1
|
Dos Santos Sanches N, Panahipour L, Wang L, Imani A, Marchiolli CL, Cervantes LCC, Stein MCRV, Berton SA, Souza FÁ, Okamoto R, Júnior IRG, Gruber R. Cytokine expression of soft tissue cells cultured with titanium discs and their respective supernatants in vitro. Clin Oral Investig 2025; 29:62. [PMID: 39809969 PMCID: PMC11732886 DOI: 10.1007/s00784-024-06123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood. MATERIAL AND METHODS We have established a bioassay to this aim where human gingival fibroblasts, HSC2 oral squamous carcinoma cells, and murine bone marrow cells were cultured onto titanium discs or exposed to the respective supernatants for overnight. Modifications were double acid-etching (SLA), and coating with simulated body fluid (SBF) with or without odanacatib (ODN), a selective cathepsin K inhibitor reducing bone resorption. RESULTS Our findings indicate that direct contact with titanium discs, with all surface modifications, slightly reduces cell viability. Growing gingival fibroblasts on discs consistently showed a trend toward increased IL8 expression. In HSC2 cells, this setting significantly increased IL1 and IL8 expression, confirmed by the immunoassay. Murine bone marrow macrophages also showed an increase in IL1 and IL6 expressions. Supernatants of the respective discs failed to cause these changes. Although ODN coating inhibited cathepsin K, osteoclastogenesis remained unchanged. CONCLUSIONS These findings suggest that titanium discs do not provide a favorable in vitro surface for oral soft tissue cells as they lose viability and respond with a moderately increased expression of inflammatory cytokines. CLINICAL RELEVANCE The soft tissue surrounding a dental implant can impact rehabilitation success. Understanding how soft tissue cells respond to titanium surface is potentially relevant to understand clinical outcomes.
Collapse
Affiliation(s)
- Natália Dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Lei Wang
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Caroline Liberato Marchiolli
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Lara Cristina Cunha Cervantes
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
- University of Brazil, 15600-000, São Paulo, Fernandópolis, Brazil
| | - Maria Cristina Ruiz Voms Stein
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Sara Alves Berton
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Roberta Okamoto
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Idelmo Rangel Garcia Júnior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, 16015-050Sao Paulo, , Brazil
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
2
|
Kandaswamy E, Harsha M, Joshi VM. Titanium corrosion products from dental implants and their effect on cells and cytokine release: A review. J Trace Elem Med Biol 2024; 84:127464. [PMID: 38703537 DOI: 10.1016/j.jtemb.2024.127464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION Titanium is considered to be an inert material owing to the ability of the material to form a passive titanium oxide layer. However, once the titanium oxide layer is lost, it can lead to exposure of the underlying titanium substructure and can undergo corrosion. SUMMARY The article explores the role of titanium ions and particles from dental implants on cells, cytokine release, and on the systemic redistribution of these particles as well as theories proposed to elucidate the effects of these particles on peri-implant inflammation based on evidence from in-vitro, human, and animal studies. Titanium particles and ions have a pro-inflammatory and cytotoxic effect on cells and promote the release of pro-inflammatory mediators like cytokines. Three theories to explain etiopathogenesis have been proposed, one based on microbial dysbiosis, the second based on titanium particles and ions and the third based on a synergistic effect between microbiome and titanium particles on the host. CONCLUSION There is clear evidence from in-vitro and limited human and animal studies that titanium particles released from dental implants have a detrimental effect on cells directly and through the release of pro-inflammatory cytokines. Future clinical and translational studies are required to clarify the role of titanium particles and ions in peri-implant inflammation and the etiopathogenesis of peri-implantitis.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA
| | - M Harsha
- Department of Oral Pathology & Microbiology, Yogita Dental College & Hospital, Naringi Riverside, At Post Tal Dist. SH104, Khed, Maharashtra 415709, India
| | - Vinayak M Joshi
- Department of Periodontics, LSUHSC, School of Dentistry, 100 Florida Avenue, New Orleans, LA 70119, USA.
| |
Collapse
|
3
|
Liu X, Deng S, Li X, Liu H, Li Z, Wu Y, Luo P, Zhong X, Huang R, Liu R, Wu X, Huang B, Chen Z, Chen Z, Chen S. A Standardized Rat Model to Study Peri-implantitis of Transmucosal Osseointegrated Implants. Biomater Res 2024; 28:0021. [PMID: 38828365 PMCID: PMC11142924 DOI: 10.34133/bmr.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024] Open
Abstract
With the high incidence rate, distinctive implant characteristic and unique infection pattern, peri-implantitis (PI) requires a specially designed implant animal model for the researches on the pathogenesis and treatments. Previous small-animal PI models exhibit variability in implant site selection, design, and surgical procedures resulting in unnecessary tissue damage and less effectivity. Herein, a quantitative-analysis-based standardized rat model for transmucosal PI-related research was proposed. After dissecting the anatomic structures of the rat maxilla, we determined that placing the implant anterior to the molars in the rat maxilla streamlined the experimental period and enhanced animal welfare. We standardized the model by controlling the rat strain, gender, and size. The customized implant and a series of matched surgical instruments were appropriately designed. A clear, step-by-step surgical process was established. These designs ensured the success rate, stability, and replicability of the model. Each validation method confirmed the successful construction of the model. This study proposed a quantitative-analysis-based standardized transmucosal PI rat model with improved animal welfare and reliable procedures. This model could provide efficient in vivo insights to study the pathogenesis and treatments of PI and preliminary screening data for further large-animal and clinical trials.
Collapse
Affiliation(s)
- Xingchen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shudan Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiyan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Haiwen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhixin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - You Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Pu Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xinyi Zhong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruoxuan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xiayi Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Baoxin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
4
|
Li Y, Li X, Guo D, Meng L, Feng X, Zhang Y, Pan S. Immune dysregulation and macrophage polarization in peri-implantitis. Front Bioeng Biotechnol 2024; 12:1291880. [PMID: 38347915 PMCID: PMC10859439 DOI: 10.3389/fbioe.2024.1291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The term "peri-implantitis" (peri-implantitis) refers to an inflammatory lesion of the mucosa surrounding an endosseous implant and a progressive loss of the peri-implant bone that supports the implant. Recently, it has been suggested that the increased sensitivity of implants to infection and the quick elimination of supporting tissue after infection may be caused by a dysregulated peri-implant mucosal immune response. Macrophages are polarized in response to environmental signals and play multiple roles in peri-implantitis. In peri-implantitis lesion samples, recent investigations have discovered a considerable increase in M1 type macrophages, with M1 type macrophages contributing to the pro-inflammatory response brought on by bacteria, whereas M2 type macrophages contribute to inflammation remission and tissue repair. In an effort to better understand the pathogenesis of peri-implantitis and suggest potential immunomodulatory treatments for peri-implantitis in the direction of macrophage polarization patterns, this review summarizes the research findings related to macrophage polarization in peri-implantitis and compares them with periodontitis.
Collapse
Affiliation(s)
- Yue Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Danni Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingwei Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shaoxia Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
5
|
Chato-Astrain J, Toledano-Osorio M, Alaminos M, Toledano M, Sanz M, Osorio R. Effect of functionalized titanium particles with dexamethasone-loaded nanospheres on macrophage polarization and activity. Dent Mater 2024; 40:66-79. [PMID: 37914549 DOI: 10.1016/j.dental.2023.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE The aim of this study was to determine the effect of titanium micro particles (TiP) previously functionalized with nanoparticles doped with dexamethasone (Dex) and doxycycline (Dox), on macrophage polarization and activity. METHODS Macrophages RAW264.7 were cultured in the presence TiP loaded with dexamethasone -NPs (Dex)- and doxycycline -NPs (Dox)-, and as control, TiP with or without doped NPs. Cells were tested with and without previous bacterial lipopolysaccharide endotoxin (LPS) stimulation. Their morphology, proliferation, cytotoxicity, phenotypic change, and cytokines release were assessed by LIVE/DEAD, DNA release, metabolic activity, brightfield and scanning electron microscopy. The test Kruskall-Wallis was used for comparisons, while the cytokine expression profiles were examined by hierarchical clustering (p < 0.05). RESULTS Upon exposure with TiP macrophages were activated and polarized to M1, but without depicting cytotoxic effects. The particles were phagocytised, and vacuolized. When exposed to functionalised TiP with NPs(Dex) and NPs(Dox), the ratio M1/M2 was up to forty times lower compared to TiP alone. When exposed to LPS, TiP reduced cell viability in half. Functionalised TiP with NPs(Dex) inhibited the cytokine release exerted by TiP on macrophages. When macrophages were exposed to functionalised TiPs with NPs(Dex) with and without LPS, the effect of TiP on cytokine secretion was inhibited. SIGNIFICANCE Functionalised TiPs with NPs(Dex) and NPs(Dox) may potentially have beneficial effects on modulating titanium and LPS-related inflammatory reactions.
