1
|
van Vliet AA, van den Hout MGCN, Steenmans D, Duru AD, Georgoudaki AM, de Gruijl TD, van IJcken WFJ, Spanholtz J, Raimo M. Bulk and single-cell transcriptomics identify gene signatures of stem cell-derived NK cell donors with superior cytolytic activity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200870. [PMID: 39346765 PMCID: PMC11426129 DOI: 10.1016/j.omton.2024.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Allogeneic natural killer (NK) cell therapies are a valuable treatment option for cancer, given their remarkable safety and favorable efficacy profile. Although the use of allogeneic donors allows for off-the-shelf and timely patient treatment, intrinsic interindividual differences put clinical efficacy at risk. The identification of donors with superior anti-tumor activity is essential to ensure the success of adoptive NK cell therapies. Here, we investigated the heterogeneity of 10 umbilical cord blood stem cell-derived NK cell batches. First, we evaluated the donors' cytotoxic potential against tumor cell lines from solid and hematological cancer indications, to distinguish a group of superior, "excellent" killers (4/10), compared with "good" killers (6/10). Next, bulk and single-cell RNA sequencing, performed at different stages of NK differentiation, revealed distinct transcriptomic features of the two groups. Excellent donors showed an enrichment in cytotoxicity pathways and a depletion of myeloid traits, linked to the presence of a larger population of effector-like NK cells early on during differentiation. Consequently, we defined a multi-factorial gene expression signature able to predict the donors' cytotoxic potential. Our study contributes to the identification of key traits of superior NK cell batches, supporting the development of efficacious NK therapeutics and the achievement of durable anti-tumor responses.
Collapse
Affiliation(s)
- Amanda A van Vliet
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Mirjam G C N van den Hout
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | | | - Adil D Duru
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jan Spanholtz
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Monica Raimo
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| |
Collapse
|
2
|
Lin L, Luo J, Cai Y, Wu X, Zhou L, Li T, Wang X, Xu H. Mass cytometry identifies imbalance of multiple immune-cell subsets associated with biologics treatment in ankylosing spondylitis. Int J Rheum Dis 2024; 27:e15378. [PMID: 39420773 DOI: 10.1111/1756-185x.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aims to comprehensively investigate immune-cell landscapes in ankylosing spondylitis (AS) patients and explore longitudinal immunophenotyping changes induced by biological agents. METHODS We employed mass cytometry with 35 cellular markers to analyze blood samples from 34 AS patients and 13 healthy controls (HC). Eleven AS patients were re-evaluated 1 month (4 patients) and 3 months (7 patients) after treatment with biological agents. Flow Self-Organizing Maps (FlowSOM) clustering was performed to identify specific cellular metaclusters. We compared cellular abundances across distinct subgroups and validated subset differences using gating strategies in flow cytometry scatter plots, visualized with FlowJo software. The proportions of differential subsets were then used for intercellular and clinical correlation analysis, as well as for constructing diagnostic models based on the random forest algorithm. RESULTS In AS patients, we identified and validated nine different immune-cell subsets compared to HC. Three subsets increased: helper T-cell 17 (Th17), mucosa-associated invariant T-cell (MAIT), and classical monocytes (CM). Six subsets decreased: effector memory T-cell (TEM), naïve B cells, transitional B cells, IL10+ memory B cells, non-classical monocytes (NCM), and neutrophils. Treatments with biological agents could rectify cellular abnormalities, particularly the imbalance of CM/NCM. Furthermore, these subsets may serve as biomarkers for assessing disease activity and constructing effective diagnostic models for AS. CONCLUSION These findings provide novel insights into the specific patterns of immune cell in AS, facilitating the further development of novel biomarkers and potential therapeutic targets for AS patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yue Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Nakajima S, Tsuchiya H, Fujio K. Unraveling immune cell heterogeneity in autoimmune arthritis: insights from single-cell RNA sequencing. Immunol Med 2024:1-13. [PMID: 39120105 DOI: 10.1080/25785826.2024.2388343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of immune-mediated arthritis, which comprises rheumatoid arthritis and spondyloarthritis. This review outlines the key findings and advancements in scRNA-seq studies focused on the pathogenesis of autoimmune arthritis and its clinical application. In rheumatoid arthritis, scRNA-seq has elucidated the heterogeneity among synovial fibroblasts and immune cell subsets in inflammatory sites, offering insights into disease mechanisms and the differences in treatment responses. Various studies have identified distinct synovial fibroblast subpopulations, such as THY1+ inflammatory and THY1- destructive fibroblasts. Furthermore, scRNA-seq has revealed diverse T cell profiles in the synovium, including peripheral helper T cells and clonally expanded CD8+ T cells, shedding light on potential therapeutic targets and predictive markers of treatment response. Similarly, in spondyloarthritis, particularly psoriatic arthritis and ankylosing spondylitis, scRNA-seq studies have identified distinct cellular profiles associated with disease pathology. Challenges such as cost and sample size limitations persist, but collaborative efforts and utilization of public databases hold promise for overcoming these obstacles. Overall, scRNA-seq emerges as a powerful tool for dissecting cellular heterogeneity and driving precision medicine in immune-mediated arthritis.
