1
|
De Gregori S, Seminari E, Capone M, Giordani P, Bruno R, De Silvestri A. Daptomycin Exposure Prediction With a Limited Sampling Strategy. Ther Drug Monit 2024; 46:537-542. [PMID: 38666474 DOI: 10.1097/ftd.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Daptomycin is a cyclic lipopeptide antibiotic used to treat serious infectious endocarditis caused by Staphylococcus aureus . The pharmacodynamic parameter correlating best with efficacy is the ratio of the estimated area under the concentration (AUC 0-24 )-time curve to the minimum inhibitory concentration. The aim of the study is to develop a limited sampling strategy to estimate AUC 0-24 using a reduced number of samples. METHODS Sixty-eight daptomycin AUC 0-24 values were calculated for 50 White patients who underwent treatment for at least 5 consecutive days. Plasma concentrations were detected using a validated high-performance liquid chromatography-tandem mass spectrometry analytical method, with daptomycin-d5 as an internal standard. Multiple regression was used to evaluate the ability of 2 concentration-time points to predict the AUC 0-24 calculated from the entire pharmacokinetic profile. Prediction bias was calculated as the mean prediction error, whereas prediction precision was estimated as the mean absolute prediction error. The development and validation datasets comprised 40 and 10 randomly selected patients, respectively. RESULTS The AUC 0-24 (mg*h/L) was best estimated using the daptomycin trough concentration and plasma concentrations detected 2 hours after dosing. We calculated a mean prediction error of 1.6 (95% confidence interval, -10.7 to 10.9) and a mean absolute prediction error of 11.8 (95% confidence interval, 5.3-18.3), with 73% of prediction errors within ±15%. CONCLUSIONS An equation was developed to estimate daptomycin exposure (AUC 0-24 ), offering clinical applicability and utility in generating personalized dosing regimens, especially for individuals at high risk of treatment failure or delayed response.
Collapse
Affiliation(s)
- Simona De Gregori
- Department of Diagnostic Medicine and Services: Laboratory Medicine-Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - Elena Seminari
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy; and
| | - Mara Capone
- Department of Diagnostic Medicine and Services: Laboratory Medicine-Clinical and Experimental Pharmacokinetics Unit, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| | - Paola Giordani
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy; and
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy; and
| | - Annalisa De Silvestri
- SSD Biostatistics and Clinical Trial Center, Fondazione IRCCS Policlinico, San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Wu J, Zheng X, Zhang L, Wang J, Lv Y, Xi Y, Wu D. Population pharmacokinetics of intravenous daptomycin in critically ill patients: implications for selection of dosage regimens. Front Pharmacol 2024; 15:1378872. [PMID: 38756382 PMCID: PMC11096781 DOI: 10.3389/fphar.2024.1378872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Daptomycin is gaining prominence for the treatment of methicillin-resistant Staphylococcus aureus infections. However, the dosage selection for daptomycin in critically ill patients remains uncertain, especially in Chinese patients. This study aimed to establish the population pharmacokinetics of daptomycin in critically ill patients, optimize clinical administration plans, and recommend appropriate dosage for critically ill patients in China. The study included 64 critically ill patients. Blood samples were collected at the designated times. The blood daptomycin concentration was determined using validated liquid chromatography-tandem mass spectrometry. A nonlinear mixed-effects model was applied for the population pharmacokinetic analysis and Monte Carlo simulations of daptomycin. The results showed a two-compartment population pharmacokinetic model of daptomycin in critically ill adult Han Chinese patients. Monte Carlo simulations revealed that a daily dose of 400 mg of daptomycin was insufficient for the majority of critically ill adult patients to achieve the anti-infective target. For critically ill adult patients with normal renal function (creatinine clearance rate >90 mL/min), the probability of achieving the target only reached 90% when the daily dose was increased to 700 mg. For patients undergoing continuous renal replacement therapy (CRRT), 24 h administration of 500 mg met the pharmacodynamic goals and did not exceed the safety threshold in most patients. Therefore, considering its efficacy and safety, intravenous daptomycin doses are best scaled according to creatinine clearance, and an increased dose is recommended for critically ill patients with hyperrenalism. For patients receiving CRRT, medication is recommended at 24 h intervals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin Microbiol Rev 2023; 36:e0005922. [PMID: 37067406 PMCID: PMC10283489 DOI: 10.1128/cmr.00059-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Collapse
Affiliation(s)
- Kelly A. Cairns
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew A. Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Trisha N. Peel
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Iain J. Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael J. Dooley
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
- Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Characterization of plasma daptomycin in patients with serum highly glycated albumin and obesity. J Infect Chemother 2023; 29:119-125. [PMID: 36216220 DOI: 10.1016/j.jiac.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Plasma daptomycin has not been fully characterized in diabetic and obese patients. This study aimed to evaluate the associations of plasma daptomycin with glycation of serum albumin and obesity. METHODS Infectious patients (n = 70) receiving intravenous daptomycin were enrolled. The plasma concentration of total and free daptomycin were determined using liquid chromatograph-tandem mass spectrometer. The associations of the plasma concentrations of daptomycin with clinical factors including serum albumin fractionations and physical status (obese including overweight, body mass index ≥ 25.0) were investigated. Daptomycin doses were adjusted using total body-weight. RESULTS The serum albumin level was positively and negatively correlated with the plasma concentration of total daptomycin and its free fraction proportion, respectively. The serum non-glycated albumin was negatively correlated with the free fraction proportion. The dose-normalized plasma concentration of total daptomycin was higher in the obese patients than in non-obese patients when the body-weight was corrected with total and adjusted values. For the dose adjustment with lean body-weight, no difference was observed in the dose-normalized plasma concentration of total daptomycin between the physical statuses. For each body-weight correction method, physical status did not affect the dose-normalized plasma concentration of free daptomycin. CONCLUSION The glycation of serum albumin and obesity did not associate with dose-normalized plasma free daptomycin. In obese patients, daptomycin dosage adjustment with total body-weight and adjusted body-weight may lead to an apparent excessive exposure resulting in overdosage compared to lean body-weight.
