1
|
Yadalam PK, Neelakandan A, Arunraj R, Anegundi RV, Ardila CM. Exploring the interplay between Porphyromonas gingivalis KGP gingipain, herpes virus MicroRNA-6, and Icp4 transcript in periodontitis: Computational and clinical insights. PLoS One 2024; 19:e0312162. [PMID: 39480863 PMCID: PMC11527181 DOI: 10.1371/journal.pone.0312162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Porphyromonas gingivalis, a major pathogen in periodontitis, produces KGP (Lys-gingipain), a cysteine protease that enhances bacterial virulence by promoting tissue invasion and immune evasion. Recent studies highlight microRNAs' role in viral latency, potentially affecting lytic replication through host mechanisms. Herpes virus (HSV) establishes latency via interactions between microRNA-6 (miRH-6) and the ICP4 transcription factor in neural ganglia. This suggests a potential link between periodontitis and HSV-induced latency. This study aims to identify and validate the insilico inhibitory interaction of P. gingivalis KGP with ICP4 transcripts and correlate the presence of viral latency-associated transcript micro-RNA-6 with periodontitis. METHODS Computational docking analysis was performed to investigate the potential interaction between ICP4 and KGP gingipain. The binding energy and RMSD ligand values were calculated to determine the interaction's strength. Ten patients with recurrent clinical attachment loss despite conventional therapy were included in the clinical study. Subgingival tissue samples were collected post-phase I therapy, and HSV microRNA-6 presence was detected via polymerase chain reaction and confirmed through gel electrophoresis. RESULTS Computational docking identified the ICP4-KGP gingipain complex with the lowest binding energy (-288.29 kJ mol^1) and an RMSD ligand of 1.5 Angstroms, indicating strong interaction potential. Gel electrophoresis confirmed miRH-6 presence in all samples. CONCLUSION The identification of miRNA-6 in periodontitis patients and the strong interaction potential between P. gingivalis KGP gingipain and ICP4 transcripts indicate a possible link between bacterial virulence factors and viral latency dynamics in periodontal tissues. These results highlight the complex interplay between oral pathogens, viral microRNAs, and host immune responses in periodontitis.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Rex Arunraj
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kanchipuram, Tamil Nadu, India
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and technology sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Carlos M. Ardila
- Basic Sciences Department, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia
- Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia
| |
Collapse
|
2
|
Uttamani JR, Kulkarni V, Valverde A, Naqvi RA, Van Dyke T, Nares S, Naqvi AR. Dynamic changes in macrophage polarization during the resolution phase of periodontal disease. Immun Inflamm Dis 2024; 12:e70044. [PMID: 39436204 PMCID: PMC11494820 DOI: 10.1002/iid3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
AIM Polarization of macrophages (Mφ) is a well-controlled axis with considerable consequences in both the pro-inflammatory and resolution phases of inflammation. We aimed to determine if periodontal therapy may instigate M1 to M2 Mφ polarization favoring resolution of inflammation within periodontal tissues. METHODS Gingival biopsies were excised from subjects diagnosed with Stage III, Grade B periodontitis before and 4-6 weeks after nonsurgical periodontal therapy. Total RNA was isolated and pro- and anti-inflammatory markers associated with Mφ polarization assessed by RT-qPCR. Mice were subject to ligature-induced periodontitis and gingival tissues collected after 8 days in-situ or 10 days after ligature removal and M1 and M2 Mφ markers examined by RT-qPCR and flow cytometry. RESULTS In human samples, improvement in clinical parameters posttherapy correlates with reduced bacterial burden, downregulation in M1 (TNF-α, STAT1, CXCL10, and miR-155), and elevated levels of M2 (STAT6, TGM2, CCL22, and IL-10) Mφ markers. In a murine model of resolution of LIP, we observed reduced levels of M1 Mφ markers cox2, iNOS2, F4/80+CD80+, and F4/80+CD86+ and elevated levels of M2-like Mφ markers tgm2, arg1, F4/80+CD206+ and F4/80+CD163+ corroborated human findings. CONCLUSION Resolution of periodontal inflammation is associated with M1 to M2 Mφ polarization after nonsurgical periodontal therapy. Assessment of Mφ markers can provide relevant clinical information on the successful response of periodontal therapy and may be used to target nonresponders.
Collapse
Affiliation(s)
- Juhi R. Uttamani
- Department of Periodontics, College of DentistryUniversity of IowaIowa CityIowaUSA
- Private PracticeAustinTexasUSA
- Department of Periodontics, College of DentistryUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Varun Kulkarni
- Department of Periodontics, College of DentistryUniversity of IowaIowa CityIowaUSA
- Private PracticeAustinTexasUSA
| | - Araceli Valverde
- Department of Periodontics, College of DentistryUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Raza Ali Naqvi
- Department of Periodontics, College of DentistryUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Thomas Van Dyke
- Department of Applied Oral SciencesThe Forsyth InstituteCambridgeMassachusettsUSA
- Center for Clinical and Translational ResearchThe Forsyth InstituteCambridgeMassachusettsUSA
- Department of Oral Medicine, Infection and ImmunityHarvard School of Dental MedicineBostonMassachusettsUSA
| | - Salvador Nares
- Department of Periodontics, College of DentistryUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Department of Periodontics, College of DentistryUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Microbiology and Immunology, College of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Cosín-Villanueva M, Almiñana-Pastor PJ, García-Giménez JL, López-Roldán A. Study of microRNAs in Gingival Crevicular Fluid as Periodontal Diseases Biomarkers: Systematic Review. Int J Mol Sci 2024; 25:8274. [PMID: 39125843 PMCID: PMC11311819 DOI: 10.3390/ijms25158274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
AIM The aim of this review was to identify the microRNAs (miRNAs) present in gingival crevicular fluid (GCF) that can be used as biomarkers for the diagnosis of periodontal diseases, and to determine which of them has a higher diagnostic yield for periodontitis. METHODS The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (reference number CRD42024544648). The Pubmed, Scopus, Cochrane Library, Embase, Web of Science, and Google Scholar databases were searched for clinical studies conducted in humans investigating periodontal diseases and miRNAs in GCF. The methodological quality of the articles was measured with the Newcastle-Ottawa Scale. RESULTS A total of 3222 references were identified in the initial literature search, and 16 articles were finally included in the review. The design of the studies was heterogeneous, which prevented a meta-analysis of the data. Most of the studies compared miRNA expression levels between patients with periodontitis and healthy controls. The most widely researched miRNA in periodontal diseases was miR-200b-3p and miR-146a. CONCLUSIONS the miRNAs most studied are miR-146a, miR-200b, miR-223, miR-23a, and miR-203, and all of them except miR-203 have an acceptable diagnostic plausibility for periodontitis.