Collapse
Affiliation(s)
- Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain
| | - Manuel Toledano-Osorio
- Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain..
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain
| | - Manuel Toledano
- Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain; Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group. University Complutense of Madrid, Madrid, Spain
| | - Raquel Osorio
- Instituto de Investigación Biosanitaria IBS. Granada, Granada, Spain; Dental School, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
6
|
Spinell T, Kröger A, Freitag L, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review of omics in-vivo studies. Dent Mater 2023; 39:1150-1158. [PMID: 37839998 DOI: 10.1016/j.dental.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Titanium particles have been shown in in-vitro studies to lead to the activation of specific pathways, this work aims to systematically review in- vivo studies examining peri-implant and periodontal tissues at the transcriptome, proteome, epigenome and genome level to reveal implant material-related processes favoring peri-implantitis development investigated in animal and human trials. METHODS Inquiring three literature databases (Medline, Embase, Cochrane) a systematic search based on a priori defined PICOs was conducted: '-omics' studies comparing molecular signatures in healthy and infected peri-implant sites and/or healthy and periodontitis-affected teeth in animals/humans. After risk of bias assessments, lists of differentially expressed genes and results of functional enrichment analyses were compiled whenever possible. RESULTS Out of 2187 screened articles 9 publications were deemed eligible. Both healthy and inflamed peri-implant tissues showed distinct gene expression patterns compared to healthy/diseased periodontal tissues in animal (n = 4) or human studies (n = 5), with immune response, bone metabolism and oxidative stress being affected the most. Due to the lack of available re-analyzable data and inconsistency in methodology of the eligible studies, integrative analyses on differential gene expression were not applicable CONCLUSION: The differences of transcriptomic signatures in between peri-implant lesions compared to periodontal tissue might be related to titanium particles arising from dental implants and are in line with the in-vitro data recently published by our group. Nevertheless, limitations emerge from small sample sizes of included studies and insufficient publication of re-analyzable data.
Collapse
Affiliation(s)
- Thomas Spinell
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| | - Annika Kröger
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, Birmingham, UK
| | - Lena Freitag
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | | | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Moritz Kebschull
- Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK; Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University Collegeof Dental Medicine, New York, NY, United States
| |
Collapse
|
7
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Platt A, Liu CC, Gubler A, Naenni N, Thoma D, Schmidlin PR. In vitro evaluation of different protective techniques to reduce titanium particle contamination during implantoplasty. Clin Oral Investig 2023; 27:4205-4213. [PMID: 37140763 PMCID: PMC10415425 DOI: 10.1007/s00784-023-05037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Our aim is to study titanium remains in a bone model during standardized implantoplasty under different isolation and protective modalities. MATERIAL AND METHODS Forty implants were placed in artificial spongy bone blocks mimicking a horizontal bone loss and implant neck protrusion of 5 mm. Samples were randomly divided into four groups (n = 10), which were treated as follows: rubber dam (A), a dental adhesive paste (B), bone wax (C), and an unprotected positive control (D). Implantoplasty was performed using carbide and diamond burs under strict water cooling and standardized suction. After removal of the respective isolation materials, the bone blocks were thoroughly rinsed with tap water for 3 min and titanium chips were collected using a filter integrated in the model. The filter paper was removed and dissolved in 37% hydrochloric acid for 2 h at 120 °C and the titanium remnants were quantified using atomic absorption spectrometry. RESULTS None of the test groups were able to completely prevent titanium particle contamination. Rubber dam (691 ± 249 µg) and bone wax (516 ± 157 µg) were found to be significantly more protective than the positive control (2313 ± 747 µg) (p < 0.001) with respect to the amount of titanium particles that remained in the bone model after implantoplasty. The adhesive paste group (1863.5 ± 538 µg) was not significantly different from the positive control (p = 0.19). CONCLUSIONS Despite some limitations of the present study, titanium particles resulting from a standardized implantoplasty can be assumed to be significantly reduced when the tissues/bone were protected with rubber dam and bone wax, or a combination, depending on individual accessibility. CLINICAL RELEVANCE Tissue protective measures to reduce or avoid particle contamination during implantoplasty is possible and should be considered and further clinically assessed to avoid iatrogenic inflammatory reactions.
Collapse
Affiliation(s)
- A Platt
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - C C Liu
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - A Gubler
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - N Naenni
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - D Thoma
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - P R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
9
|
(±)-Zanthonitidumines A and B: Two new benzophenanthridine alkaloids enantiomers from Zanthoxylum nitidum and their anti-inflammatory activity. Fitoterapia 2023; 164:105362. [PMID: 36427595 DOI: 10.1016/j.fitote.2022.105362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Two new benzophenanthridine alkaloids enantiomers (±)-zanthonitidumines A (1) and B (2), along with seven known analogues (3-9), were isolated from Zanthoxylum nitidium. Their structures were elucidated on the basis of extensive spectroscopic techniques and ECD data. Compound 2 exhibited the most significant inhibition of IL-6 generation as well as TNF-α release which suggest that it may be a potential anti-inflammatory agent.
Collapse
|
10
|
Freitag L, Spinell T, Kröger A, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri-implantitis - A systematic review and integrative analysis of omics in-vitro studies. Dent Mater 2023; 39:101-113. [PMID: 36526446 DOI: 10.1016/j.dental.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Since peri-implantitis differs clinically and histopathologically from periodontitis, implant wear debris is considered to play a role in the destructive processes. This work aims to systematically review if titanium particles affect oral-related cells through changes in molecular signatures (e.g., transcriptome, proteome, epigenome), thereby promoting peri-implantitis. METHODS Leveraging three literature databases (Medline, Embase, Cochrane) a systematic search based on a priori defined PICOs was conducted: '-omics' studies examining titanium exposure in oral-related cells. After risk of bias assessments, lists of differentially expressed genes, proteins, and results of functional enrichment analyses were compiled. The significance of overlapping genes across multiple studies was assessed via Monte Carlo simulation and their ranking was verified using rank aggregation. RESULTS Out of 2104 screened articles we found 12 eligible publications. A significant overlap of gene expression in oral-related cells exposed to titanium particles was found in four studies. Furthermore, changes in biological processes like immune/inflammatory or stress response as well as toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling pathways were linked to titanium in transcriptome and proteome studies. Epigenetic changes caused by titanium were detected but inconsistent. CONCLUSION An influence of titanium implant wear debris on the development and progression of peri-implantitis is plausible but needs to be proven in further studies. Limitations arise from small sample sizes of included studies and insufficient publication of re-analyzable data.
Collapse
Affiliation(s)
- Lena Freitag
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Thomas Spinell
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| | - Annika Kröger
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
| | | | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Hickel
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Moritz Kebschull
- School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK; Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| |
Collapse
|
11
|
Salvi GE, Stähli A, Imber JC, Sculean A, Roccuzzo A. Physiopathology of peri-implant diseases. Clin Implant Dent Relat Res 2022. [PMID: 36515007 DOI: 10.1111/cid.13167] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Peri-implant health is characterized by the absence of clinical signs of soft tissue inflammation. Peri-implant diseases are initiated by the presence of bacterial biofilms and share a similar etiology as that involved in the onset of periodontal diseases. PURPOSE To summarize available evidence on the physiopathology of peri-implant diseases with emphasis on similarities and differences with periodontal diseases. MATERIALS AND METHODS Evidence on the biologic mechanisms involved in the pathogenesis of peri-implant mucositis and peri-implantitis were explored in the recent scientific literature. RESULTS Findings of studies in animals and in humans indicate that experimental peri-implant mucositis leads to a larger inflammatory connective tissue infiltrate and to a higher frequency of bleeding sites around implants compared with teeth. Tissue destruction at experimental peri-implantitis sites is more pronounced compared with that at experimental periodontitis sites. Although human periodontitis and peri-implantitis lesions share similarities with respect to etiology and clinical features, they represent distinct entities from a physiopathologic point of view. CONCLUSIONS Diagnosis of peri-implant health requires a clinical examination to confirm absence of peri-implant soft tissue inflammation. In order to make a correct diagnosis and select the appropriate therapeutic steps to manage peri-implant diseases, knowledge of their pathogenetic mechanisms is required.