Collapse
|
5
|
Ebihara F, Hamada Y, Kato H, Maruyama T, Kimura T. Importance and Reality of TDM for Antibiotics Not Covered by Insurance in Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052516. [PMID: 35270215 PMCID: PMC8909063 DOI: 10.3390/ijerph19052516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/10/2022]
Abstract
Under the Japanese health insurance system, medicines undergoing therapeutic drug monitoring (TDM) can be billed for medical fees if they meet the specified requirements. In Japan, TDM of vancomycin, teicoplanin, aminoglycosides, and voriconazole, which are used for the treatment of infectious diseases, is common practice. This means the levels of antibiotics are measured in-house using chromatography or other methods. In some facilities, the blood and/or tissue concentrations of other non-TDM drugs are measured by HPLC and are applied to treatment, which is necessary for personalized medicine. This review describes personalized medicine based on the use of chromatography as a result of the current situation in Japan.
Collapse
Affiliation(s)
- Fumiya Ebihara
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan; (F.E.); (T.M.); (T.K.)
| | - Yukihiro Hamada
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan; (F.E.); (T.M.); (T.K.)
- Correspondence:
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Mie 514-8507, Japan;
| | - Takumi Maruyama
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan; (F.E.); (T.M.); (T.K.)
| | - Toshimi Kimura
- Department of Pharmacy, Tokyo Women’s Medical University Hospital, Tokyo 162-8666, Japan; (F.E.); (T.M.); (T.K.)
| |
Collapse
|
6
|
Simplified daptomycin dosing regimen for adult patients with methicillin-resistant Staphylococcus aureus infections based on population pharmacokinetic analysis. Drug Metab Pharmacokinet 2022; 44:100444. [DOI: 10.1016/j.dmpk.2022.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/20/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022]
|
7
|
Samura M, Takada K, Hirose N, Kurata T, Nagumo F, Koshioka S, Ishii J, Uchida M, Inoue J, Enoki Y, Taguchi K, Tanikawa K, Matsumoto K. Incidence of elevated creatine phosphokinase between daptomycin alone and concomitant daptomycin and statins: a systematic review and meta-analysis. Br J Clin Pharmacol 2021; 88:1985-1998. [PMID: 34902879 DOI: 10.1111/bcp.15172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
AIM The present systematic review and meta-analysis evaluated the incidence of elevated creatine phosphokinase (CPK) levels between daptomycin alone and concomitant daptomycin and statin use. METHODS We searched the PubMed, Web of Sciences, Cochrane Library, and ClinicalTrials.gov databases. We analysed the incidence of elevated CPK between daptomycin alone and concomitant daptomycin and statins among studies defining CPK elevation as levels ≥ the upper limit of normal (ULN) or ≥ 5 times ULN. We also analysed the incidence of rhabdomyolysis between the groups. We then calculated the odds ratios (ORs) and 95% confidence intervals (CIs) based on the included studies. RESULTS Comparing CPK elevation defined as CPK levels ≥ ULN, a significantly higher incidence of CPK elevation was observed with concomitant daptomycin and statin use than with daptomycin alone (OR=2.55, 95% CI 1.78-3.64, p<0.00001, I2 =0%). Likewise, when CPK elevation was defined as CPK levels ≥ 5 times ULN, a significantly higher incidence of CPK elevation was detected with concomitant daptomycin and statin use than with daptomycin alone (OR = 1.89, 95% CI 1.06-3.35, p=0.03, I2 =48%). The incidence of rhabdomyolysis was significantly higher following concomitant daptomycin and statin use than with daptomycin alone (OR = 11.60, 95% CI 1.81-74.37, p=0.01, I2 =0%). CONCLUSIONS The combined use of daptomycin and statins were significant risk factors for the incidence of CPK elevation defined as levels ≥ ULN or ≥ 5 times ULN and rhabdomyolysis.