Collapse
Affiliation(s)
- Sotaro Nakajima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Nath PR, Maclean M, Nagarajan V, Lee JW, Yakin M, Kumar A, Nadali H, Schmidt B, Kaya KD, Kodati S, Young A, Caspi RR, Kuiper JJW, Sen HN. Single-cell profiling identifies a CD8 bright CD244 bright Natural Killer cell subset that reflects disease activity in HLA-A29-positive birdshot chorioretinopathy. Nat Commun 2024; 15:6443. [PMID: 39085199 PMCID: PMC11291632 DOI: 10.1038/s41467-024-50472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Birdshot chorioretinopathy is an inflammatory eye condition strongly associated with MHC-I allele HLA-A29. The striking association with MHC-I suggests involvement of T cells, whereas natural killer (NK) cell involvement remains largely unstudied. Here we show that HLA-A29-positive birdshot chorioretinopathy patients have a skewed NK cell pool containing expanded CD16 positive NK cells which produce more proinflammatory cytokines. These NK cells contain populations that express CD8A which is involved in MHC-I recognition on target cells, display gene signatures indicative of high cytotoxic activity (GZMB, PRF1 and ISG15), and signaling through NK cell receptor CD244 (SH2D1B). Long-term monitoring of a cohort of birdshot chorioretinopathy patients with active disease identifies a population of CD8bright CD244bright NK cells, which rapidly declines to normal levels upon clinical remission following successful treatment. Collectively, these studies implicate CD8bright CD244bright NK cells in birdshot chorioretinopathy.
Collapse
Affiliation(s)
- Pulak R Nath
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA.
- Lentigen Technology Inc., A Miltenyi Biotec Company, 910 Clopper Road, Gaithersburg, MD, 20878, USA.
| | - Mary Maclean
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
- Translational Immunology Section, Office of Science and Technology, NIAMS, Bethesda, NIH, USA
| | - Vijay Nagarajan
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Jung Wha Lee
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Mehmet Yakin
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Aman Kumar
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Hadi Nadali
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Brian Schmidt
- NIH Intramural Sequencing Center, NIH, Rockville, USA
| | - Koray D Kaya
- Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, USA
| | - Shilpa Kodati
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Alice Young
- NIH Intramural Sequencing Center, NIH, Rockville, USA
| | - Rachel R Caspi
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.