Collapse
Affiliation(s)
- Giovanni E Salvi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
AjitSankardas P, Stein SH, Tipton D, Abhyankar V, Morrow BR. Impact of Metal Particles Released during Ultrasonic Scaling of Titanium Surfaces on Human Gingival Fibroblasts. J Long Term Eff Med Implants 2022; 33:9-22. [PMID: 36382700 DOI: 10.1615/jlongtermeffmedimplants.2022043080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Metal particles found in tissues around dental implants have been proposed to play a pathogenic role in peri-implantitis. Ultrasonic scaling has been suggested as a mechanism by which these particles can be inadvertently released into surrounding tissues. Furthermore, risk factors like diabetes can result in exacerbation of this inflammatory condition. The current study aimed to analyze metal particles released from titanium surfaces during ultrasonic scaling and their impact on pro-inflammatory cytokine production by human gingival fibroblasts. METHODS Metal particles generated from ultrasonic scaling of titanium discs using two different tips (metal and poly-etheretherketone tips) were characterized using scanning electron microscopy and elemental analysis. Endotoxin levels and Human gingival fibroblast viability, in the presence commercial and ultrasonically generated particles were determined. Fibroblasts, cultured in high or low glucose growth medium, were incubated with commercial titanium particles or ultrasonically generated particles in the presence or absence of interluekin-1β. Interleukin 6 and interleukin 8 production were then quantified using Enzyme linked immunosorbent assay. RESULTS Analysis of particles after scaling of titanium discs showed significant levels of titanium particles. Commercial titanium particles and generated particles had no effect of fibroblast viability. Endotoxin levels of all particles were too low to stimulate HGF cells. IL-1β significantly stimulated IL-6 and IL-8 production. However, commercial, and generated particles generally had no significant effect on IL- 6 and IL-8 production. CONCLUSION Our study concluded that particles generated during ultrasonic scaling had no significant effect on viability of HGF cells and cytokine production.
Collapse
Affiliation(s)
- Pooja AjitSankardas
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Sidney H Stein
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - David Tipton
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Vrushali Abhyankar
- Department of Periodontology, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| | - Brian R Morrow
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38103
| |
Collapse
|
13
|
An ionic silver coating prevents implant-associated infection by anaerobic bacteria in vitro and in vivo in mice. Sci Rep 2022; 12:18387. [PMID: 36319854 PMCID: PMC9626628 DOI: 10.1038/s41598-022-23322-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022] Open
Abstract
Currently, implants are utilized clinically for bone transplant procedures. However, if infectious osteomyelitis occurs at implant sites, removal of bacteria can be challenging. Moreover, altered blood flow at peri-implant infectious sites can create an anaerobic environment, making it more difficult to treat infection with antibiotics. Thus, it would be beneficial if implants could be modified to exhibit antibacterial activity, even in anaerobic conditions. Here, we show antibacterial activity of silver ions coated on titanium rods, even against the anaerobic bacteria Porphyromonas gingivalis (P. gingivalis), both in vitro and in vivo. Specifically, we implanted silver-coated or control uncoated titanium rods along with P. gingivalis in mouse femoral bone BM cavities and observed significantly inhibited P. gingivalis infection with silver-coated compared with non-coated rods, based on in vivo bio-imaging. Osteonecrosis by infectious osteomyelitis and elevation of the inflammatory factors C-reactive protein and IL-6 promoted by P. gingivalis s were also significantly reduced in the presence of silver-coated rods. Overall, our study indicates that silver ion coating of an implant represents a therapeutic option to prevent associated infection, even in anaerobic conditions or against anaerobic bacteria.
Collapse
|
14
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
15
|
Nemec M, Behm C, Maierhofer V, Gau J, Kolba A, Jonke E, Rausch-Fan X, Andrukhov O. Effect of Titanium and Zirconia Nanoparticles on Human Gingival Mesenchymal Stromal Cells. Int J Mol Sci 2022; 23:ijms231710022. [PMID: 36077419 PMCID: PMC9456558 DOI: 10.3390/ijms231710022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles are currently being discussed as potential risk factors for peri-implant disease. In the present study, we compared the responses of human gingival mesenchymal stromal cells (hG-MSCs) on titanium and zirconia nanoparticles (<100 nm) in the absence and presence of Porphyromonas gingivalis lipopolysaccharide (LPS). The primary hG-MSCs were treated with titanium and zirconia nanoparticles in concentrations up to 2.000 µg/mL for 24 h, 72 h, and 168 h. Additionally, the cells were treated with different nanoparticles (25−100 µg/mL) in the presence of P. gingivalis LPS for 24 h. The cell proliferation and viability assay and live−dead and focal adhesion stainings were performed, and the expression levels of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured. The cell proliferation and viability were inhibited by the titanium (>1000 µg/mL) but not the zirconia nanoparticles, which was accompanied by enhanced apoptosis. Both types of nanoparticles (>25 µg/mL) induced the significant expression of IL-8 in gingival MSCs, and a slightly higher effect was observed for titanium nanoparticles. Both nanoparticles substantially enhanced the P. gingivalis LPS-induced IL-8 production; a higher effect was observed for zirconia nanoparticles. The production of inflammatory mediators by hG-MSCs is affected by the nanoparticles. This effect depends on the nanoparticle material and the presence of inflammatory stimuli.
Collapse
Affiliation(s)
- Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Vera Maierhofer
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Jonas Gau
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Anastasiya Kolba
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Clinical Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40070-2620
| |
Collapse
|
16
|
Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. Periodontol 2000 2022; 90:125-137. [PMID: 35913702 DOI: 10.1111/prd.12453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nolan M Kavanagh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trang V N Nguyen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine and Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William V Giannobile
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Li L, Sun W, Yu J, Lei W, Zeng H, Shi B. Effects of titanium dioxide microparticles and nanoparticles on cytoskeletal organization, cell adhesion, migration, and proliferation in human gingival fibroblasts in the presence of lipopolysaccharide. J Periodontal Res 2022; 57:644-659. [PMID: 35438207 DOI: 10.1111/jre.12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Titanium wear particles may participate in the etiology of peri-implantitis. However, the influence of titanium wear particles on biological behavior of human gingival fibroblasts (HGFs) in the presence of LPS is still not clear. The present study demonstrated the effects of titanium dioxide micro- and nanoparticles (TiO2 MPs and NPs) on HGF cell viability, cytoskeletal organization, adhesion, migration, and proliferation in vitro, and LPS was used to mimic the in vivo condition. METHODS Primary HGFs were treated with TiO2 MPs (primary particle size <5 μm, 0.1 mg/ml) and NPs (primary particle size <100 nm, 0.1 mg/ml) with or without 1 μg/ml LPS. The effects of TiO2 MPs and NPs on HGFs cell viability was measured by CCK-8 assay. The proliferation of HGF was detected by Ki67 nuclear staining. The confocal laser scanning microscope (CLSM) was used to detect the internalization of TiO2 MPs and NPs in HGFs as well as the arrangement of F-actin, vinculin, and vimentin organization. Wound healing assay and transwell assay were performed to measure the migration of HGFs induced by TiO2 MPs and NPs. Cell adhesion was measured using fibronectin-coated plates. The relative mRNA and protein expression of adhesion relative protein such as focal adhesion kinase (FAK), fibronectin (FN), and type I collagen (COL1) were measured using quantitative RT-PCR and western blot analysis. One-way analysis of variance (ANOVA) and Student's t-test were used to analyze the statistical significance, and p < .05 was considered statistically significant. RESULTS TiO2 NPs significantly inhibited HGF cell viability, proliferation, and migration compared with TiO2 MPs group and control group. Compared with control group (2.64 ± 0.09), the mean absorbance of the cells in 1 mg/ml TiO2 MPs group and 0.25 mg/ml TiO2 NPs group were significantly decreased to 1.93 ± 0.33 (p < .05) and 2.22 ± 0.18 (p < .01), respectively. The cytoskeleton disruption was found in TiO2 NPs group. The mRNA and protein expression were significantly downregulated by TiO2 NPs. Furthermore, both TiO2 NPs and MPs induced more adverse effects on HGFs in the presence of LPS. CONCLUSION Our results indicate that TiO2 NPs but not TiO2 MPs significantly disrupt the cytoskeletal organization and inhibited cell adhesion, migration, and proliferation of HGFs. However, in the presence of LPS, TiO2 MPs, and TiO2 NPs enhance these negative effects in HGFs. Titanium wear particles are probably involved in the initiation and progression of peri-implant diseases.
