1
|
Zhou J, Feng D, Chen Y, Li X, Cen J, Wu W, Zheng W, Gan W, Zhang T. Effect of leucine on mitochondria and oxidative stress to reduce virulence and pathogenicity of Acinetobacter baumannii. Microbiol Res 2025; 290:127932. [PMID: 39454348 DOI: 10.1016/j.micres.2024.127932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Elucidating the virulence mechanisms of A. baumannii is essential for developing strategies to mitigate pathogenicity. Although high-virulent strains are associated with increased mortality rate in severely infected patients, the underlying mechanisms remains not well understood. Our analysis revealed leucine as a pivotal biomarker, with the 11dP and paaK being significant contributors to virulence. The ATP-dependent activity and antioxidant activity were identified as the most important pathways in distinguishing the virulence of A. baumannii. Exogenous leucine was found to modulate mitochondria dysfunction and oxidative stress, thereby diminishing the pathogenicity of A. baumannii towards Beas 2B cells. Moreover, leucine reduced the virulence of A. baumannii to Galleria mellonella (G. mellonella) and alleviated pathological damage to lung tissues in mice. Our study offers a novel treatment strategy based on metabolomics, which may assist in the exploration and management of infections caused by highly virulent pathogens. It sets a new course for reducing the impact of highly virulent A. baumannii infections and has significant implications for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jianxia Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Yuetao Chen
- The State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xia Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Jiemei Cen
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenbin Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenzheng Zheng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Wenlei Gan
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Institute of Respiratory Disease of Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
2
|
Alturki MS, Al Khzem AH, Gomaa MS, Tawfeeq N, Alhamadah MH, Alshehri FM, Alzahrani R, Alghamdi H, Rants'o TA, Ayil KAG, Al Mouslem AK, Almaghrabi M. Gallic Acid: A Potent Metabolite Targeting Shikimate Kinase in Acinetobacter baumannii. Metabolites 2024; 14:727. [PMID: 39728508 DOI: 10.3390/metabo14120727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives:Acinetobacter baumannii is a highly multidrug-resistant pathogen resistant to almost all classes of antibiotics; new therapeutic strategies against this infectious agent are urgently needed. Shikimate kinase is an enzyme belonging to the shikimate pathway and has become a potential target for drug development. This work describes the search for Food and Drug Administration (FDA)-approved drugs and natural compounds, including gallic acid, that could be repurposed as selective shikimate kinase inhibitors by integrated computational and experimental approaches. Methods: Approaches to drug design using structure-based and ligand-based methodology, in-silico screening, molecular docking, and molecular dynamics for the study of both binding affinity and stability. Experimental Validation Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) on Acinetobacter baumannii and Enterococcus faecalis. Results/Conclusions: Among them, gallic acid, obtained from plants, proved to be the most promising compound that showed sufficient binding with shikimate kinase through computational studies. Gallic acid showed very good activity against Acinetobacter baumannii and Enterococcus faecalis in the MIC and MBC assay, respectively. Gallic acid exhibited better activity against Acinetobacter baumannii due to the overexpression of shikimate kinase. Gallic acid has emerged as a potential therapeutic candidate drug against A. baumannii infection and, therefore, as a strategy against the appearance of multidrug-resistant microorganisms. This study not only identifies a novel repurposing opportunity for gallic acid but also provides a comprehensive computational and experimental framework for accelerating antimicrobial drug discovery against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Mansour S Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdulaziz H Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohamed S Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah H Alhamadah
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Futun M Alshehri
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Raghad Alzahrani
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Hanin Alghamdi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Thankhoe A Rants'o
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Khaled A G Ayil
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdulaziz K Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| |
Collapse
|
3
|
Hummel D, Juhasz J, Kamotsay K, Kristof K, Xavier BB, Koster SD, Szabo D, Kocsis B. Genomic Investigation and Comparative Analysis of European High-Risk Clone of Acinetobacter baumannii ST2. Microorganisms 2024; 12:2474. [PMID: 39770677 PMCID: PMC11728346 DOI: 10.3390/microorganisms12122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is a major concern in healthcare institutions worldwide. Several reports described the dissemination of A. baumannii high-risk clones that are responsible for a high number of difficult-to-treat infections. In our study, 19 multidrug-resistant A. baumannii strains from Budapest, Hungary, were investigated based on whole-genome sequencing (WGS). The obtained results were analysed together with data from 433 strains of A. baumannii from the Pathogenwatch database. WGS analysis of 19 A. baumannii strains detected that 12 belonged to ST2 and seven belonged to ST636. Among ST2 strains, 11 out of 12 carried either blaOXA-23 or blaOXA-58 genes; however, all strains of ST636 uniformly carried blaOXA-72 gene. All strains of ST2 and ST636 carried blaOXA-66 and blaADC-25 genes. Based on core genome multilocus sequence typing (cgMLST), 10 strains of ST2 belonged to cgMLST906, one strain to cgMLST458, and one strain to cgMLST1320; by contrast, all strains of ST636 belonged to cgMLST1178. Certain virulence determinants were present in all strains of both ST2 and ST636, namely, Ata, Bap, BfmRS, T2SS and PNAG. Interestingly, OmpA was present in all strains of ST2, but it was absent in all strains of ST636. Comparative analysis of 19 strains of this study and the collection of 433 isolates from Pathogenwatch database, proved a diverse clonal distribution of high-risk A. baumannii clones in Europe. The major clone in Europe is ST2, which is present all over the continent. However, ST636 has been mainly reported in Eastern Europe. Interestingly, cgMLSTs of ST2 correspond to the production of different beta-lactamases, namely, OXA-82 in cgMLST116, OXA-72 in cgMLST506, and cgMLST556, PER-1 in cgMLST456 and cgMLST1041. Our study demonstrates that the ST2 high-risk clone of A. baumannii is the most widespread in Europe; however, based on cgMLST analysis, a detailed detection of beta-lactamase production can be determined.