Collapse
Affiliation(s)
- Masaru Samura
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan.,Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Keisuke Takada
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Naoki Hirose
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Takenori Kurata
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Fumio Nagumo
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Sakura Koshioka
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Junichi Ishii
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Masaki Uchida
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Junki Inoue
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Koji Tanikawa
- Department of Pharmacy, Yokohama General Hospital, Yokohama, Kanagawa, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
8
|
Osorio C, Garzón L, Jaimes D, Silva E, Bustos RH. Impact on Antibiotic Resistance, Therapeutic Success, and Control of Side Effects in Therapeutic Drug Monitoring (TDM) of Daptomycin: A Scoping Review. Antibiotics (Basel) 2021; 10:antibiotics10030263. [PMID: 33807617 PMCID: PMC8001274 DOI: 10.3390/antibiotics10030263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AR) is a problem that threatens the search for adequate safe and effective antibiotic therapy against multi-resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE) and Clostridium difficile, among others. Daptomycin is the treatment of choice for some infections caused by Gram-positive bacteria, indicated most of the time in patients with special clinical conditions where its high pharmacokinetic variability (PK) does not allow adequate plasma concentrations to be reached. The objective of this review is to describe the data available about the type of therapeutic drug monitoring (TDM) method used and described so far in hospitalized patients with daptomycin and to describe its impact on therapeutic success, suppression of bacterial resistance, and control of side effects. The need to create worldwide strategies for the appropriate use of antibiotics is clear, and one of these is the performance of therapeutic drug monitoring (TDM). TDM helps to achieve a dose adjustment and obtain a favorable clinical outcome for patients by measuring plasma concentrations of an administered drug, making a rational interpretation guided by a predefined concentration range, and, thus, adjusting dosages individually.
Collapse
Affiliation(s)
- Carolina Osorio
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; (C.O.); (L.G.); (D.J.)
| | - Laura Garzón
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; (C.O.); (L.G.); (D.J.)
| | - Diego Jaimes
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; (C.O.); (L.G.); (D.J.)
| | - Edwin Silva
- Faculty of Medicine, University of La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia; (C.O.); (L.G.); (D.J.)
- Correspondence: ; Tel.: +57-1-8615555
| |
Collapse
|
9
|
Gregoire N, Chauzy A, Buyck J, Rammaert B, Couet W, Marchand S. Clinical Pharmacokinetics of Daptomycin. Clin Pharmacokinet 2020; 60:271-281. [PMID: 33313994 DOI: 10.1007/s40262-020-00968-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Due to the low level of resistance observed with daptomycin, this antibiotic has an important place in the treatment of severe Gram-positive infections. It is the first-in-class of the group of calcium-dependent, membrane-binding lipopeptides, and is a cyclic peptide constituted of 13 amino acids and an n-decanoyl fatty acid chain. The antibacterial action of daptomycin requires its complexation with calcium. Daptomycin is not absorbed from the gastrointestinal tract and needs to be administered parenterally. The distribution of daptomycin is limited (volume of distribution of 0.1 L/kg in healthy volunteers) due to its negative charge at physiological pH and its high binding to plasma proteins (about 90%). Its elimination is mainly renal, with about 50% of the dose excreted unchanged in the urine, justifying dosage adjustment for patients with renal insufficiency. The pharmacokinetics of daptomycin are altered under certain pathophysiological conditions, resulting in high interindividual variability. As a result, therapeutic drug monitoring of daptomycin may be of interest for certain patients, such as intensive care unit patients, patients with renal or hepatic insufficiency, dialysis patients, obese patients, or children. A target for the ratio of the area under the curve to the minimum inhibitory concentration > 666 is usually recommended for clinical efficacy, whereas in order to limit the risk of undesirable muscular effects the residual concentration should not exceed 24.3 mg/L.
Collapse
Affiliation(s)
- Nicolas Gregoire
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| | - Alexia Chauzy
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Buyck
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Blandine Rammaert
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Service de maladies infectieuses et tropicales, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| | - William Couet
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France.
| | - Sandrine Marchand
- INSERM, U1070, UFR de Médecine Pharmacie, Université de Poitiers, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
- Laboratoire de Toxicologie-Pharmacocinétique, CHU of Poitiers, 2 rue de la Miletrie, 86000, Poitiers, France
| |
Collapse
|