Collapse
Affiliation(s)
- Lei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenlong Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bin Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, Wuhan, China.,School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Luchian I, Goriuc A, Sandu D, Covasa M. The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes. Int J Mol Sci 2022; 23:1806. [PMID: 35163727 PMCID: PMC8837018 DOI: 10.3390/ijms23031806] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Severe periodontitis, a destructive inflammatory disease of the supporting tissues of the teeth, ranks sixth in terms of global spread, affecting about 11% of the population. Metalloproteinases (MMPs) are extracellular matrix (ECM) macromolecules that are important in cellular development and morphogenesis, and they are capable of activating growth factors in their proximity, cell surface receptors, and adhesion molecules. MMPs are part of a major family of zinc-dependent endopeptidases, and their activity is modulated and regulated by certain inhibitors known as tissue metalloproteinase inhibitors (TIMPs). Because type I collagen is the major component of the periodontal extracellular matrix, special attention has been paid to the role of collagenases, especially MMP-8 and MMP-13 and gelatinases, MMP-2 and MMP-9, in periodontal diseases. In fact, MMP-8 (or collagenase 2) is currently one of the most promising biomarkers for periodontitis in oral fluids. Among them, salivary MMP-9 has been shown to be a more sensitive marker for periodontal inflammation during orthodontic treatment, which opens new perspectives in reducing periodontal hazards during such treatments. Both MMP-8 and MMP-9 are extremely valuable diagnostic tools in treating periodontitis, and future studies and healthcare policies should focus on implementing more accessible methods of chairside testing in order to reduce the prevalence of this disease.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.L.); (D.S.)
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Darius Sandu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (I.L.); (D.S.)
| | - Mihai Covasa
- College of Medicine and Biological Sciences, University “Stefan cel Mare” Suceava, 13 Universității Street, 720229 Suceava, Romania;
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, 309E Second Street, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Romanos GE, Fischer GA, Rahman ZT, Delgado-Ruiz R. Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. MATERIALS 2022; 15:ma15031200. [PMID: 35161144 PMCID: PMC8838065 DOI: 10.3390/ma15031200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
Titanium wear is a growing area of interest within dental implantology. This study aimed to investigate titanium and zirconium wear from dental implants at the time of insertion using X-ray-fluorescence spectrometry (XRF) and an in vitro protocol utilizing artificial bovine bone plates. Five groups were analyzed using XRF-spectrometry: groups 1–4 (titanium implants) and group 5 (zirconia implants). The implants were inserted into two bone blocks held together by a vice. The blocks were separated, and the insertion sites were analyzed for titanium (Ti) and zirconium (Zr). Statistical descriptive analyses of Ti and Zr concentrations in the coronal, middle and apical bone interface were performed. A comparative analysis confirmed differences between the implant’s surface stability and Ti accumulation within the insertion sites of the bone block. There was a direct relationship between implant length and the quantity of titanium found on the bone block. The data generally indicates greater quantities of titanium in the coronal thirds of the implants, and less in the apical thirds. The titanium and zirconium found in the bone samples where the group 5 implants were inserted was not of statistical significance when compared to control osteotomies. The results of this study confirm wear from metallic, but not ceramic, dental implants at the time of insertion.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
- Correspondence: ; Tel.: +1-(631)-632-8755; Fax: +1-(631)-632-8670
| | - Gerard A. Fischer
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Zaid T. Rahman
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
20
|
Kheder W, Al Kawas S, Khalaf K, Samsudin A. Impact of tribocorrosion and titanium particles release on dental implant complications - A narrative review. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:182-189. [PMID: 34630776 PMCID: PMC8488597 DOI: 10.1016/j.jdsr.2021.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
Titanium particles as a product of degradation have been detected in periimplant oral tissues and it has been assumed that implants were the source of these particles. Periimplantitis sites had higher concentrations of particles in comparison to healthy implant sites. Several factors have been identified in the degradation of dental implant surface, such as mechanical wear, contact with chemical agents, and the effects of biofilm adhesion. Titanium particles silently prompt the immune-system activation and generate a pro-inflammatory response in macrophages, T lymphocytes and monocytes. During the activation, inflammatory cytokines are released including, granulocyte-macrophage colony-stimulating factor (GM-CSF), prostaglandin, and TNF-α, IL-1β, IL-6. The nanoparticles depict unique features such as high level of biological reactivity and potentially harmful compared to microparticles since they have a relatively greater surface area to volume ratio. Allergic response to titanium as a cause of implant failure has not been well documented. Evidence demonstrating biological complication due to titanium particles release includes peri-implant tissue inflammation that lead terminally to implant loss. There is a biological probability for a relation between the presence of titanium particles and ions, biological complication, and corrosion, but there is no justifiable evidence for unidirectional series of causative actions.
Collapse
Affiliation(s)
- Waad Kheder
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sausan Al Kawas
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khaled Khalaf
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| | - A.R. Samsudin
- College of Dental Medicine, University of Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
21
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
22
|
Yang C, Liu W, Shan H, Yu X, Zhang X, Zeng B, Qian Y. Naringin inhibits titanium particles-induced up-regulation of TNF-α and IL-6 via the p38 MAPK pathway in fibroblasts from hip periprosthetic membrane. Connect Tissue Res 2021; 62:485-494. [PMID: 32500755 DOI: 10.1080/03008207.2020.1778680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIMS Inflammatory responses to wear debris cause osteolysis that leads to aseptic loosening and hip arthroplasty failure. Wear debris stimulate macrophages and fibroblasts to secret proinflammatory cytokines, including TNF-α and IL-6, which have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. Naringin has anti-inflammatory effect in macrophages. Moreover, naringin inhibited osteoclastogenesis and wear particles-induced osteolysis. In this study, we examined the potential inhibitory effects of naringin on titanium (Ti) particle-induced proinflammatory cytokines secretion in fibroblasts and the possible underlying molecular mechanisms. MATERIALS AND METHODS Fibroblasts were isolated from periprosthetic membrane at the time of revision surgery performed due to aseptic loosening after hip arthroplasty and were cultured in the presence or absence of Ti particles, naringin and mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (a selective inhibitor of ERK), SP600125 (a selective inhibitor of JNK), and SB203580 (a selective inhibitor of p38). TNF-α and IL-6 assays were performed using enzyme-linked immunosorbent assay kits. The phosphorylation levels of p38 and nuclear factor kappa B p65 (NF-κB p65) were examined by western blot. RESULTS Naringin or SB203580 pretreatment significantly suppressed the secretion of TNF-α and IL-6 induced by titanium particles in fibroblasts, while inhibition of ERK or JNK pathways showed no effect on production of TNF-α and IL-6. Moreover, naringin inhibited Ti particle-induced phosphorylation of p38 and p65. CONCLUSIONS These results indicated that naringin could inhibit Ti particle-induced inflammation in fibroblasts by inhibiting p38 MAPK/NF-κB p65 activity and might be a potential drug for the treatment of inflammatory periprosthetic osteolysis after arthroplasty.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bingfang Zeng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yebin Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Orthopedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
23
|
Effect of Titanium and Zirconium Oxide Microparticles on Pro-Inflammatory Response in Human Macrophages under Induced Sterile Inflammation: An In Vitro Study. MATERIALS 2021; 14:ma14154166. [PMID: 34361359 PMCID: PMC8347735 DOI: 10.3390/ma14154166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022]
Abstract
The wear-debris particles released by shearing forces during dental implant insertion may contribute to inflammatory reactions or osteolysis associated with peri-implantitis by stimulating inflammasome-activation. The study aim was to examine cytotoxic and pro-inflammatory effects of titanium (TiO2) and zirconia (ZrO2) particles in macrophages regarding their nature/particle concentration over time under sterile lipopolysaccharide (LPS) inflammation. Macrophages were exposed to TiO2 and ZrO2 particles (≤5 µm) in cell culture. Dental glass was used as inert control and LPS (1 μg/mL) was used to promote sterile inflammation. Cytotoxicity was determined using MTT assays and cytokine expression of TNF-α, IL-1β and IL-6 was evaluated by qRT-PCR. Data were analyzed using Student's t-test and ANOVA (p ≤ 0.05). Cytotoxicity was significantly increased when exposed to higher concentrations of glass, TiO2 and ZrO2 (≥107 particles/mL) compared to controls (p ≤ 0.05). Macrophages challenged with TiO2 particles expressed up to ≈3.5-fold higher upregulation than ZrO2 from 12 to 48 h. However, when exposed to LPS, TiO2 and ZrO2 particle-induced pro-inflammatory gene expression was further enhanced (p ≤ 0.05). Our data suggest that ZrO2 particles produce less toxicity/inflammatory cytokine production than TiO2. The present study shows that the biological reactivity of TiO2 and ZrO2 depends on the type and concentration of particles in a time-dependent manner.