Collapse
Affiliation(s)
- María Cosín-Villanueva
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| | - Pedro J. Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| | - Jose Luis García-Giménez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain;
- Consortium Center for Biomedical Network Research on Rare Diseases, CIBERER-ISCIII, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| |
Collapse
|
4
|
Valverde A, George A, Nares S, Naqvi AR. Emerging therapeutic strategies targeting bone signaling pathways in periodontitis. J Periodontal Res 2024. [PMID: 39044454 DOI: 10.1111/jre.13326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
Periodontitis is a multifactorial immune-mediated disease exacerbated by dysregulated alveolar bone homeostasis. Timely intervention is crucial for disease management to prevent tooth loss. To successfully manage periodontitis, it is imperative to understand the cellular and molecular mechanisms involved in its pathogenesis to develop novel treatment modalities. Non-surgical periodontal therapy (NSPT) such as subgingival instrumentation/debridement has been the underlying treatment strategy over the past decades. However, new NSPT approaches that target key signaling pathways regulating alveolar bone homeostasis have shown positive clinical outcomes. This narrative review aims to discuss endogenous bone homeostasis mechanisms impaired in periodontitis and highlight the clinical outcomes of preventive periodontal therapy to avoid invasive periodontal therapies. Although the anti-resorptive therapeutic adjuncts have demonstrated beneficial outcomes, adverse events have been reported. Diverse immunomodulatory therapies targeting the osteoblast/osteoclast (OB/OC) axis have shown promising outcomes in vivo. Future controlled randomized clinical trials (RCT) would help clinicians and patients in the selection of novel preventing therapies targeting key molecules to effectively treat or prevent periodontitis.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Anne George
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
6
|
Baru O, Pop L, Raduly L, Bica C, Mehterov N, Pirlog R, Buduru S, Braicu C, Berindan-Neagoe I, Badea M. The Evaluation of a 5-miRNA Panel in Patients with Periodontitis Disease. JDR Clin Trans Res 2024:23800844241252395. [PMID: 38819194 DOI: 10.1177/23800844241252395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Side by side with tooth decay, periodontitis remains one of the most common oral diseases and is increasingly recognized as a serious public health concern worldwide. OBJECTIVES The present study aims at comparing the levels of 5 specific miRNAs (miR-29b-3p, miR-34a-5p, miR-155-5p, miR-181a-5p, and miR-192-5p) in patients with periodontal disease and healthy controls. METHODS The pathogenic mechanism is related to the activation of immune response and significant alteration of coding and noncoding genes, including miRNA. The study includes 50 subjects (17 with periodontal disease and 33 healthy controls) with a mean age of 45.3 y. In both periodontitis patients and healthy controls, a panel of 5 miRNAs (miR-29b-3p, miR-34a-5p, miR-155-5p, miR-181a-5p, and miR-192-5p) is examined by determining their expression levels with quantitative reverse transcription polymerase chain reaction. RESULTS The periodontitis patients express high levels of all the investigated miRNAs. Receiver operating characteristic curve analysis shows an area under the curve (AUC) of 0.69 to 0.74 for individual transcripts with the highest AUC value observed for miR-192, followed by miR-181a. CONCLUSIONS The study indicates that the 5-miRNA panel can be used as biomarker for periodontitis. In this way, all implantology procedures and treatment options for patients diagnosed with periodontitis can be improved for better long-term results, predictability, and follow-up frequency. KNOWLEDGE TRANSFER STATEMENT The discovery of a miRNA panel as a potential biomarker for periodontitis offers major opportunities for practical application. Our study can improve diagnostic accuracy; researchers can develop new theories on molecular mechanisms and biomarker discovery.
Collapse
Affiliation(s)
- O Baru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Stomestet Stomatology Clinic, Cluj-Napoca, Romania
| | - L Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - L Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - N Mehterov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - R Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - S Buduru
- Stomestet Stomatology Clinic, Cluj-Napoca, Romania
- Department of Dental Prosthetics, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - C Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - I Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - M Badea
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Adamouli D, Marasli C, Bobetsis YA. The Expression Patterns of Non-Coding RNAs in Periodontal Disease. Dent J (Basel) 2024; 12:159. [PMID: 38920860 PMCID: PMC11203025 DOI: 10.3390/dj12060159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During the last few decades there has been a growing interest in understanding the involvement of epigenetics in the pathogenesis and treatment of periodontal disease. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), may serve as epigenetic modifiers affecting the expression of genes involved in the pathogenesis of inflammatory and autoimmune diseases. There is increasing evidence supporting the idea that the function of all three types of ncRNAs seems to be interdependent. LncRNAs can act as miRNA decoys, while circRNAs can act as miRNA sponges, leading to the re-expression of miRNA target genes. The purpose of this review is to evaluate the expression patterns of ncRNAs in periodontal disease. Studies demonstrate a positive correlation between miRNA expression and periodontitis; however, this cannot be claimed for lncRNAs and circRNAs, which appear to be differentially expressed in periodontitis patients. Several studies have also suggested utilizing ncRNAs as diagnostic and prognostic biomarkers in periodontitis, or even as potential therapeutic targets; Nevetheless, the evidence to support this is premature. Future well-designed research remains necessary to establish the functional role of ncRNAs in the evolution and progression of periodontal disease.
