1
|
Wang C, Lv T, Jin B, Li Y, Fan Z. Regulatory role of PPAR in colorectal cancer. Cell Death Discov 2025; 11:28. [PMID: 39875357 PMCID: PMC11775197 DOI: 10.1038/s41420-025-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors in the digestive system, and the majority of patients are found to be in advanced stages, which is a burden to human health all over the world. Moreover, in recent years, CRC has been progressively becoming younger, with an increasing incidence mainly among patients <50 years old. Despite the increase in awareness of CRC and the continuous improvement of medical treatment nowadays, the challenge of CRC still needs to be conquered. By now, the pathogenesis of CRC is complex and not fully understood. With the deepening of research, it has been revealed that PPARs, as a transcription factor, are inextricably linked to CRC. This article outlines the mechanisms by which PPARs are involved in CRC development. An in-depth understanding of the pathways related to PPARs may provide new ways of developing effective therapies for CRC with PPARs as potential targets.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China
| | - Tingcong Lv
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Binghui Jin
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Yang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, China.
- Department of Breast Surgery, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
- Department of General Surgery, The Third People's Hospital of Dalian, Faculty of Medicine, Dalian University of Technology, Dalian, China.
| |
Collapse
|
2
|
Fan X, Zhang W, Zheng R, Zhang Y, Lai X, Han J, Fang Z, Han B, Huang W, Ye B, Dai S. GSDMD Mediates Ang II-Induced Hypertensive Nephropathy by Regulating the GATA2/AQP4 Signaling Pathway. J Inflamm Res 2024; 17:8241-8259. [PMID: 39525316 PMCID: PMC11549917 DOI: 10.2147/jir.s488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Aim Hypertensive nephropathy is a common complication of hypertension. However, no effective measures are currently available to prevent the progression of renal insufficiency. Gasdermin D (GSDMD) is a crucial mediator of pyroptosis that induces an excessive inflammatory response. In the present study, we aimed to determine the effect of GSDMD on the pathogenesis of hypertensive nephropathy, which may provide new insights into the treatment of hypertensive nephropathy. Methods C57BL/6 (wild-type, WT) and Gsdmd knockout (Gsdmd-/-) mice were subcutaneously infused with angiotensin II (Ang II) via osmotic mini-pumps to establish a hypertensive renal injury model. Recombinant adeno-associated virus serotype 9 (AAV9) carrying GSDMD cDNA was used to overexpress GSDMD. Renal function biomarkers, histopathological changes, and inflammation and fibrosis indices were assessed. Transcriptome sequencing (RNA-seq) and cleavage under targets and mentation (CUT & Tag) experiments were performed to identify the downstream pathogenic mechanisms of GSDMD in hypertensive nephropathy. Results GSDMD was activated in the kidneys of mice induced by Ang II (P < 0.001). This activation was primarily observed in the renal tubular epithelial cells (P < 0.0001). GSDMD deficiency attenuated renal injury and fibrosis induced by Ang II (P < 0.0001), whereas Gsdmd overexpression promoted renal injury and fibrosis (P < 0.01). Mechanistically, GSDMD increased Ang II-induced GATA binding protein 2 (GATA2) transcription factor expression (P < 0.01). GATA2 also bound to the aquaporin 4 (Aqp4) promoter sequence and facilitated Aqp4 transcription (P < 0.001), leading to renal injury and fibrosis. Moreover, treatment with GI-Y1, an inhibitor of GSDMD, alleviated Ang II-induced renal injury and fibrosis (P < 0.01). Conclusion GSDMD plays an important role in the development of hypertensive nephropathy. Targeting GSDMD may be a therapeutic strategy for the treatment of hypertensive nephropathy.