Collapse
|
24
|
Chen C, Jiang Z, Jiang Q, Dai W, Shao Q, Chen Q, Wang Y, Yang G. Caspase-3 and gasdermin E detection in peri-implantitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166217. [PMID: 34273529 DOI: 10.1016/j.bbadis.2021.166217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
Peri-implantitis could lead to progressive bone loss and implant failure; however, the mechanism of peri-implantitis remains unclear. Based on emerging evidence, pyroptosis, a novel proinflammatory programmed death, contributes to different oral infectious diseases. In the present study, we investigated the involvement of cleaved caspase-3 and gasdermin E (GSDME) in peri-implantitis and established a pyroptosis model in vitro. By collecting and examining the inflamed biopsies around peri-implantitis, we found that the pyroptosis-related markers (caspase-3, GSDME, and IL-1β) were enhanced relative to levels in control individuals. Furthermore, human gingival epithelium cells (HGECs) induced by tumor necrosis factor-α (TNF-α) exhibited pyroptosis morphological changes (cell swelling and balloon-shaped bubbles) and upregulated expression of pyroptosis-related markers. Pretreated with Ac-DEVD-CHO (a caspase-3 inhibitor) or GSDME small interference RNA (siRNA) were found to attenuate pyroptosis in HGECs. In conclusion, our findings revealed a high expression of caspase-3 and GSDME in the inflamed biopsies of peri-implantitis and confirmed that the caspase-3/GSDME pathway mediates TNF-α-triggered pyroptosis in human gingival epithelium cells, which provides a new target for peri-implantitis treatment.
Collapse
Affiliation(s)
- Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Qifeng Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Qin Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
25
|
Canullo L, Masucci L, Quaranta G, Patini R, Caponio VCA, Pesce P, Ravidà A, Penarrocha-Oltra D, Penarrocha-Diago M. Culturomic and quantitative real-time-polymerase chain reaction analyses for early contamination of abutments with different surfaces: A randomized clinical trial. Clin Implant Dent Relat Res 2021; 23:568-578. [PMID: 34196453 DOI: 10.1111/cid.13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Rough and/or plasma-activated abutments seem to be able to increase soft tissue adhesion and stability; however, limited evidence is available about bacterial contamination differences. PURPOSE The aim was to investigate the oral microbiota on four dental abutments with different surfaces by quantitative real-time polymerase chain reaction (qRT-PCR) and culturomic approach. METHODS Forty patients needing a single implant rehabilitation were involved in the study. Forty healing abutments, especially designed for the study, were divided into four groups according to the surface topography (1. machined [MAC], 2. machined plasma of argon treated [plasmaMAC], 3. ultrathin threaded microsurface [UTM], 4. UTM plasma of argon treated [Plasma UTM]). Random assignment was performed according to predefined randomization tables. All patients underwent surgical intervention for implant and contextual healing abutment positioning. After 2 months of healing, a sterile cotton swab was used for microbiological sampling for culturomics, while sterile paper points inserted into the sulcus were used for qRT-PCR. RESULTS At the end of the study, 36 patients completed all procedures and a total of 36 abutments (9 per group) were analyzed. qRT-PCR retrieved data for 23 bacterial species whereas culturomics revealed the presence of 74 different bacteria, most of them not routinely included into oral cavity microbiological kits of analysis or never found before in the oral microenvironment. No statistically significant differences emerged analyzing the four different surfaces (p = 0.053). On the contrary, higher total and specific bacterial counts were detected in the plasma-treated surfaces compared to the untreated ones (p = 0.021). CONCLUSIONS Abutments with different topographies and surface treatments resulted contaminated by similar oral bacterial flora. Abutments with moderately rough surface were not associated with a greater bacterial adhesion compared to machined ones. Conversely, more bacteria were found around plasma-treated abutments. Furthermore, data reported suggested to include new species not previously sought in the routine analyses of the oral bacterial microflora.
Collapse
Affiliation(s)
- Luigi Canullo
- Collaborating Professor of the Master in Oral Surgery and Implantology, University of Valencia, Valencia, Spain
| | - Luca Masucci
- Department of Microbiology and Virology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Quaranta
- Department of Microbiology and Virology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Paolo Pesce
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Andrea Ravidà
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - David Penarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Miguel Penarrocha-Diago
- Oral Surgery Unit, Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
26
|
Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater 2021; 124:33-49. [PMID: 33444803 DOI: 10.1016/j.actbio.2021.01.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Osseointegration at the bone-implant interface and soft tissue integration (STI) at the trans-mucosal region are crucial for the long-term success of dental implants, especially in compromised patient conditions. The STI quality of conventional smooth and bio-inert titanium-based implants is inferior to that of natural tissue (i.e. teeth), and hence various surface modifications have been suggested. This review article compares and contrasts the various modification strategies (physical, chemical and biological) utilized to enhance STI of Ti implants. It also details the STI challenges associated with conventional Ti-based implants, current surface modification strategies and cutting-edge nano-engineering solutions. The topographical, biological and therapeutic advances achievable via electrochemically anodized Ti implants with TiO2 nanotubes/nanopores are highlighted. Finally, the status and future directions of such nano-engineered implants is discussed, with emphasis on bridging the gap between research and clinical translation.
Collapse
|
27
|
Fragkioudakis I, Tseleki G, Doufexi AE, Sakellari D. Current Concepts on the Pathogenesis of Peri-implantitis: A Narrative Review. Eur J Dent 2021; 15:379-387. [PMID: 33742426 PMCID: PMC8184306 DOI: 10.1055/s-0040-1721903] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As implant treatment has been integrated in contemporary dental practice, complications with the forms of peri-implant mucositis and peri-implantitis have also increased in prevalence. Peri-implantitis is the more severe biological complication and is defined as an inflammatory disease affecting peri-implant tissues resulting in bone and eventually implant loss. In addition, the treatment of peri-implantitis has currently become a substantial global economic burden. In the current study, a search was conducted in several electronic databases using specific keywords relevant to the article's main topic. An increasing number of scientific reports have investigated the etiopathology of peri-implant diseases, focusing mainly on peri-implantitis. Microbial biofilm consists an important etiological factor of peri-implant pathology analogous to periodontal diseases. Although several data confirm that peri-implant infections are dominated by gram-negative bacteria, similar to periodontal infections, there is evidence that some cases may harbor a distinct microbiota, including opportunistic microorganisms and/or uncultivable species. Additionally, data support that several parameters, such as genetic predisposition of individual patients, occlusal overload, and local factors such as titanium particles and excess cement, may be implicated in peri-implantitis pathogenesis. Simultaneously, the release of titanium metal particles and their biological consequences or the presence of excess cement in the adjacent peri-implant tissues have also been suggested as factors that contribute to peri-implant pathology. A specific line of research also indicates the role of foreign body response to implant installation. This narrative review aims to discuss the current concepts of etiopathogenetic factors implicated in peri-implantitis.