| | - H Nida Sen
- Clinical and Translational Immunology Unit, Laboratory of Immunology, NEI, NIH, Bethesda, USA
| |
Collapse
|
5
|
Lin P, Gan YB, He J, Lin SE, Xu JK, Chang L, Zhao LM, Zhu J, Zhang L, Huang S, Hu O, Wang YB, Jin HJ, Li YY, Yan PL, Chen L, Jiang JX, Liu P. Advancing skeletal health and disease research with single-cell RNA sequencing. Mil Med Res 2024; 11:33. [PMID: 38816888 PMCID: PMC11138034 DOI: 10.1186/s40779-024-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
Collapse
Grants
- 2022YFA1103202 National Key Research and Development Program of China
- 82272507 National Natural Science Foundation of China
- 32270887 National Natural Science Foundation of China
- 32200654 National Natural Science Foundation of China
- CSTB2023NSCQ-ZDJO008 Natural Science Foundation of Chongqing
- BX20220397 Postdoctoral Innovative Talent Support Program
- SFLKF202201 Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning
- 2021-XZYG-B10 General Hospital of Western Theater Command Research Project
- 14113723 University Grants Committee, Research Grants Council of Hong Kong, China
- N_CUHK472/22 University Grants Committee, Research Grants Council of Hong Kong, China
- C7030-18G University Grants Committee, Research Grants Council of Hong Kong, China
- T13-402/17-N University Grants Committee, Research Grants Council of Hong Kong, China
- AoE/M-402/20 University Grants Committee, Research Grants Council of Hong Kong, China
Collapse
Affiliation(s)
- Peng Lin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Bo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian He
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, the General Hospital of Western Theater Command, Chengdu, 610031, China
| | - Si-En Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Li-Ming Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Sacramento, CA, 94305, USA
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sha Huang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ying-Bo Wang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huai-Jian Jin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang-Yang Li
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Pu-Lin Yan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian-Xin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Chiñas M, Fernandez-Salinas D, Aguiar VRC, Nieto-Caballero VE, Lefton M, Nigrovic PA, Ermann J, Gutierrez-Arcelus M. Functional genomics implicates natural killer cells in the pathogenesis of ankylosing spondylitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.09.21.23295912. [PMID: 37808698 PMCID: PMC10557806 DOI: 10.1101/2023.09.21.23295912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Objective Multiple lines of evidence indicate that ankylosing spondylitis (AS) is a lymphocyte-driven disease. However, which lymphocyte populations are critical in AS pathogenesis is not known. In this study, we aimed to identify the key cell types mediating the genetic risk in AS using an unbiased functional genomics approach. Methods We integrated genome-wide association study (GWAS) data with epigenomic and transcriptomic datasets of human immune cells. To quantify enrichment of cell type-specific open chromatin or gene expression in AS risk loci, we used three published methods that have successfully identified relevant cell types in other diseases. We performed co-localization analyses between GWAS risk loci and genetic variants associated with gene expression (eQTL) to find putative target genes. Results Natural killer (NK) cell-specific open chromatin regions are significantly enriched in heritability for AS, compared to other immune cell types such as T cells, B cells, and monocytes. This finding was consistent between two AS GWAS. Using RNA-seq data, we validated that genes in AS risk loci are enriched in NK cell-specific gene expression. Using the human Space-Time Gut Cell Atlas, we also found significant upregulation of AS-associated genes predominantly in NK cells. Co-localization analysis revealed four AS risk loci affecting regulation of candidate target genes in NK cells: two known loci, ERAP1 and TNFRSF1A, and two under-studied loci, ENTR1 (aka SDCCAG3) and B3GNT2. Conclusion Our findings suggest that NK cells may play a crucial role in AS development and highlight four putative target genes for functional follow-up in NK cells.
