (P1NP), and β-crosslaps (β-CTX)] were collected. Logistic regression and restrictive cubic spline curves were performed to examine the association of BTMs with the risk of T2DM and microvascular complications. Results After adjusting for family history of diabetes, sex and age, an inverse association was observed between elevated serum OC levels [O, p < 0.001] and increased serum P1NP levels , p < 0.001] with the risk of T2DM. Moreover, there was an inverse linear association of serum OC and P1NP levels with the risk of T2DM. However, β-CTX was not associated with T2DM. Further analysis showed a nonlinear association between OC and the risk of DR, while P1NP and β-CTX were not correlated with DR. Serum concentrations of BTMs were not associated with the risks of DPN and DKD. Conclusion Serum OC and P1NP levels were negatively correlated with T2DM risk. Particularly, serum OC levels were associated with DR risk. Given that BTMs are widely used as markers of bone remodeling, the present finding provides a new perspective for estimating the risk of diabetic microvascular complications.
Collapse
Affiliation(s)
- Yilin Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyu Hou
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qian Nie
- Health Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Qiuyang Xia
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Rui Hu
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Xiaoyue Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| | - Guangyao Song
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Correspondence: Guangyao Song; Luping Ren, Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China, Email ;
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| |
Collapse
|
7
|
Lam S, Shiu SW, Wong Y, Tan KC. Effect of type 2 diabetes on A disintegrin and metalloprotease 10. J Diabetes 2022; 14:394-400. [PMID: 35705192 PMCID: PMC9366558 DOI: 10.1111/1753-0407.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As a type 1 transmembrane protein, a disintegrin and metalloprotease 10 (ADAM10) is responsible for the cleavage of a variety of cell surface molecules and has been implicated in the pathogenesis of Alzheimer disease, atherosclerosis, and inflammatory and neoplastic disorders. It has been suggested that systemic ADAM10 concentration may potentially be used as a prognostic biomarker. Since high glucose can upregulate ADAM10 expression in vitro, we investigated whether serum levels of ADAM10 and its substrate, the lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), can be influenced by type 2 diabetes. METHODS A total of 1091 individuals with type 2 diabetes and 358 age-matched healthy control subjects were recruited. Serum concentrations of ADAM10 and the soluble form of LOX-1 (sLOX-1) released by cleavage of LOX-1 by ADAM were measured by enzyme-linked immunosorbent assay kits (ELISA). RESULTS Serum ADAM10 was increased in subjects with diabetes compared with control (40.5 ng/mL [22.3-65.7] vs 10.3 ng/mL [7.0-17.9], respectively; P < .01); the highest levels were seen in insulin-treated subjects. On multiple linear regression analysis, glycosylated hemoglobin, age, body mass index, and insulin use were independent determinants of ADAM10 level. The increase in serum ADAM10 levels in diabetes was accompanied by changes in serum sLOX-1. Subjects with diabetes had higher serum sLOX-1 than the control (110 pg/mL [89-153] vs 104 pg/mL [85-138], respectively; P < .01), and there was a significant correlation between serum ADAM10 and sLOX-1 (r = 0.26, P < .01). CONCLUSIONS Serum concentration of ADAM10 is increased in type 2 diabetes and is associated with glycemia and insulin therapy, which may potentially affect the specificity of systemic ADAM10 level as a biomarker.