Collapse
Affiliation(s)
- Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Tseleki
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini-Elisavet Doufexi
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Guo T, Gulati K, Arora H, Han P, Fournier B, Ivanovski S. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent Mater 2021; 37:816-831. [PMID: 33676764 DOI: 10.1016/j.dental.2021.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The success of a dental implant system not only depends on appropriate osseointegration at the bone-implant interface, but also on robust soft-tissue integration (STI)/muco-integration at the transmucosal region. However, numerous studies have reported that the STI quality of conventional smooth and bio-inert titanium-based transmucosal components is significantly inferior to that of natural teeth, which may compromise the long-term success of implant restorations. In this review article, we discuss the structural and histological characteristics of peri-implant tissues; compare the roles of various cells residing in the transmucosal region and explore the material-based challenges that must be addressed to achieve early establishment and long-term maintenance of STI. METHODS This extensive review article critically compares and contrasts the findings from articles published in the domain of 'soft-tissue integration around Ti dental implants'. RESULTS Histological characteristics, including poorer epithelial attachment and absence of direct collagen-implant/abutment integration, are responsible for the inferior STI strength around dental implants/abutments. Furthermore, various cellular functions during STI establishment and maturation at the abutment-mucosa interface must be modulated to achieve early STI. Moreover, we discuss and detail the challenges of achieving robust STI, including the presence of oral bacterial milieu, as well as material and corrosion related issues. Finally, research challenges towards achieving and maintaining robust STI are discussed, targeting the future directions to enhance the long-term survival of implant restorations. SIGNIFICANCE Based on its histological characteristics, STI on current implant/abutment surfaces is suboptimal compared to the periodontal attachment found at teeth, making implants potentially more susceptible to disease initiation and progression. To obtain stable STI at the trasmucosal region, it is essential for future studies to design customized implant systems, with enhanced surface bioactivity and tailorable therapeutic capacity, which can improve the long-term success of implant restorations, especially in compromised conditions.
Collapse
Affiliation(s)
- Tianqi Guo
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Karan Gulati
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| | - Himanshu Arora
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Pingping Han
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia
| | - Benjamin Fournier
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia; Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Centre of Reference for Oral and Dental Rare Diseases, Paris, France; Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology, Paris, France
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston QLD 4006, Australia.
| |
Collapse
|
29
|
Hentenaar DFM, De Waal YCM, Vissink A, Van Winkelhoff AJ, Meijer HJA, Liefers SC, Kroese FGM, Raghoebar GM. Biomarker levels in peri-implant crevicular fluid of healthy implants, untreated and non-surgically treated implants with peri-implantitis. J Clin Periodontol 2021; 48:590-601. [PMID: 33454996 DOI: 10.1111/jcpe.13423] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/26/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022]
Abstract
AIM To compare biomarker levels in peri-implant crevicular fluid (PICF) of healthy implants with levels in PICF of implants with peri-implantitis (before and after non-surgical treatment). MATERIALS AND METHODS Samples were taken from 20 healthy implants (n = 17 patients) and from 20 implants with peri-implantitis (n = 19 patients) before and 3 months after non-surgical treatment using the Airflow Master Piezon® (EMS). A Luminex™ assay was used to evaluate pro-inflammatory and anti-inflammatory cytokines IL-1β, TNF-α, IL-6 and G-CSF, collagen degradation enzyme MMP-8, chemokines MCP-1 & MIP-1α/CCL3, bone markers OPG and sRANKL and interferon-γ. Clinical and radiographical characteristics were assessed. A Mann-Whitney U and Wilcoxon signed-rank test analysed between- and within-group differences. RESULTS IL-1β and MMP-8 levels were found significantly elevated in implants with peri-implantitis (p = .007; p = <.001, respectively). No difference in levels of TNF-α, IL-6, MCP-1 and MIP-1α/CCL3, OPG and G-CSF between healthy and diseased implants was found. Levels of sRANKL and INF-γ were under the level of detection. None of the biomarker levels improved after non-surgical therapy, and levels of IL-1β and MMP-8 remained high. CONCLUSION Implants diagnosed with peri-implantitis have higher levels of IL-1β and MMP-8 in PICF compared to healthy implants. Non-surgical therapy did not influence the inflammatory immune response.
Collapse
Affiliation(s)
- Diederik F M Hentenaar
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yvonne C M De Waal
- Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arie Jan Van Winkelhoff
- Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henny J A Meijer
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sylvia C Liefers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans G M Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerry M Raghoebar
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Irshad M, Alam MK, Ali S, Alawneh A, Alhadi M, Alhadi A, Alfawzan AA. Effects of Implant Surface Debridement and Systemic Antibiotics on the Clinical and Microbiological Variables of Periimplantitis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6660052. [PMID: 33553428 PMCID: PMC7847323 DOI: 10.1155/2021/6660052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the role of implant surface debridement alone and in conjunction with systemic antibiotics on the clinical and microbiological variables of periimplantitis. MATERIALS AND METHODS Data of forty-six patients with at least one dental implant having bleeding-on-probing (BoP), probing pocket depth (PPD) of more than 5 mm, and radiographic bone loss of more than 3 mm were retrieved from clinical records. Data was recorded for dental implant with the deepest PPD, BoP, and bone loss from each patient. "Group-A" received implant surface debridement alone, while "group-B" additionally received systemic antibiotics. Clinical and microbiological data of patients were compared before and after the treatment. RESULTS At the implant level, a significant reduction of PPD, mucosal recession (MR), and BoP was achieved for all patients. Group B achieved significant improvement in MR and BoP compared to group A at implant level. PPD, MR, and plaque scores showed improvement at implant site level. At 3 months recall visit, 44% of group A and 52% of group B implants required surgical treatment. The presence and proportions of studied bacteria of both groups did not differ significantly at the recall visit when compared to the initial visit. However, P. intermedia and P. micros showed a significant reduction in group A at the recall visit. CONCLUSIONS Implant surface debridement improved the clinical parameters of periimplantitis. In addition, adjunctive use of systemic antibiotics increased mucosal recession and improved bleeding on probing in periimplantitis.
Collapse
Affiliation(s)
- Muhammad Irshad
- Department of Oral Pathology, Rehman College of Dentistry, Peshawar, Pakistan
| | - Mohammad Khursheed Alam
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | - Sajid Ali
- Department of Prosthodontics, Rehman College of Dentistry, Peshawar, Pakistan
| | - Ahmad Alawneh
- Jordanian Royal Medical Services, Dental Department, Jordan
| | - Mohammed Alhadi
- Aljouf Specialist Dental Center, MOH, Sakaka 72345, Saudi Arabia
| | - Ahmed Alhadi
- Ministry of Health in Saudi Arabia, Saudi Arabia
| | - Ahmed Ali Alfawzan
- Department of Preventive Dentistry, College of Dentistry in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
31
|
Palka L, Mazurek-Popczyk J, Arkusz K, Baldy-Chudzik K. Susceptibility to biofilm formation on 3D-printed titanium fixation plates used in the mandible: a preliminary study. J Oral Microbiol 2020; 12:1838164. [PMID: 33194115 PMCID: PMC7598999 DOI: 10.1080/20002297.2020.1838164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/07/2023] Open
Abstract
Background: In the oral and maxillofacial surgery, fixation plates are commonly used for the stabilization of bone fragments. Additive manufacturing has enabled us to design and create personalized fixation devices that would ideally fit any given fracture. Aim: The aim of the present preliminary study was to assess the susceptibility of 3D-printed titanium fixation plates to biofilm formation. Methods: Plates were manufactured using selective laser melting (SLM) from Ti-6Al-4 V. Reference strains of Streptococcus mutans, Staphyloccocus epidermidis, Staphylococcus aureus, Lactobacillus rhamnosus, and Candida albicans, were tested to evaluate the material's susceptibility to biofilm formation over 48 hours. Biofilm formations were quantified by a colorimetric method and colony-forming units (CFU) quantification. Scanning electron microscopy (SEM) visualized the structure of the biofilm. Results: Surface analysis revealed the average roughness of 102.75 nm and irregular topography of the tested plates. They were susceptible to biofilm formation by all tested strains. The average CFUs were as follows: S. mutans (11.91 x 107) > S.epidermidis (4.45 x 107) > S. aureus (2.3 x 107) > C.albicans (1.22 x 107) > L. rhamnosus (0.78 x 107). Conclusions: The present preliminary study showed that rough surfaces of additively manufactured titanium plates are susceptible to microbial adhesion. The research should be continued in order to compare additively manufactured plates with other commercially available osteotomy plates. Therefore, we suggest caution when using this type of material.