Collapse
Affiliation(s)
- Marcos Chiñas
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Daniela Fernandez-Salinas
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Licenciatura en Ciencias Genomicas, Centro de Ciencias Genomicas, Universidad Nacional Autónoma de México (UNAM), Morelos 62210, Mexico
| | - Vitor R. C. Aguiar
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Victor E. Nieto-Caballero
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Licenciatura en Ciencias Genomicas, Centro de Ciencias Genomicas, Universidad Nacional Autónoma de México (UNAM), Morelos 62210, Mexico
| | - Micah Lefton
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joerg Ermann
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
7
|
Ren Z, Li C, Wang J, Sui J, Ma Y. Single-cell transcriptome revealed dysregulated RNA-binding protein expression patterns and functions in human ankylosing spondylitis. Front Med (Lausanne) 2024; 11:1369341. [PMID: 38770048 PMCID: PMC11104332 DOI: 10.3389/fmed.2024.1369341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
Objective To explore the expression characteristics and regulatory patterns of RBPs in different immune cell types of AS, and to clarify the potential key role of RBPs in the occurrence and development of AS disease. Methods PBMC sample data from scRNA-seq (HC*29, AS*10) and bulk RNA-seq (NC*3, AS*5) were selected for correlation analysis. Results (1) Compared with the HC group, the numbers of B, DC (dendritic cells), CD14+ Mono and CD8+ T cells were increased in AS group, while the numbers of platelet (platelets), CD8+ NKT, CD16+ Mono (non-classical monocytes), Native CD4+ T and NK were decreased. (2) Through the analysis of RBP genes in B cells, some RBPs were found to play an important role in B cell differentiation and function, such as DDX3X, SFPQ, SRRM1, UPF2. (3) It may be related to B-cell receptor, IgA immunity, NOD-like receptor and other signaling pathways; Through the analysis of RBP genes in CD8+ T cells, some RBPs that play an important role in the immune regulation of CD8+ T were found, such as EIF2S3, EIF4B, HSPA5, MSL3, PABPC1 and SRSF7; It may be related to T cell receptor, TNF, IL17 and other signaling pathways. (4) Based on bulk RNA-seq, it was found that compared with HC and AS patients, differentially expressed variable splicing genes (RASGs) may play an important role in the occurrence and development of AS by participating in transcriptional regulation, protein phosphorylation and ubiquitination, DNA replication, angiogenesis, intracellular signal transduction and other related pathways. Conclusion RBPs has specific expression characteristics in different immune cell types of AS patients, and has important regulatory functions. Its abnormal expression and regulation may be closely related to the occurrence and development of AS.
Collapse
Affiliation(s)
- Zheng Ren
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Chenyang Li
- Microsurgery Unit, The Third People’s Hospital of Xinjiang, Ürümqi, Xinjiang, China
| | - Jing Wang
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Jiangtao Sui
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Yuan Ma
- Xinjiang Institute of Spinal Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
8
|
Furst A, Gill T. Exploring the role of gut microbes in spondyloarthritis: Implications for pathogenesis and therapeutic strategies. Best Pract Res Clin Rheumatol 2024; 38:101961. [PMID: 38851970 DOI: 10.1016/j.berh.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The gut microbiota plays a pivotal role in regulating host immunity, and dysregulation of this interaction is implicated in autoimmune and inflammatory diseases, including spondyloarthritis (SpA). This review explores microbial dysbiosis and altered metabolic function observed in various forms of SpA, such as ankylosing spondylitis (AS), psoriatic arthritis (PsA), acute anterior uveitis (AAU), and SpA-associated gut inflammation. Studies on animal models and clinical samples highlight the association between gut microbial dysbiosis, metabolic perturbations and immune dysregulation in SpA pathogenesis. These studies have received impetus through next-generation sequencing methods, which have enabled the characterization of gut microbial composition and function, and host gene expression. Microbial/metabolomic studies have revealed potential biomarkers and therapeutic targets, such as short-chain fatty acids, and tryptophan metabolites, offering insights into disease mechanisms and treatment approaches. Further studies on microbial function and its modulation of the immune response have uncovered molecular mechanisms underlying various SpA. Understanding the complex interplay between microbial community structure and function holds promise for improved diagnosis and management of SpA and other autoimmune disorders.