Collapse
Affiliation(s)
- Sum Lam
- Department of MedicineUniversity of Hong KongHong Kong SARChina
| | | | - Ying Wong
- Department of MedicineUniversity of Hong KongHong Kong SARChina
| | | |
Collapse
|
8
|
Matsumoto T, Taguchi K, Kobayashi T. Relationships between advanced glycation end products (AGEs), vasoactive substances, and vascular function. J Smooth Muscle Res 2022; 57:94-107. [PMID: 35095032 PMCID: PMC8795595 DOI: 10.1540/jsmr.57.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are major cell types that control vascular function, and hence dysfunction of these cells plays a key role in the development and progression of vasculopathies. Abnormal vascular responsiveness to vasoactive substances including vasoconstrictors and vasodilators has been observed in various arteries in diseases including diabetes, hypertension, chronic kidney diseases, and atherosclerosis. Several substances derived from ECs tightly control vascular function, such as endothelium-derived relaxing and contracting factors, and it is known that abnormal vascular signaling of these endothelium-derived substances is often observed in various diseases. Derangement of signaling in VSMCs and altered function influence vascular reactivity to vasoactive substances and tone, which are important determinants of vascular resistance and blood pressure. However, understanding the molecular mechanisms underlying abnormalities of vascular functions in pathological states is difficult because multiple substances interact in the development of these processes. Advanced glycation end products (AGEs), a heterogeneous group of bioactive compounds, are thought to contribute to vascular dysfunction, which in turn cause the development of several diseases including diabetes, hypertension, stroke, and atherosclerosis. A growing body of evidence suggests that AGEs could affect these cells and modulate vascular function. This study is focused on the link between AGEs and functions of ECs and VSMCs, particularly the modulative effects of AGEs on vascular reactivities to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
9
|
Weng J, Chen Z, Li J, He Q, Chen D, Yang L, Su H, Huang J, Yu S, Huang Q, Xu Q, Guo X. Advanced glycation end products induce endothelial hyperpermeability via β-catenin phosphorylation and subsequent up-regulation of ADAM10. J Cell Mol Med 2021; 25:7746-7759. [PMID: 34227224 PMCID: PMC8358892 DOI: 10.1111/jcmm.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial hyperpermeability is the initial event in the development of diabetic microvascular complications, and advanced glycation end products (AGEs) are suggested to cause much of the endothelial hyperpermeability associated with diabetes mellitus, but the molecular mechanism remains to be characterized. β-catenin reportedly plays dual functions in maintaining normal endothelial permeability by serving both as an adhesive component and a signal transduction component. Here, we found that AGEs induced the phosphorylation of β-catenin at residues Y654 and Y142 and the endothelial hyperpermeability was reversed when the two residues were blocked. In mechanism, phosphorylation of Y654 was blocked by Src inactivation, whereas phosphorylation of Y142 was reduced by a focal adhesion kinase inhibitor. β-catenin Y654 phosphorylation induced by AGEs facilitated the dissociation of vascular endothelial (VE)-cadherin/β-catenin and the impairment of adherens junctions (AJs), whereas β-catenin Y142 phosphorylation favoured the dissociation of β-catenin and α-catenin. Further investigation revealed that β-catenin Y142 phosphorylation was required for AGEs-mediated β-catenin nuclear translocation, and this nuclear-located β-catenin subsequently activated the TCF/LEF pathway. This pathway promotes the transcription of the Wnt target, ADAM10 (a disintegrin and metalloprotease 10), which mediates VE-cadherin shedding and leads to further impairment of AJs. In summary, our study showed the role of β-catenin Y654 and Y142 phosphorylation in AGEs-mediated endothelial hyperpermeability through VE-cadherin/β-catenin/α-catenin dissociation and up-regulation of ADAM10, thereby advancing our understanding of the underlying mechanisms of AGEs-induced microvascular hyperpermeability.
Collapse
Affiliation(s)
- Jie Weng
- Department of Pulmonary and Critical Care MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhenfeng Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jieyu Li
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qi He
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Deshu Chen
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lin Yang
- Guangzhou Special Service Sanatorium Center of the Rocket ForceGuangzhouChina
| | - Haiying Su
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Junlin Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shengxiang Yu
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiaobing Huang
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Qiulin Xu
- Department of Emergency and Critical MedicineGuangdong Provincial People’s HospitalGuangdong Academy of Medical ScienceGuangzhouChina
| | - Xiaohua Guo
- Department of PathophysiologyGuangdong Provincial Key Laboratory of Shock and MicrocirculationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|