Collapse
Affiliation(s)
- Lukasz Palka
- Private Dental Practice, Zary, Poland
- ScienceBioTech, Wrocław, Poland
| | - Justyna Mazurek-Popczyk
- Department of Microbiology and Molecular Biology, Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Katarzyna Arkusz
- Department of Biomedical Engineering, Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Katarzyna Baldy-Chudzik
- Department of Microbiology and Molecular Biology, Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
32
|
Wilson TG. Bone loss around implants-is it metallosis? J Periodontol 2020; 92:181-185. [PMID: 32729118 DOI: 10.1002/jper.20-0208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/28/2022]
Abstract
Most would agree that the etiology of dental implant failure is related to oral biofilm. At present one group of scientists and clinicians feel that biofilm is solely responsible for bone loss around the devices. However, there is strong evidence that particles and ions of titanium released into the surrounding tissues by the action of biofilm and/or mechanical forces, a process termed metallosis, can be responsible for bone loss around some dental implants. These findings are reinforced by similar responses found around failed metal on metal joint prostheses. Both possible etiologies are discussed in detail in this commentary.
Collapse
|
33
|
Rincic Mlinaric M, Durgo K, Katic V, Spalj S. Cytotoxicity and oxidative stress induced by nickel and titanium ions from dental alloys on cells of gastrointestinal tract. Toxicol Appl Pharmacol 2019; 383:114784. [PMID: 31628918 DOI: 10.1016/j.taap.2019.114784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
The aim was to explore the biological effect of nickel (Ni) and titanium (Ti) ions released from dental alloys. NiTi alloy were exposed to 40 mL of artificial saliva (pH = 4.8, t = 37 °C). The dynamics of Ni and Ti ions release during corrosion were recorded on the 3th, 7th and 14th day. Biological effect of Ni and Ti ions released from alloy was explored on cell lines of human tongue CAL 27, liver Hep G2 and colon Caco-2. Neutral Red uptake assay for the estimation of cell viability/cytotoxicity and 2',7'-dichlorofluorescein diacetate fluorimetric assay for reactive oxygen species were used. Cells were exposed to the following concentration of corrosion products: 5.0×, 1.0×, 0.5 and 0.1× during the period of 24, 48 and 72 h. To check the effect of each metal separately, cells were exposed to nickel-chloride and titanium-dioxide of corresponding concentration. The release of Ni is higher than of Ti (15.1-30.4 μg/L for Ni and 9.0-17.3 μg/L for Ti, respectively) and 5× higher concentrations are needed to induce cytotoxic effect. Ni and Ti ions alone do not induce a major cytotoxic effect, but their combination does indicating their synergistic effect. Increase in concentration of Ni and Ti tends to increase cytotoxicity, Ti more than Ni. Cytotoxicity and induction of free radicals are in strong positive linear correlation. Ions released from NiTi alloy during 14 days do not induce significant cytotoxic effect and would not have a clinically important impact. Cytotoxic effect is largely the result of the induction of free radicals.
Collapse
Affiliation(s)
| | - K Durgo
- University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia
| | - V Katic
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Croatia
| | - S Spalj
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Croatia; J. J. Strossmayer University of Osijek, Faculty of Dental Medicine and Health, Department of Dental Medicine, Croatia
| |
Collapse
|
34
|
Pettersson M, Pettersson J, Molin Thorén M, Johansson A. Effect of cobalt ions on the interaction between macrophages and titanium. J Biomed Mater Res A 2019; 106:2518-2530. [PMID: 29708655 PMCID: PMC6175091 DOI: 10.1002/jbm.a.36447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
Inflammation and bone reduction around dental implants are described as peri‐implantitis and can be caused by an inflammatory response against bacterial products and toxins. Titanium (Ti) forms aggregates with serum proteins, which activate and cause release of the cytokine interleukin (IL‐1β) from human macrophages. It was hypothesized that cobalt (Co) ions can interact in the formation of pro‐inflammatory aggregates, formed by titanium. To test this hypothesis, we differentiated THP‐1 cells into macrophages and exposed them to Ti ions alone or in combination with Co ions to investigate if IL‐1β release and cytotoxicity were affected. We also investigated aggregate formation, cell uptake and human biopsies with inductively coupled plasma atomic emission spectroscopy and electron microscopy. Co at a concentration of 100 µM neutralized the IL‐1β release from human macrophages and affected the aggregate formation. The aggregates formed by Ti could be detected in the cytosol of macrophages. In the presence of Co, the Ti‐induced aggregates were located in the cytosol of the cultured macrophages, but outside the lysosomal structures. It is concluded that Co can neutralize the Ti‐induced activation and release of active IL‐1β from human macrophages in vitro. Also, serum proteins are needed for the formation of metal‐protein aggregates in cell medium. Furthermore, the structures of the aggregates as well as the localisation after cellular uptake differ if Co is present in a Ti solution. Phagocytized aggregates with a similar appearance seen in vitro with Ti present, were also visible in a sample from human peri‐implant tissue. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2518–2530, 2018.
Collapse
Affiliation(s)
| | - Jean Pettersson
- Analytic Chemistry, BMC, Department of Chemistry, Uppsala University, Sweden
| | | | - Anders Johansson
- Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Sweden
| |
Collapse
|
35
|
Corrêa MG, Pimentel SP, Ribeiro FV, Cirano FR, Casati MZ. Host response and peri-implantitis. Braz Oral Res 2019; 33:e066. [PMID: 31576950 DOI: 10.1590/1807-3107bor-2019.vol33.0066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Considering the absence of predictable and effective therapeutic interventions for the treatment of peri-implantitis, scientific evidence concerning the host response profile around dental implants could be important for providing in the future a wider preventive and/or therapeutic window for this peri-implant lesion, indicating biomarkers that provide quantifiable measure of response to peri-implant therapy. Moreover, a better knowledge of pattern of host osteo-immunoinflammatory modulation in the presence of peri-implantitis could either benefit the early diagnostic of the disease or to cooperate to prognostic information related to the status of the peri-implant breakdown. Finally, new evidences concerning the host profile of modulators of inflammation and of osseous tissue metabolism around dental implants could explain the individual susceptibility for developing peri-implant lesions, identifying individuals or sites with increased risk for peri-implantitis. The focus of this chapter was, based on a systematically searched and critically reviewed literature, summarizing the existing knowledge in the scientific research concerning the host osteo-immunoinflammatory response to the microbiological challenge related to periimplantitis.
Collapse
Affiliation(s)
- Monica Grazieli Corrêa
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Suzana Peres Pimentel
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fernanda Vieira Ribeiro
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Fabiano Ribeiro Cirano
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| | - Marcio Zaffalon Casati
- Universidade Paulista - UNIP, School of Dentistry, Dental Research Division, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Schwarz F, Langer M, Hagena T, Hartig B, Sader R, Becker J. Cytotoxicity and proinflammatory effects of titanium and zirconia particles. Int J Implant Dent 2019; 5:25. [PMID: 31286286 PMCID: PMC6614223 DOI: 10.1186/s40729-019-0178-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023] Open
Abstract
Background To assess the effects of differently sized titanium (Ti) and zirconia (Zr) particles on (1) the metabolic activity of osteosarcoma-derived osteoblasts (SaOs-2) and human gingival fibroblasts (HGF) and (2) the cytokine expression of monocytes (THP-1) Methods Ti (60–80 nm and 100 nm) and Zr (2 μm and 75 μm) particles were incubated with SaOs-2, HGF, and THP-1 cells. At days 0, 2, 4, and 7 and 0, 1, 2, and 4 (THP-1), the mitochondrial activity was assessed and enzyme-linked immunosorbent assays were used to determine interleukin (IL)-1 beta and IL-6 concentrations of stimulated THP-1 at day 1. Results Ti60–80, Ti100, Zr2, and Zr75 particles were associated with gradual and significant within-group decreases in the viability of SaOs-2 and HGF cells. These effects were less pronounced in the Zr group. Similar to control cells, THP-1 did not reveal any significant increases in IL-1 beta and IL-6 concentrations. Viability of THP-1 was merely impaired in the presence of Ti100. Conclusions Ti and Zr particles had a detrimental effect on the viability of SaOs-2 and HGF, but no proinflammatory effect on THP-1.