Collapse
Affiliation(s)
- Alec Furst
- School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Li JX, Wu X, Lee YH, Xu H. West meets East in genetics of ankylosing spondylitis. Int J Rheum Dis 2023; 26:2122-2126. [PMID: 37910030 DOI: 10.1111/1756-185x.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Jing-Xing Li
- Department of General Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Xin Wu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yung-Heng Lee
- Department of Senior Services Industry Management, Minghsin University of Science and Technology, Hsinchu, Taiwan
- Department of Recreation and Sport Management, Shu-Te University, Kaohsiung, Taiwan
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Cishan Hospital, Ministry of Health and Welfare, Kaohsiung, Taiwan
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Kim SH, Lee SH. Updates on ankylosing spondylitis: pathogenesis and therapeutic agents. JOURNAL OF RHEUMATIC DISEASES 2023; 30:220-233. [PMID: 37736590 PMCID: PMC10509639 DOI: 10.4078/jrd.2023.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023]
Abstract
Ankylosing spondylitis (AS) is an autoinflammatory disease that manifests with the unique feature of enthesitis. Gut microbiota, HLA-B*27, and biomechanical stress mutually influence and interact resulting in setting off a flame of inflammation. In the HLA-B*27 positive group, dysbiosis in the gut environment disrupts the barrier to exogenous bacteria or viruses. Additionally, biomechanical stress induces inflammation through enthesial resident or gut-origin immune cells. On this basis, innate and adaptive immunity can propagate inflammation and lead to chronic disease. Finally, bone homeostasis is regulated by cytokines, by which the inflamed region is substituted into new bone. Agents that block cytokines are constantly being developed to provide diverse therapeutic options for preventing the progression of inflammation. In addition, some antibodies have been shown to distinguish disease selectively, which support the involvement of autoimmune immunity in AS. In this review, we critically analyze the complexity and uniqueness of the pathogenesis with updates on the findings of immunity and provide new information about biologics and biomarkers.
Collapse
Affiliation(s)
- Se Hee Kim
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Allard-Chamard H, Li Q, Rahman P. Emerging Concepts in Precision Medicine in Axial Spondyloarthritis. Curr Rheumatol Rep 2023; 25:204-212. [PMID: 37505349 DOI: 10.1007/s11926-023-01113-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE OF REVIEW Axial spondyloarthritis (AxSpA) is among the rheumatology's most heritable complex diseases, yet precision medicine at clinics still needs to be explored. We reviewed the emerging concepts and recent developments in polygenic risk scores, Mendelian randomization, pharmacogenomics, single-cell sequencing, and spatial transcriptomics. RECENT FINDINGS Polygenic risk score has resulted in encouraging results with potential diagnostic utility as it appears to outperform current diagnostic tools. Its performance and generalizability vary with ethnicity. Mendelian randomization has elucidated multiple causal associations, particularly between inflammatory bowel disease and AxSpA. Single-cell transcriptomics (particularly scRNA-seq and scATAC-seq) has identified numerous cell types, including synovial and blood immunological cells, to understand the contribution of both innate and adaptative immunity in AxSpA. Current molecular tools provide an exciting opportunity to advance precision medicine for AxSpA patients. However, extensive research and implementation strategies are still required before they can have an impact in the clinic.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Faculté de Médecine Et Des Sciences de La Santé de L'Université de Sherbrooke Et Centre de Recherche du CHUS, Sherbrooke, QC, J1K 2R1, Canada
| | - Quan Li
- Department of Medicine, Memorial University, St. John's, NL, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Proton Rahman
- Department of Medicine, Division of Rheumatology, Memorial University of Newfoundland, 154 LeMarchant Rd, St. John's, Newfoundland, A1C-5B8, Canada.