Collapse
Affiliation(s)
- Xiaoxi Fan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenli Zhang
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ruihan Zheng
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Yucong Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People’s Hospital of Zhejiang Province, Taizhou, People’s Republic of China
| | - Jibo Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Zimin Fang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bingjiang Han
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| | - Bozhi Ye
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shanshan Dai
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
- The Key Laboratory of Emergency and Disaster Medicine of Wenzhou, Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
4
|
Li YJ, Yu ZY, Zhang D, Zhang FR, Zhang DM, Chen M. Extracellular vesicles for the treatment of ulcerative colitis: A systematic review and meta-analysis of animal studies. Heliyon 2024; 10:e36890. [PMID: 39281542 PMCID: PMC11400994 DOI: 10.1016/j.heliyon.2024.e36890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Extracellular vesicles (EVs) are being considered as a potential therapeutic option for ulcerative colitis (UC), and numerous preclinical studies have been conducted on the use of EVs for UC. Methods A systematic review was conducted to compare the therapeutic effects of mammalian EVs and placebo on UC in animal models, along with a meta-analysis comparing naïve (unmodified) EVs and placebo. The search was performed in four databases (PubMed, Web of Science, Scopus, and EMBASE) up to September 13th, 2023. The primary outcomes included disease activity index (DAI), colonic mucosal damage index (CMDI), and adverse effects (PROSPERO ID: CRD42023458039). Results A total of 69 studies were included based on pre-determined criteria, involving 1271 animals. Of these studies, 51 measured DAI scores, with 98 % reporting that EVs could reduce DAI scores. Additionally, 5 studies reported CMDI and all showed that EVs could significantly reduce CMDI. However, only 3 studies assessed adverse effects and none reported any significant adverse effects. The meta-analysis of these studies (40 studies involving 1065 animals) revealed that naïve EVs could significantly decrease the DAI score (SMD = -3.00; 95 % CI: -3.52 to -2.48) and CMDI (SMD = -2.10; 95 % CI: -2.85 to -1.35). Conclusion The results indicate that mammalian EVs have demonstrated therapeutic benefits in animal models of UC; however, the safety profile of EVs remains inadequate which highlights the need for further research on safety outcomes.
Collapse
Affiliation(s)
- Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Ze-Yu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
5
|
Ramadan YN, Kamel AM, Medhat MA, Hetta HF. MicroRNA signatures in the pathogenesis and therapy of inflammatory bowel disease. Clin Exp Med 2024; 24:217. [PMID: 39259390 PMCID: PMC11390904 DOI: 10.1007/s10238-024-01476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Inflammatory bowel disease (IBD) is a persistent inflammatory illness of the gastrointestinal tract (GIT) triggered by an inappropriate immune response to environmental stimuli in genetically predisposed persons. Unfortunately, IBD patients' quality of life is negatively impacted by the symptoms associated with the disease. The exact etiology of IBD pathogenesis is not fully understood, but the emerging research indicated that the microRNA (miRNA) plays an important role. miRNAs have been documented to possess a significant role in regulating pro- and anti-inflammatory pathways, in addition to their roles in several physiological processes, including cell growth, proliferation, and apoptosis. Variations in the miRNA profiles might be a helpful prognostic indicator and a valuable tool in the differential diagnosis of IBD. Most interestingly, these miRNAs have a promising therapeutic target in several pre-clinical animal studies and phase 2 clinical studies to alleviate inflammation and improve patient's quality of life. This comprehensive review discusses the current knowledge about the significant physiological role of different miRNAs in the health of the intestinal immune system and addresses the role of the most relevant differentially expressed miRNAs in IBD, identify their potential targets, and emphasize their diagnostic and therapeutic potential for future research.
Collapse
Affiliation(s)
- Yasmin N Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt.
| | - Ayat M Kamel
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Mohammed A Medhat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, 71491, Tabuk, Saudi Arabia
| |
Collapse
|
6
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
7
|
Qiao Y, Tang X, Liu Z, Ocansey DKW, Zhou M, Shang A, Mao F. Therapeutic Prospects of Mesenchymal Stem Cell and Their Derived Exosomes in the Regulation of the Gut Microbiota in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:607. [PMID: 38794176 PMCID: PMC11124012 DOI: 10.3390/ph17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Xiaohua Tang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China;
| | - Ziyue Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| |
Collapse
|
8
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
9
|