Collapse
Affiliation(s)
| | | | - Yiorgos A. Bobetsis
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Banks JM, Capistrano KJ, Brandini DA, Zaidi F, Thakkar P, Rahat R, Schwartz J, Naqvi AR. Herpesviruses and SARS-CoV-2: Viral Association with Oral Inflammatory Diseases. Pathogens 2024; 13:58. [PMID: 38251365 PMCID: PMC10819702 DOI: 10.3390/pathogens13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
The oral cavity is a niche for diverse microbes, including viruses. Members of the Herpesviridae family, comprised of dsDNA viruses, as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an ssRNA virus, are among the most prevalent viruses infecting the oral cavity, and they exhibit clinical manifestations unique to oral tissues. Viral infection of oral mucosal epithelia triggers an immune response that results in prolonged inflammation. The clinical and systemic disease manifestations of HHV have been researched extensively, and several recent studies have illuminated the relationship between HHV and oral inflammatory diseases. Burgeoning evidence suggests the oral manifestation of SARS-CoV-2 infection includes xerostomia, dysgeusia, periodontal disease, mucositis, and opportunistic viral and bacterial infections, collectively described as oral post-acute sequelae of COVID-19 (PASC). These diverse sequelae could be a result of intensified immune responses initially due to the copious production of proinflammatory cytokines: the so-called "cytokine storm syndrome", facilitating widespread oral and non-oral tissue damage. This review explores the interplay between HHV, SARS-CoV-2, and oral inflammatory diseases such as periodontitis, endodontic disease, and peri-implantitis. Additionally, the review discusses proper diagnostic techniques for identifying viral infection and how viral diagnostics can lead to improved overall patient health.
Collapse
Affiliation(s)
- Jonathan M. Banks
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Kristelle J. Capistrano
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Daniela A. Brandini
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil;
| | - Filza Zaidi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
| | - Joel Schwartz
- Department of Oral Medicine and Diagnostics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA; (J.M.B.); (K.J.C.); (F.Z.); (P.T.); (R.R.)
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Aravindraja C, Jeepipalli S, Duncan W, Vekariya KM, Bahadekar S, Chan EKL, Kesavalu L. Unique miRomics Expression Profiles in Tannerella forsythia-Infected Mandibles during Periodontitis Using Machine Learning. Int J Mol Sci 2023; 24:16393. [PMID: 38003583 PMCID: PMC10671577 DOI: 10.3390/ijms242216393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
T. forsythia is a subgingival periodontal bacterium constituting the subgingival pathogenic polymicrobial milieu during periodontitis (PD). miRNAs play a pivotal role in maintaining periodontal tissue homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. The aim of this study was to characterize the global microRNAs (miRNA, miR) expression kinetics in 8- and 16-week-old T. forsythia-infected C57BL/6J mouse mandibles and to identify the miRNA bacterial biomarkers of disease process at specific time points. We examined the differential expression (DE) of miRNAs in mouse mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels, which provided significant advantages over specific candidate miRNA or pathway analyses. All the T. forsythia-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, along with a significant increase in alveolar bone resorption (ABR) (p < 0.0001). We performed a NanoString analysis of specific miRNA signatures, miRNA target pathways, and gene network analysis. A total of 115 miRNAs were DE in the mandible tissue during 8 and 16 weeks The T. forsythia infection, compared with sham infection, and the majority (99) of DE miRNAs were downregulated. nCounter miRNA expression kinetics identified 67 downregulated miRNAs (e.g., miR-375, miR-200c, miR-200b, miR-34b-5p, miR-141) during an 8-week infection, whereas 16 upregulated miRNAs (e.g., miR-1902, miR-let-7c, miR-146a) and 32 downregulated miRNAs (e.g., miR-2135, miR-720, miR-376c) were identified during a 16-week infection. Two miRNAs, miR-375 and miR-200c, were highly downregulated with >twofold change during an 8-week infection. Six miRNAs in the 8-week infection (miR-200b, miR-141, miR-205, miR-423-3p, miR-141-3p, miR-34a-5p) and two miRNAs in the 16-week infection (miR-27a-3p, miR-15a-5p) that were downregulated have also been reported in the gingival tissue and saliva of periodontitis patients. This preclinical in vivo study identified T. forsythia-specific miRNAs (miR-let-7c, miR-210, miR-146a, miR-423-5p, miR-24, miR-218, miR-26b, miR-23a-3p) and these miRs have also been reported in the gingival tissues and saliva of periodontitis patients. Further, several DE miRNAs that are significantly upregulated (e.g., miR-101b, miR-218, miR-127, miR-24) are also associated with many systemic diseases such as atherosclerosis, Alzheimer's disease, rheumatoid arthritis, osteoarthritis, diabetes, obesity, and several cancers. In addition to DE analysis, we utilized the XGBoost (eXtreme Gradient boost) and Random Forest machine learning (ML) algorithms to assess the impact that the number of miRNA copies has on predicting whether a mouse is infected. XGBoost found that miR-339-5p was most predictive for mice infection at 16 weeks. miR-592-5p was most predictive for mice infection at 8 weeks and also when the 8-week and 16-week results were grouped together. Random Forest predicted miR-592 as most predictive at 8 weeks as well as the combined 8-week and 16-week results, but miR-423-5p was most predictive at 16 weeks. In conclusion, the expression levels of miR-375 and miR-200c family differed significantly during disease process, and these miRNAs establishes a link between T. forsythia and development of periodontitis genesis, offering new insights regarding the pathobiology of this bacterium.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William Duncan
- Department of Community Dentistry, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Sakshee Bahadekar
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32610, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
10
|