| |
Collapse
|
12
|
Li X, Li X, Wang H, Zhao X. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:532. [PMID: 37386410 DOI: 10.1186/s12891-023-06664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treatment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell death that plays an important role in the immune system. However, the relationship between pyroptosis genes and AS has never been elucidated. METHODS GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using principal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene. RESULTS Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analysis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, NLRC4, and GZMB) screened by machine learning and the protein-protein interaction (PPI) network were used to establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic properties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90-7501, and celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90-7501 formed one hydrogen bond, including CYS-136 (affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affinity: -9.4 kcal/mol). CONCLUSIONS Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Xin Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangying Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongqiang Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
13
|
Oh HR, Ko MK, Son D, Ki YW, Kim SI, Lee SY, Kang KW, Cheon GJ, Hwang DW, Youn H. Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines 2023; 11:biomedicines11041090. [PMID: 37189708 DOI: 10.3390/biomedicines11041090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) play a detrimental role in liver fibrosis progression. Natural killer (NK) cells are known to selectively recognize abnormal or transformed cells via their receptor activation and induce target cell apoptosis and, therefore, can be used as a potential therapeutic strategy for liver cirrhosis. In this study, we examined the therapeutic effects of NK cells in the carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model. NK cells were isolated from the mouse spleen and expanded in the cytokine-stimulated culture medium. Natural killer group 2, member D (NKG2D)-positive NK cells were significantly increased after a week of expansion in culture. The intravenous injection of NK cells significantly alleviated liver cirrhosis by reducing collagen deposition, HSC marker activation, and macrophage infiltration. For in vivo imaging, NK cells were isolated from codon-optimized luciferase-expressing transgenic mice. Luciferase-expressing NK cells were expanded, activated and administrated to the mouse model to track them. Bioluminescence images showed increased accumulation of the intravenously inoculated NK cells in the cirrhotic liver of the recipient mouse. In addition, we conducted QuantSeq 3' mRNA sequencing-based transcriptomic analysis. From the transcriptomic analysis, 33 downregulated genes in the extracellular matrix (ECM) and 41 downregulated genes involved in the inflammatory response were observed in the NK cell-treated cirrhotic liver tissues from the 1532 differentially expressed genes (DEGs). This result indicated that the repetitive administration of NK cells alleviated the pathology of liver fibrosis in the CCl4-induced liver cirrhosis mouse model via anti-fibrotic and anti-inflammatory mechanisms. Taken together, our research demonstrated that NK cells could have therapeutic effects in a CCl4-induced liver cirrhosis mouse model. In particular, it was elucidated that extracellular matrix genes and inflammatory response genes, which were mainly affected after NK cell treatment, could be potential targets.
Collapse
Affiliation(s)
- Ho Rim Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyung Ko
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Daehee Son
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Young Wook Ki
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Shin-Il Kim
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Do Won Hwang
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
14
|
van der Meer RG, Spoorenberg A, Brouwer E, Doornbos-van der Meer B, Boots AMH, Arends S, Abdulahad WH. Mucosal-associated invariant T cells in patients with axial spondyloarthritis. Front Immunol 2023; 14:1128270. [PMID: 36969157 PMCID: PMC10038212 DOI: 10.3389/fimmu.2023.1128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundSeveral studies implicate Th17-cells and its cytokine (IL-17) in disease pathogenesis of spondyloarthritis (SpA), with available evidence supporting a pathogenic role of CD8+ T-cells. However, data on the involvement of CD8+ mucosal-associated invariant T-cells (MAIT) and their phenotypic characterization and inflammatory function including IL-17 and Granzyme A production in a homogenous population of SpA-patients with primarily axial disease (axSpA) are lacking.ObjectivesQuantify and characterize the phenotype and function of circulating CD8+MAIT-cells in axSpA-patients with primarily axial disease.MethodsBlood samples were obtained from 41 axSpA-patients and 30 age- and sex-matched healthy controls (HC). Numbers and percentages of MAIT-cells (defined as CD3+CD8+CD161highTCRVα7.2+) were determined, and production of IL-17 and Granzyme A (GrzA) by MAIT-cells were examined by flow cytometry upon in vitro stimulation. Serum IgG specific for CMV was measured by ELISA.ResultsNo significant differences in numbers and percentages of circulating MAIT-cells were found between axSpA-patients and HCr zijn meer resultaten de centrale memory CD8 T cellen. cellen van patirculating MAIT cells.. Further phenotypic analysis revealed a significant decrease in numbers of central memory MAIT-cells of axSpA-patients compared to HC. The decrease in central memory MAIT-cells in axSpA patients was not attributed to an alteration in CD8 T-cell numbers, but correlated inversely with serum CMV-IgG titers. Production of IL-17 by MAIT-cells was comparable between axSpA-patients and HC, whereas a significant decrease in the production of GrzA by MAIT-cells from axSpA-patients was observed.ConclusionsThe decrease in cytotoxic capability of circulating MAIT-cells in axSpA-patients might implicate that these cell types migrate to the inflamed tissue and therefore associate with the axial disease pathogenesis.
Collapse
Affiliation(s)
- Rienk Gerben van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Rienk Gerben van der Meer,
| | - Anneke Spoorenberg
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annemieke M. H. Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wayel H. Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|