Collapse
Affiliation(s)
- David Hummel
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Katalin Kamotsay
- Central Microbiology Laboratory, National Institute of Hematology and Infectious Disease, Central Hospital of Southern-Pest, 1097 Budapest, Hungary
| | - Katalin Kristof
- Institute of Laboratory Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, University of Antwerp, 2610 Antwerpen, Belgium
- Department of Medical Microbiology and Infection Control, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Sien De Koster
- Microbiology Department, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
- Department of Neurosurgical and Neurointervention, Semmelweis University, 1085 Budapest, Hungary
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
4
|
Dettlaff K, Guzińska J, Klimaszewska M, Dominiak K, Jelińska A. Intravenous tigecycline with selected multichamber bag parenteral nutrition: A compatibility study. JPEN J Parenter Enteral Nutr 2024; 48:990-997. [PMID: 39257207 DOI: 10.1002/jpen.2683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Tigecycline is widely used to treat infections in intensive care units. Drugs often need to be delivered to critically ill patients feeding by parenteral nutrition (PN). Before two preparations are administered in the same infusion line, the safety of this combination should be established. The objective of this study was to determine the compatibility of tigecycline with selected multichamber bag PN (MCB-PN). METHODS Tigecycline was diluted in 0.9% sodium chloride solution and 5% glucose solution to obtain two 0.5 mg/ml solutions. Then the solutions were combined with selected MCB-PN in appropriate proportions. The samples were visually assessed, and pH, osmolality, turbidity, particle size, and zeta potential were measured. These measurements were made immediately after combining the solutions and after 4 h of storage at 23°C ± 1°C. RESULTS It was determined that the pH values of the mixtures after combining with tigecycline changed by ≤0.1 unit. An increase in zeta potential was recorded, excluding one combination of tigecycline with the mixture. For all samples tested, the particle size distribution was within the acceptable range immediately after combination and after 4 h of storage. The difference in osmolality did not exceed ±3%, whereas the zeta potential decreased for only one combination. The turbidity of none of the samples exceeded a critical value. CONCLUSION The physical compatibility of the tigecycline with five MCB-PN was proved. They can therefore be administered to patients in one infusion line using the Y-site.
Collapse
Affiliation(s)
- Katarzyna Dettlaff
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical, Sciences, Poznań, Poland
| | - Julia Guzińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical, Sciences, Poznań, Poland
| | - Marta Klimaszewska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical, Sciences, Poznań, Poland
| | - Katarzyna Dominiak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical, Sciences, Poznań, Poland
| | - Anna Jelińska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical, Sciences, Poznań, Poland
| |
Collapse
|
5
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Zhang HL, Nizamani MM, Wang Y, Cui X, Xiu H, Qayyum M, Sun Q. Analysis of antimicrobial resistance and genetic diversity of Acinetobacter baumannii in a tertiary care hospital in Haikou City. Sci Rep 2024; 14:22068. [PMID: 39333332 PMCID: PMC11437051 DOI: 10.1038/s41598-024-73258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
This study addresses the distribution and antimicrobial resistance of Acinetobacter baumannii (A. baumannii) in a medical facility in Haikou City, aiming to provide essential insights for enhancing in-hospital treatment and prevention strategies. We conducted a retrospective analysis of 513 A. baumannii isolates collected from a tertiary care hospital in Haikou between January 2018 and December 2020, focusing on their antimicrobial resistance patterns. Random Amplified Polymorphic DNA (RAPD) analysis was performed on 48 randomly selected A. baumannii strains. Using Gel-pro4.0 and NTSYSspc2.10 software, we constructed dendrograms to assess the genetic diversity of these strains. Our results indicate that males between 60 and 70 years old are particularly vulnerable to A. baumannii infections, which are most frequently detected in sputum samples, with a detection rate exceeding 70%. Alarmingly, over 50% of the isolates were identified as multi-drug resistant. The RAPD-PCR fingerprinting cluster analysis demonstrated substantial genetic diversity among the strains. Using primer OPA-02 at a 45% similarity coefficient, the strains were categorized into four groups (A-D), with group A being predominant (39 strains). high-prevalence areas like the Neurosurgery and Intensive Care Medicine Wards require enhanced surveillance and targeted interventions to manage Group C infections effectively. Additionally, the varied presence of other groups necessitates customized strategies to address the specific risks in each ward. Similarly, primer 270 at a 52% similarity coefficient classified the strains into five groups (E-I), with group E being most common (36 strains). The study highlights a concerning prevalence of antimicrobial resistance, particularly multi-drug resistance, among A. baumannii strains in the Haikou hospital. The significant genetic diversity, especially within groups A and E, underscores the need for tailored hospital treatment protocols and prevention measures. These findings contribute to the growing body of research on antimicrobial resistance, emphasizing the urgent need for effective management strategies in healthcare settings.