Uttamani JR, Kulkarni V, Valverde A, Naqvi RA, Nares S, Naqvi AR. Dynamic Changes in Macrophage Polarization during the Resolution Phase of Periodontal Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529313. [PMID: 36865214 PMCID: PMC9980051 DOI: 10.1101/2023.02.20.529313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Periodontal inflammation is largely governed by infiltration of myeloid cells, in particular macrophages. Polarization of Mφ within the gingival tissues is a well-controlled axis and has considerable consequences for how Mφ participate in inflammatory and resolution (tissue repair) phases. We hypothesize that periodontal therapy may instigate a pro-resolution environment favoring M2 Mφ polarization and contribute towards resolution of inflammation post-therapy. We aimed to evaluate the markers of macrophage polarization before and after periodontal therapy. Gingival biopsies were excised from human subjects with generalized severe periodontitis, undergoing routine non-surgical therapy. A second set of biopsies were excised after 4-6 weeks to assess the impact of therapeutic resolution at the molecular level. As controls, gingival biopsies were excised from periodontally healthy subjects, undergoing crown lengthening. Total RNA was isolated from gingival biopsies to evaluate pro- and anti-inflammatory markers associated with macrophage polarization by RT-qPCR. Mean periodontal probing depths, CAL and BOP reduced significantly after therapy and corroborated with the reduced levels of periopathic bacterial transcripts after therapy. Compared to heathy and treated biopsies, higher load of Aa and Pg transcripts were observed in disease. Lower expression of M1Mφ markers (TNF-α, STAT1) were observed after therapy as compared to diseased samples. Conversely, M2Mφ markers (STAT6, IL-10) were highly expressed in post-therapy as opposed to pre-therapy, which correlated with clinical improvement. These findings corroborated with murine ligature-induced periodontitis and resolution model, comparing the respective murine Mφ polarization markers (M1 Mφ: cox2 , iNOS2 and M2 Mφ: tgm2 and arg1 ). Our findings suggest that imbalance in M1 and M2 polarized macrophages by assessment of their markers can provide relevant clinical information on the successful response of periodontal therapy and can be used to target non-responders with exaggerated immune responses.
Collapse
|
11
|
Jung Y, Kim JH, Shin AR, Song KB, Amano A, Choi YH. Association of Adiposity with Periodontitis and Metabolic Syndrome: From the Third National Health and Nutrition Examination Survey of United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032533. [PMID: 36767897 PMCID: PMC9916149 DOI: 10.3390/ijerph20032533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
This study explored the epidemiological role of central adiposity and body mass index (BMI) in terms of clinical attachment loss (CAL)/pocket depth (PD) and metabolic syndrome components. This study included data from the National Health and Nutrition Examination Survey III of America on 12,254 adults aged 20 years of age or older with a blood sample, anthropometric measurements, and a periodontal examination. Clinical periodontitis measurements, including CAL and PD, were classified into quintiles or quartiles and compared. CAL was positively associated with central adiposity, hypertension, and hyperglycemia; the relationship between CAL and diabetes was stronger when central adiposity was absent (odds ratio [OR] and 95% confidence interval: 6.33, 2.14-18.72 vs. 3.14, 1.78-5.56). The relationship between CAL and impaired fasting glucose (IFG) differed slightly with BMI. The IFG ORs for normal, overweight, and obese patients were 1.63 (1.08-2.45), 1.76 (1.05-2.97), and 1.43 (0.88-2.30), respectively. CAL was positively correlated with all metabolic syndrome components except hypertriglyceridemia. Associations between CAL, diabetes, and IFG significantly varied with BMI. Periodontitis in individuals without central obesity or with normal bodyweight may independently indicate diabetes and IFG. Therefore, preventive measures against periodontitis without obesity are necessary to improve general and oral health.
Collapse
Affiliation(s)
- YunSook Jung
- Department of Dental Hygiene, College of Science & Technology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Ji-Hye Kim
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Ah-Ra Shin
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Keun-Bae Song
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University School of Dentistry, Daegu 41940, Republic of Korea
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Youn-Hee Choi
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
- Institute for Translational Research in Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea
| |
Collapse
|
12
|
Uttamani JR, Naqvi AR, Estepa AMV, Kulkarni V, Brambila MF, Martínez G, Chapa G, Wu CD, Li W, Rivas-Tumanyan S, Nares S. Downregulation of miRNA-26 in chronic periodontitis interferes with innate immune responses and cell migration by targeting phospholipase C beta 1. J Clin Periodontol 2023; 50:102-113. [PMID: 36054706 PMCID: PMC10087579 DOI: 10.1111/jcpe.13715] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the potential role of miR-26 family members in periodontal pathogenesis by assessing innate immune responses to periopathic bacteria and regulation of cytoskeletal organization. MATERIALS AND METHODS Expression of miR-26a-5p and miR-26b-5p was quantified in gingival biopsies derived from healthy and periodontally diseased subjects before and after non-surgical (scaling and root planing) therapy by RT-qPCR. Global pathway analysis and luciferase assays were performed for target identification and validation. Cytokine expression was assessed in miR-26a-5p transfected human oral keratinocytes upon stimulation with either live Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans or Pg lipopolysaccharide (LPS). Wound closure assays were performed in cells transfected with miR-26a-5p, while the impact on cytoskeletal organization was assessed by F-actin staining. RESULTS miR-26a-5p and miR-26b-5p were downregulated in diseased gingiva and restored 4-6 weeks post-therapy to levels comparable with healthy subjects. Target validation assays identified phospholipase C beta 1 as a bona fide novel target exhibiting antagonistic expression pattern in disease and post-therapy cohorts. miR-26a-5p transfected cells secreted higher levels of cytokine/chemokines upon stimulation with periopathogens and demonstrated impaired cell migration and cytoskeletal rearrangement. CONCLUSIONS Downregulated miR-26a-5p levels in periodontal inflammation may interfere with key cellular functions that may have significant implications for host defence and wound healing.