Liu J, Wu P, Lai S, Wang J, Wang J, Zhang Y. Identifying possible hub genes and biological mechanisms shared between bladder cancer and inflammatory bowel disease using machine learning and integrated bioinformatics. J Cancer Res Clin Oncol 2023; 149:16885-16904. [PMID: 37740761 DOI: 10.1007/s00432-023-05266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Recent studies have shown that inflammatory bowel disease (IBD) is associated with bladder cancer (BC) incidence. But there is still a lack of understanding regarding its pathogenesis. Thus, this study aimed to identify potential hub genes and their important pathways and pathological mechanisms of interactions between IBD and BC using bioinformatics methods. METHODS The data from Gene Expression Omnibus (GEO) and the cancer genome atlas (TCGA) were analyzed to screen common differentially expressed genes (DEGs) between IBD and BC. The "clusterProfiler" package was used to analyze GO term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment in DEGs. After that, we conducted a weighted gene co-expression network analysis (WGCNA) on these DEGs to determine the vital modules and genes significantly related to BC. Protein-protein interaction (PPI) networks was used to identify hub genes. Further, the hub genes were used to develop a prognostic signature by Cox analysis. The validity of the ten hub DEGs was tested using three classification algorithms. Finally, we analyzed the microRNAs (miRNA)-mRNA, transcription factors (TFs)-mRNA regulatory network. RESULTS Positive regulation of organelle fission, chromosomal region, tubulin binding, and cell cycle signaling pathway were the major enriched pathways for the common DEGs. PPI networks identified three hub proteins (AURKB, CDK1, and CCNA2) with high connectivity. Three machine-learning classification algorithms based on ten hub genes performed well for IBD and BC (accuracy > 0.80). The robust predictive model based on the ten hub genes could accurately classify BC cases with various clinical outcomes. Based on the gene-TFs and gene-miRNAs network construction, 9 TFs and 6 miRNAs were identified as potential critical TFs and miRNAs. There are 13 drugs that interact with the hub gene based on gene-drug interaction analysis. CONCLUSIONS This study explored common gene signatures and the potential pathogenesis of IBD and BC. We revealed that an unbalanced immune response, cell cycle pathway, and neutrophil infiltration might be the common pathogenesis of IBD and BC. Molecular mechanisms for the treatment of IBD and CC still require further investigation.
Collapse
Affiliation(s)
- Jianyong Liu
- Department of Urology, Institute of the Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Hospital Continence Center, Beijing, People's Republic of China
| | - Pengjie Wu
- Department of Urology, Institute of the Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Hospital Continence Center, Beijing, People's Republic of China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jianye Wang
- Department of Urology, Institute of the Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
- , No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
| | - Jianlong Wang
- Department of Urology, Institute of the Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
- , No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
| | - Yaoguang Zhang
- Department of Urology, Institute of the Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
- Beijing Hospital Continence Center, Beijing, People's Republic of China.
- , No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
| |
Collapse
|
10
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Zhang C, Ma Z, Nan X, Wang W, Zeng X, Chen J, Cai Z, Wang J. Comprehensive analysis to identify the influences of SARS-CoV-2 infections to inflammatory bowel disease. Front Immunol 2023; 14:1024041. [PMID: 36817436 PMCID: PMC9936160 DOI: 10.3389/fimmu.2023.1024041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) and inflammatory bowel disease (IBD) are both caused by a disordered immune response and have direct and profound impacts on health care services. In this study, we implemented transcriptomic and single-cell analysis to detect common molecular and cellular intersections between COVID-19 and IBD that help understand the linkage of COVID-19 to the IBD patients. Methods Four RNA-sequencing datasets (GSE147507, GSE126124, GSE9686 and GSE36807) from Gene Expression Omnibus (GEO) database are extracted to detect mutual differentially expressed genes (DEGs) for IBD patients with the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to find shared pathways, candidate drugs, hub genes and regulatory networks. Two single-cell RNA sequencing (scRNA-eq) datasets (GSE150728, PRJCA003980) are used to analyze the immune characteristics of hub genes and the proportion of immune cell types, so as to find common immune responses between COVID-19 and IBD. Results A total of 121 common DEGs were identified among four RNA-seq datasets, and were all involved in the functional enrichment analysis related to inflammation and immune response. Transcription factors-DEGs interactions, miRNAs-DEGs coregulatory networks, and protein-drug interactions were identified based on these datasets. Protein-protein interactions (PPIs) was built and 59 hub genes were identified. Moreover, scRNA-seq of peripheral blood monocyte cells (PBMCs) from COVID-19 patients revealed a significant increase in the proportion of CD14+ monocytes, in which 38 of 59 hub genes were highly enriched. These genes, encoding inflammatory cytokines, were also highly expressed in inflammatory macrophages (IMacrophage) of intestinal tissues of IBD patients. Conclusions We conclude that COVID-19 may promote the progression of IBD through cytokine storms. The candidate drugs and DEGs-regulated networks may suggest effective therapeutic methods for both COVID-19 and IBD.
Collapse
Affiliation(s)
- Chengyan Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Ma
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Nan
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianchang Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Chen
- Department of Anorectal, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|