Collapse
Affiliation(s)
- Frank Schwarz
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany. .,Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.
| | - Maike Langer
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany.,Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Tina Hagena
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Brigitte Hartig
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jürgen Becker
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
37
|
Effect of Titanium Particles on the Voltage-Gated Potassium Channel Currents in Trigeminal Root Ganglion Neurons. IMPLANT DENT 2019; 28:54-61. [PMID: 30507652 DOI: 10.1097/id.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Titanium (Ti) is the key material used in dental implants because of its excellent biocompatibility. But wear and corrosion Ti particles had been widely reported to induce inflammation and promote bone absorption. However, little information is known about the damage of Ti particles on neurons. MATERIALS AND METHODS Trigeminal root ganglion (TRG) neurons were exposed to Ti particles (<5 μm). The electrophysiological properties of 2 main subtypes of voltage-gated potassium channels (VGPCs) (KA and KV) were examined by whole-cell patch-clamp techniques. RESULT With the presence of 0.25 mg/mL Ti particles, amplitudes of IK, A and IK, V were both obviously inhibited. For IK, A, the activation V1/2 shifted to the depolarizing direction with an increased k value, whereas the inactivation V1/2 showed obvious hyperdepolarizing shifts. For IK, V, 0.5 mg/mL Ti particles produced a depolarizing shift of activation V1/2 with a slower activation rate. No significant changes of its inactivation kinetics were found. CONCLUSION Titanium (Ti) particles might alter the electrophysiological properties of VGPCs on TRG neurons, which are likely to further influence the excitability of neurons.
Collapse
|
38
|
Jeong WS, Kwon JS, Choi EH, Kim KM. The Effects of Non-Thermal Atmospheric Pressure Plasma treated Titanium Surface on Behaviors of Oral Soft Tissue Cells. Sci Rep 2018; 8:15963. [PMID: 30374034 PMCID: PMC6206130 DOI: 10.1038/s41598-018-34402-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/12/2018] [Indexed: 02/01/2023] Open
Abstract
Here, we investigated the possible use of the technology known as non-thermal atmospheric pressure plasma on integration and control of cytokine release of soft tissue on titanium surface. After NTAPP was applied to titanium samples, changes of surface characteristics were measured as topographical features, contact angle, surface tension, and with X-ray photoelectron spectroscopy (XPS). Protein absorption was evaluated using a bovine serum albumin absorption assay. The attachment, viability, morphology, proliferation, and cytokine release of soft tissue on titanium were assessed. No change in topographical features was observed between control and NTAPP-treated groups. However, NTAPP treatment resulted in significant lowering of the contact angle for polar and non-polar liquids and increase of surface tension. Protein absorption was significantly enhanced on the NTAPP-treated samples. Normal soft tissue attachment was improved on the NTAPP-treated groups with good viability. Cellular morphology was improved in NTAPP-treated groups whereas cellular proliferation was not enhanced. There was a significant reduction in the amounts of cytokine release for inflamed IHOK and hTERT-hNOF on the NTAPP-treated groups; except for IL-8 for IHOKs. This study demonstrates that surface functional consequences by NTAPP exposure enhanced behavior of oral soft tissue cells without topographical change.
Collapse
Affiliation(s)
- Won-Seok Jeong
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Korea.,BK21 Plus Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Korea. .,BK21 Plus Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Korea.
| |
Collapse
|
39
|
Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 Suppl 18:37-53. [DOI: 10.1111/clr.13305] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Mombelli
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Dena Hashim
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| | - Norbert Cionca
- Division of Periodontology; University Clinics of Dental Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
40
|
Dodo CG, Meirelles L, Aviles-Reyes A, Ruiz KGS, Abranches J, Cury AADB. Pro-inflammatory Analysis of Macrophages in Contact with Titanium Particles and Porphyromonas gingivalis. Braz Dent J 2018; 28:428-434. [PMID: 29160393 DOI: 10.1590/0103-6440201701382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.
Collapse
Affiliation(s)
- Cindy Goes Dodo
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | | | | | - Karina Gonzalez Silvério Ruiz
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | | | - Altair Antoninha Del Bel Cury
- Department of Prosthodontics and Periodontology, Dental School of Piracicaba, UNICAMP - Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
41
|
Salvi G, Cosgarea R, Sculean A. Prevalence and Mechanisms of Peri-implant Diseases. J Dent Res 2016; 96:31-37. [DOI: 10.1177/0022034516667484] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- G.E. Salvi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - R. Cosgarea
- Department of Periodontology, Philipps University Marburg, Marburg, Germany
- Department of Prosthetic Dentistry, University Iuliu Hatieganu, Cluj-Napoca, Romania
| | - A. Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Renvert S, Widén C, Persson RG. Cytokine and microbial profiles in relation to the clinical outcome following treatment of peri-implantitis. Clin Oral Implants Res 2016; 28:1127-1132. [DOI: 10.1111/clr.12927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Stefan Renvert
- School of Health and Society; Kristianstad University; Kristianstad Sweden
- Blekinge Institute of Technology; Karlskrona Sweden
- Trinity College; Dublin Dental University Hospital; Dublin Ireland
| | - Cecilia Widén
- School of Health and Society; Kristianstad University; Kristianstad Sweden
| | - Rutger G. Persson
- School of Health and Society; Kristianstad University; Kristianstad Sweden
- University of Washington; Seattle WA USA
| |
Collapse
|
43
|
Xing H, Taguchi Y, Komasa S, Yamawaki I, Sekino T, Umeda M, Okazaki J. Effect of Porphyromonas gingivalis Lipopolysaccharide on Bone Marrow Mesenchymal Stem Cell Osteogenesis on a Titanium Nanosurface. J Periodontol 2015; 86:448-55. [DOI: 10.1902/jop.2014.140386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Romanos GE, Javed F, Delgado-Ruiz RA, Calvo-Guirado JL. Peri-implant diseases: a review of treatment interventions. Dent Clin North Am 2014; 59:157-78. [PMID: 25434564 DOI: 10.1016/j.cden.2014.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ideal management of peri-implant diseases focuses on infection control, detoxification of implant surfaces, regeneration of lost tissues, and plaque-control regimens via mechanical debridement (with or without raising a surgical flap). However, a variety of other therapeutic modalities also have been proposed for the management of peri-implantitis. These treatment strategies encompass use of antiseptics and/or antibiotics, laser therapy, guided bone regeneration, and photodynamic therapy. The aim of this article was to review indexed literature with reference to the various therapeutic interventions proposed for the management of peri-implant diseases.
Collapse
Affiliation(s)
- Georgios E Romanos
- Department of Periodontology, School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA.
| | - Fawad Javed
- Engineer Abdullah Bugshan Research Chair for Growth Factors and Bone Regeneration, 3D Imaging and Biomechanical Laboratory, College of Applied Medical Sciences, King Saud University, Derriyah, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, 1103 Westchester Hall, Stony Brook, NY 11794-8712, USA
| | - José Luis Calvo-Guirado
- Faculty of Medicine and Dentistry, Hospital Morales Meseguer, University of Murcia, 2° Planta Clínica Odontológica Calle Marques de los Velez S/n, Murcia 30007, Spain
| |
Collapse
|
45
|
Stavroullakis A, Brito C, Chen HY, Bajenova E, Prakki A, Nogueira-Filho G. Dental implant surface treatments may modulate cytokine secretion inPorphyromonasgingivalis-stimulated human gingival fibroblasts: A comparative study. J Biomed Mater Res A 2014; 103:1131-40. [DOI: 10.1002/jbm.a.35262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/12/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Stavroullakis
- Department of Preventive Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| | - Carlos Brito
- Department of Preventive Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| | - Hong Yang Chen
- Department of Preventive Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| | - Elena Bajenova
- Department of Preventive Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| | - Anuradha Prakki
- Department of Restorative Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| | - Getulio Nogueira-Filho
- Department of Preventive Dentistry, Faculty of Dentistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|