Collapse
Affiliation(s)
- Juhi R Uttamani
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, Iowa, USA
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Varun Kulkarni
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Maria F Brambila
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gloria Martínez
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gabriela Chapa
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Christine D Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wei Li
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sona Rivas-Tumanyan
- Office of Assistant Dean for Research and Department of Surgical Sciences, University of Puerto Rico School of Dental Medicine, San Juan, Puerto Rico
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Micó-Martínez P, Almiñana-Pastor PJ, Alpiste-Illueca F, López-Roldán A. MicroRNAs and periodontal disease: a qualitative systematic review of human studies. J Periodontal Implant Sci 2021; 51:386-397. [PMID: 34965618 PMCID: PMC8718333 DOI: 10.5051/jpis.2007540377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose MicroRNAs (miRNAs) are epigenetic post-transcriptional regulators that modulate gene expression and have been identified as biomarkers for several diseases, including cancer. This study aimed to systematically review the relationship between miRNAs and periodontal disease in humans, and to evaluate the potential of miRNAs as diagnostic and prognostic biomarkers of disease. Methods The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (reference number CRD42020180683). The MEDLINE, Scopus, Cochrane Library, Embase, Web of Science, and SciELO databases were searched for clinical studies conducted in humans investigating periodontal diseases and miRNAs. Expression levels of miRNAs across the different groups were analysed using the collected data. Results A total of 1,299 references were identified in the initial literature search, and 23 articles were finally included in the review. The study designs were heterogeneous, which prevented a meta-analysis of the data. Most of the studies compared miRNA expression levels between patients with periodontitis and healthy controls. The most widely researched miRNA in periodontal diseases was miR-146a. Most studies reported higher expression levels of miR-146a in patients with periodontitis than in healthy controls. In addition, many studies also focused on identifying target genes of the differentially expressed miRNAs that were significantly related to periodontal inflammation. Conclusions The results of the studies that we analysed are promising, but diagnostic tests are needed to confirm the use of miRNAs as biomarkers to monitor and aid in the early diagnosis of periodontitis in clinical practice.
Collapse
Affiliation(s)
- Pablo Micó-Martínez
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - Pedro J Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Francisco Alpiste-Illueca
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
14
|
Thakkar P, Banks JM, Rahat R, Brandini DA, Naqvi AR. Viruses of the oral cavity: Prevalence, pathobiology and association with oral diseases. Rev Med Virol 2021; 32:e2311. [PMID: 34854161 DOI: 10.1002/rmv.2311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
The human oral cavity contains a plethora of habitats and tissue environments, such as teeth, tongue, and gingiva, which are home to a rich microbial flora including bacteria, fungi, and viruses. Given the exposed nature of the mouth, oral tissues constantly encounter infectious agents, forming a complex ecological community. In the past, the discussion of microbiological aspects of oral disease has traditionally focused on bacteria and fungi, but viruses are attracting increasing attention as pathogens in oral inflammatory diseases. Therefore, understanding viral prevalence, pathogenicity, and preference regarding oral tissues is critical to understanding the holistic effects of viruses on oral infections. Recent investigations have demonstrated the abundance of certain viruses in oral inflammatory diseases, suggesting an association between viruses and disease. Human herpesviruses are the most extensively studied viruses in different oral inflammatory diseases. However, challenges in viral detection and the lack of reproducible in vitro and in vivo infection models have limited our progress in understanding viruses and their contribution to oral diseases. This review presents a summary of major mammalian viruses and associated diseases in the human oral cavity. The emergence of a recent pathogen SARS-CoV-2 and its tropism for salivary and periodontal tissues further highlights the relevance of the oral cavity in host-pathogen interaction. Understanding how these different viruses present clinically and influence oral health will advance our understanding of multifactorial oral diseases and their association with viruses.
Collapse
Affiliation(s)
- Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jonathan M Banks
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela A Brandini
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol 2021; 31:e2226. [PMID: 33646645 PMCID: PMC8014590 DOI: 10.1002/rmv.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (Covid-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that clinically affects multiple organs of the human body. Cells in the oral cavity express viral entry receptor angiotensin-converting enzyme 2 that allows viral replication and may cause tissue inflammation and destruction. Recent studies have reported that Covid-19 patients present oral manifestations with multiple clinical aspects. In this review, we aim to summarise main signs and symptoms of Covid-19 in the oral cavity, its possible association with oral diseases, and the plausible underlying mechanisms of hyperinflammation reflecting crosstalk between Covid-19 and oral diseases. Ulcers, blisters, necrotising gingivitis, opportunistic coinfections, salivary gland alterations, white and erythematous plaques and gustatory dysfunction were the most reported clinical oral manifestations in patients with Covid-19. In general, the lesions appear concomitant with the loss of smell and taste. Multiple reports show evidences of necrotic/ulcerative gingiva, oral blisters and hypergrowth of opportunistic oral pathogens. SARS-CoV-2 exhibits tropism for endothelial cells and Covid-19-mediated endotheliitis can not only promote inflammation in oral tissues but can also facilitate virus spread. In addition, elevated levels of proinflammatory mediators in patients with Covid-19 and oral infectious disease can impair tissue homeostasis and cause delayed disease resolution. This suggests potential crosstalk of immune-mediated pathways underlying pathogenesis. Interestingly, few reports suggest recurrent herpetic lesions and higher bacterial growth in Covid-19 subjects, indicating SARS-CoV-2 and oral virus/bacteria interaction. Larger cohort studies comparing SARS-CoV-2 negative and positive subjects will reveal oral manifestation of the virus on oral health and its role in exacerbating oral infection.
Collapse
Affiliation(s)
- Daniela A. Brandini
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Aline S. Takamiya
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Pari Thakkar
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samantha Schaller
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Rani Rahat
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
16
|
Affiliation(s)
- Afsar Raza Naqvi
- College of Dentistry, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, United States.
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201313, Uttar Pradesh, India.
| |
Collapse
|
17
|
Sarfaraz D, Karimian M, Farmohammadi A, Yaghini J. The -592C>A Variation of IL-10 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study and In-Silico Analysis. J Oral Biosci 2021; 63:378-387. [PMID: 34547455 DOI: 10.1016/j.job.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic periodontitis (CP) is a common inflammatory disorder with a considerable impact of genetic variations in the interleukin family on predisposition to this disease. This study aimed to investigate the association between the -592C>A polymorphism of the interleukin 10 (IL-10) gene with CP risk in an Iranian population. This experimental study was followed by a meta-analysis and in silico examination. METHODS In a case-control study, 270 subjects, including 135 patients with CP and 135 healthy controls, were enrolled. The -592C>A genotyping was performed using the PCR-RFLP method. In the meta-analysis, valid databases were systematically searched to identify relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed to examine the association between -592C>A and CP. In silico analysis was conducted using bioinformatics tools to evaluate the impact of the -592C>A polymorphism on IL-10 gene function. RESULTS Our case-control study revealed a significant association between polymorphism and CP risk. Overall, we found significant associations between -592C>A genetic variation and CP and stratified meta-analysis. In silico analysis revealed that this polymorphism could change the pattern of the transcription binding site upstream of the IL-10 gene. It may also alter the hsa-miR-101-3p miRNA-targeted sequence upstream of IL-10. CONCLUSIONS Based on our results, the -592C>A variation in IL-10 may be a genetic risk factor for susceptibility to chronic periodontitis. However, further studies in different ethnicities and results adjusted for clinical and demographic characteristics are needed to obtain more accurate deductions.
Collapse
Affiliation(s)
- Dorna Sarfaraz
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Amir Farmohammadi
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Naqvi AR, Schwartz J, Brandini DA, Schaller S, Hussein H, Valverde A, Naqvi RA, Shukla D. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. Int Rev Immunol 2021; 41:423-437. [PMID: 34525891 DOI: 10.1080/08830185.2021.1967949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a recently identified virus responsible for life-threatening coronavirus disease 19 (COVID-19). The SARS-CoV-2 infected subjects can be asymptomatic or symptomatic; the later may present a wide spectrum of clinical manifestations. However, the impact of SARS-CoV-2 on oral diseases remain poorly studied. Detection of SARS-CoV-2 in saliva indicates existence of virus in the oral cavity. Recent studies demonstrating the expression of ACE-2, a SARS-CoV-2 entry receptor, in oral tissues further strengthens this observation. Cytokine storm in severe COVID-19 patients and copious secretion of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) in multiple symptomatic oral pathologies including periodontitis and periapical periodontitis suggests that inflammatory microenvironment is a hallmark of both COVID-19 and oral diseases. Hyperinflammation may provide conducive microenvironment for the growth of local oral pathogens or opportunistic microbes and exert detrimental impact on the oral tissue integrity. Multiple case reports have indicated uncharacterized oral lesions, symptomatic irreversible pulpitis, higher plaque index, necrotizing/desquamative gingivitis in COVID-19 patients suggesting that SARS-CoV-2 may worsen the manifestations of oral infections. However, the underlying factors and pathways remain elusive. Here we summarize current literature and suggest mechanisms for viral pathogenesis of oral dental pathology derived from oral microbiome and oral mucosa-dental tissue interactions. Longitudinal studies will reveal how the virus impairs disease progression and resolution post-therapy. Some relationships we suggest provide the basis for novel monitoring and treatment of oral viral disease in the era of SARS-CoV-2 pandemic, promoting evidence-based dentistry guidelines to diagnose virus-infected patients to improve oral health.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela Atili Brandini
- Department of Diagnosis and Surgery, Araçatuba Dental School, Universidade Estadual Paulista/UNESP, Araçatuba, São Paulo, Brazil
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Heba Hussein
- Department of Oral Medicine, Oral Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raza Ali Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, Illinois, USA
| |
Collapse
|
19
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
20
|
Abstract
Periodontitis is a multi-etiologic infection characterized clinically by pathologic loss of the periodontal ligament and alveolar bone. Herpesviruses and specific bacterial species are major periodontal pathogens that cooperate synergistically in producing severe periodontitis. Cellular immunity against herpesviruses and humoral immunity against bacteria are key periodontal host defenses. Genetic, epigenetic, and environmental factors are modifiers of periodontal disease severity. MicroRNAs are a class of noncoding, gene expression-based, posttranscriptional regulatory RNAs of great importance for maintaining tissue homeostasis. Aberrant expression of microRNAs has been associated with several medical diseases. Periodontal tissue cells and herpesviruses elaborate several microRNAs that are of current research interest. This review attempts to conceptualize the role of periodontal microRNAs in the pathogenesis of periodontitis. The diagnostic potential of salivary microRNAs is also addressed. Employment of microRNA technology in periodontics represents an interesting new preventive and therapeutic possibility.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jørgen Slots
- Department of Periodontology, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
21
|
Gao K, Dou Y, Lv M, Zhu Y, Hu S, Ma P. Research hotspots and trends of microRNA in periodontology and dental implantology: a bibliometric analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1122. [PMID: 34430563 PMCID: PMC8350631 DOI: 10.21037/atm-21-726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
Background Periodontal disease is a leading cause of tooth loss, and microRNA (miRNA) has been shown to regulate various biological processes. This study aimed to quantitatively analyze the literature related to miRNA in periodontology and dental implantology and summarize the research hotspots and trends in this field. Methods Literature records from 1985 to 2020 were obtained from the Web of Science Core Collection database. After manual selection, the data was used for cooperative network analysis, keyword co-occurrence analysis, and reference co-citation analysis and visualized by CiteSpace. Results A total of 287 papers were analyzed between 2007 and 2020, and more than 95% of them were published in the past decade. The largest number of publications were from China, followed by the USA and Japan. The direct cooperation among the productive institutions was not close. At present, most of the research belongs to the discipline of dentistry, oral surgery, cell biology, and molecular biology. Literature clusters generated by reference co-citation analysis and keyword co-occurrence network showed that previous studies mainly focused on four hotspots: periodontal ligament stem cells (PDLSCs), the pathological process of periodontitis, osteogenic differentiation/bone regeneration, and the competing endogenous RNA (ceRNA) network. Conclusions The therapeutic potential of miRNA in promoting bone formation and how the ceRNA network contributes to miRNA regulation at a deeper level have become the two main research trends of this field.
Collapse
Affiliation(s)
- Kang Gao
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiping Dou
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Menghao Lv
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yihui Zhu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Sitong Hu
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Pan Ma
- Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2021; 124:34-47. [PMID: 34446356 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
|
23
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
24
|
Ahmad I, Valverde A, Siddiqui H, Schaller S, Naqvi AR. Viral MicroRNAs: Interfering the Interferon Signaling. Curr Pharm Des 2020; 26:446-454. [PMID: 31924149 DOI: 10.2174/1381612826666200109181238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
Abstract
Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.
Collapse
Affiliation(s)
- Imran Ahmad
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Hasan Siddiqui
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| |
Collapse
|
25
|
Valverde A, Nares S, Naqvi AR. Impaired cell migration and structural defects in myeloid cells overexpressing miR-30b and miR-142-3p. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194628. [PMID: 32979559 DOI: 10.1016/j.bbagrm.2020.194628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Macrophages (MΦ) and dendritic cells (DC) play a fundamental role in shaping immune responses by sensing a plethora of Pathogen Associated Molecular Patterns (PAMPs), phagocytosis and antigen presentation to T lymphocytes. These important biological processes require efficient cell movement and an intact cellular morphology for dynamic interaction. The role of microRNAs (miRs) in this regard, however, is not well understood. In the present study, we show that miR-30b and miR-142-3p regulate migration and morphology of MΦ and DC. Transient overexpression of miR-30b and miR-142-3p attenuates migration and these cells display unique morphological deformities observed under electron microscopy. In addition, miR-142-3p overexpression in MΦ impaired phagocytosis of FITC-conjugated latex beads using live microscopy imaging. Interestingly, live cell imaging and F-actin staining revealed marked changes in the cell polarity and actin polymerization status, respectively. To identify miR-142-3p regulated pathways, we profiled global transcriptome changes in miR-142-3p or control mimic transfected DC. Expression of several genes were differentially altered by miR-142-3p and were associated with pathways related to cell movement, cell adhesion, and cytoskeletal rearrangement. Bioinformatics analysis identified a significant subset of downregulated genes with one or more predicted miR-142-3p binding sites in their 3'UTR strongly suggesting direct post-transcriptional impact of these miRNAs on multiple transcripts. Using dual luciferase assays, novel miR-142-3p binding sites were validated for three genes (Vinculin, Dab2 and Skap2) directly associated with cytoskeletal rearrangement and cell movement. In summary, our results show that miR-30b and miR-142-3p are regulators of myeloid cell cytoskeletal homeostasis and morphology.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States of America
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States of America
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States of America.
| |
Collapse
|
26
|
Expression of MicroRNAs in Periodontal and Peri-Implant Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21114147. [PMID: 32532036 PMCID: PMC7312949 DOI: 10.3390/ijms21114147] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
AIM The purpose of this review was to evaluate the expression patterns of miRNAs in periodontal and peri-implant diseases, while identifying potential miRNAs with the greatest diagnostic ability as an oral fluid biomarker. MATERIALS AND METHODS Human and animal studies were included when evaluating expression of miRNAs between health and different forms/stages of diseases, in which microarray and/or real-time polymerase chain reaction (RT-PCR) was carried out to detect fold changes in gene expression. After full-text analysis, 43 articles were considered for a qualitative assessment, and 16 miRNAs were selected to perform meta-analysis. RESULTS Based on human studies, results showed an overall upregulation of most of the evaluated miRNAs in periodontitis, with miRNA-142-3p and miRNA-146a being the most conclusive on both microarray and RT-PCR values and potentially serving as diagnostic biomarkers for disease activity. Conversely, miR-155 was the only miRNA revealing a statistically significant difference (SSD) (p < 0.05*) in experimental periodontitis models from RT-PCR values. Scarce scientific evidence is available from peri-implant diseases, however, most explored miRNAs in peri-implantitis were downregulated except for miR-145. CONCLUSIONS Although our results revealed that a distinct differential expression of specific miRNAs can be noted between the state of health and disease, future research remains necessary to explore the functional role of specific miRNAs and their potential as therapeutic targets in periodontal and peri-implant diseases. MeSH Terms: periodontitis, peri-implantitis, epigenomics, microarray analysis, real-time polymerase chain reaction, microRNAs. CLINICAL RELEVANCE Scientific background: Although most research identified different expression levels of miRNAs in periodontal and peri-implant diseases compared to their counterparts, their actual role in the pathogenesis of these conditions remains unclear. Therefore, we aimed to present a systematic review and meta-analysis on the expression patterns of miRNAs in periodontitis and peri-implantitis, while identifying potential miRNAs with the greatest diagnostic ability as an oral fluid biomarker. PRINCIPAL FINDINGS In periodontitis-related studies, miRNA-142-3p and miRNA-146a were the most conclusive on both microarray and RT-PCR values. Scarce scientific evidence is available from peri-implant diseases. PRACTICAL IMPLICATIONS Both miRNA-142-3p and miRNA-146a might serve as future diagnostic biomarkers for disease activity in periodontitis. Yet, future research remains necessary to explore the functional role of specific miRNAs and their potential as therapeutic targets in periodontal and peri-implant diseases.
Collapse
|
27
|
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2020; 30:e2081. [PMID: 31432608 PMCID: PMC7398577 DOI: 10.1002/rmv.2081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Human herpesviruses (HHV) are large, double stranded, DNA viruses with high seroprevalence across the globe. Clinical manifestation of primary HHV infection resolve shortly, however, this period is prolonged in immunocompromised patients or individuals with suppressed immunity. Examining molecular mechanisms of HHV-encoded virulence factors can provide finer details of HHV-host interaction. A unique genetic feature of most members of HHV is that they encode multiple microRNAs (miR). In this review, I will provide mechanistic insights into the immunomodulatory functions of herpesvirus-encoded viral miR (v-miR) that favor viral persistence and spread by ingenious immune evasion schemes. Similar to host miR, v-miR can simultaneously regulate expression of multiple transcripts including host- and virus-derived. V-miRs, by virtue of their direct interaction with various transcripts, can regulate expression of critical components of host innate and adaptive immune system. V-miRs are also exported through exosomal route and gain entry into various cells even at distant sites, thereby allowing HHV to manipulate cellular and tissue immunity. Targeting v-miR may serve as a novel and promising therapeutic candidate to mitigate HHV-mediated clinical manifestations.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Almiñana-Pastor PJ, Boronat-Catalá M, Micó-Martinez P, Bellot-Arcís C, Lopez-Roldan A, Alpiste-Illueca FM. Epigenetics and periodontics: A systematic review. Med Oral Patol Oral Cir Bucal 2019; 24:e659-e672. [PMID: 31433392 PMCID: PMC6764711 DOI: 10.4317/medoral.23008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Despite decades of research, our knowledge of several important aspects of periodontal pathogenesis remains incomplete. Epigenetics allows to perform dynamic analysis of different variations in gene expression, providing this great advantage to the static measurement provided by genetic markers. The aim of this systematic review is to analyze the possible relationships between different epigenetic mechanisms and periodontal diseases, and to assess their potential use as biomarkers of periodontitis. Material and Methods A systematic search was conducted in six databases using MeSH and non-MeSH terms. The review fulfilled PRISMA criteria (Preferred Reporting Items for Systematic reviews and Meta-analysis). Results 36 studies met the inclusion criteria. Due to the heterogeneity of the articles, it was not possible to conduct quantitative analysis. Regarding qualitative synthesis, however, it was found that epigenetic mechanisms may be used as biological markers of periodontal disease, as their dynamism and molecular stability makes them a valuable diagnostic tool. Conclusions Epigenetic markers alter gene expression, producing either silencing or over-expression of molecular transcription that respond to the demands of the cellular surroundings. Gingival crevicular fluid collection is a non-invasive and simple procedure, which makes it an ideal diagnostic medium for detection of both oral and systemic issues. Although further research is needed, this seems to be a promising field of research in the years to come. Key words:Epigenetics, periodontitis, DNA methylation, miRNA, epigenetic biomarker, periodontal diseases.
Collapse
|
29
|
Shi J, An G, Guan Y, Wei T, Peng Z, Liang M, Wang Y. miR-328-3p mediates the anti-tumor effect in osteosarcoma via directly targeting MMP-16. Cancer Cell Int 2019; 19:104. [PMID: 31043859 PMCID: PMC6477748 DOI: 10.1186/s12935-019-0829-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background Increasing reports demonstrated that dysregulated expression of microRNAs (miRNAs) leads to the progression of various tumors. Previous studies revealed that miR-328-3p exhibited dysregulated expression in various types of tumors. However, its function and underlying mechanism in osteosarcoma (OS) are still unexplored. Methods The expression of miR-328-3p in the tissues and OS cell lines was detected by qRT-PCR analysis. The effects of miR-328-3p in the proliferation were analyzed by MTT assay. The proliferation and apoptosis of OS cells were examined by colony formation assay and TUNEL staining respectively. The migration and tumor formation ability of OS cells were measured by wound healing assay and xenograft in vivo mice assay. Furthermore, the regulatory roles of miR-328-3p/MMP16 were determined by western blot and luciferase reporter assay. Results The expression of miR-328-3p was significantly decreased in OS tissues and cell lines. Furthermore, overexpression of miR-328-3p inhibited the cell proliferation and migration, but promoted the apoptosis of OS cells in vitro. Moreover, the analysis in vivo showed that miR-328-3p effectively suppressed the formation of tumors. According to the results of western blot analysis and luciferase reporter assay, we identified matrix metalloproteinase-16 (MMP-16) acted as a direct target of miR-328-3p. Moreover, the expression level of MMP-16, which participates in the occurrence and development of many cancers, was negatively correlated with the miR-328-3p expression in OS cells. Conclusion miR-328-3p inhibited the proliferation, migration but accelerated the apoptosis of OS by directly inhibiting MMP-16. And miR-328-3p/MMP-16 axis may be one of the mechanisms of OS development and a novel potential method for the treatment of OS in clinic.
Collapse
Affiliation(s)
- Jianhui Shi
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China.,2Department of Orthopaedics, Heilongjiang Provincial Hospital, No. 82, Zhongshan Road, Harbin, 150036 Heilongjiang China
| | - Gang An
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| | - Ying Guan
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| | - Tianli Wei
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| | - Zhibin Peng
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| | - Min Liang
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| | - Yansong Wang
- 1Department of Spine Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province China
| |
Collapse
|