Collapse
Affiliation(s)
- Hai-Li Zhang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, 572025, China
| | - Mir Muhammad Nizamani
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- Institute of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yanjing Wang
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China
| | - Xiaoli Cui
- Autobio Diagnostics Co., Ltd, Zhengzhou, 450000, China
| | - Hao Xiu
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China
| | - Muhammad Qayyum
- School of Economics and Statistics, Guangzhou University, Guangzhou, China
| | - Qinghui Sun
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, Hainan, China.
- The First Affiliated Hospital of Hainan Medical College, Hainan Medical University, Hai Kou, 571199, Hainan, China.
| |
Collapse
|
7
|
Jayathilaka EHTT, Han J, De Zoysa M, Whang I. Antimicrobial Peptide Octoprohibitin-Encapsulated Chitosan Nanoparticles Enhanced Antibacterial Activity against Acinetobacter baumannii. Pharmaceutics 2024; 16:1245. [PMID: 39458577 PMCID: PMC11510178 DOI: 10.3390/pharmaceutics16101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: This study focused on evaluating the physiochemical characteristics and antibacterial activity of Octoprohibitin-encapsulated CNPs (Octoprohibitin-CNPs) against Acinetobacter baumannii. Methods: Octoprohibitin was encapsulated into CNPs via ionotropic gelation with carboxymethyl chitosan (CMC) and low molecular weight chitosan (CS). Octoprohibitin-CNPs were dispersed in phosphate-buffered saline and the release kinetic profile was determined. Then Octoprohibitin-CNPs were examined using field-emission transmission electron microscopy and physicochemical characterization was performed. Antibacterial activity of Octoprohibitin-CNPs against A. baumannii was evaluated. Biofilm inhibition and eradication assays were performed using the crystal violet (CV) staining-based method for biofilm quantification. Results: The average diameter, zeta potential, encapsulation efficiency, and loading capacity of Octoprohibitin-CNPs were 244.5 ± 21.97 nm, +48.57 ± 0.38 mV, and 85.7% and 34.2%, respectively. TEM analysis imaging revealed that Octoprohibitin-CNPs are irregularly shaped, with fewer aggregates than CNPs. Octoprohibitin-CNPs exhibited a biphasic release pattern, characterized by an initial rapid phase followed by a sustained release over time, extending up to 93.68 ± 6.48% total release until 96 h. In vitro, Octoprohibitin-CNPs showed lower cytotoxicity compared to Octoprohibitin alone. Time-kill kinetic and bacterial viability reduction assays showed Octoprohibitin-CNPs exhibited slightly higher antibacterial activity against A. baumannii than Octoprohibitin. Conclusions: Octoprohibitin-CNP-treated A. baumannii exhibited higher levels of morphological deviation, increased membrane permeability, and the production of reactive oxygen species, as well as antibiofilm activity with greater biofilm inhibition and eradication than Octoprohibitin. These findings show that Octoprohibitin-CNPs perform better against A. baumannii compared to Octoprohibitin alone.
Collapse
Affiliation(s)
- E. H. T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Jinwook Han
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seocheon 33662, Republic of Korea;
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro 101 beon-gil, Janghang-eup, Seocheon 33662, Republic of Korea;
| |
Collapse
|
8
|
Zhang Y, Shao Y, You H, Shen Y, Miao F, Yuan C, Chen X, Zhai M, Shen Y, Zhang J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024; 595:110098. [PMID: 38705084 DOI: 10.1016/j.virol.2024.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Acinetobacter baumannii is one of the most important pathogens of healthcare-associated infections. The rising prevalence of multidrug-resistant A. baumannii (MRAB) strains and biofilm formation impact the outcome of conventional treatment. Phage-related therapy is a promising strategy to tame troublesome multidrug-resistant bacteria. Here, we isolated and evaluated a highly efficient lytic phage called MRABP9 from hospital sewage. The phage was a novel species within the genus Friunavirus and exhibited lytic activity against 2 other identified MRAB strains. Genomic analysis revealed it was a safe virulent phage and a pectate lyase domain was identified within its tail spike protein. MRABP9 showed potent bactericidal and anti-biofilm activity against MRAB, significantly delaying the time point of bacterial regrowth in vitro. Phage administration could rescue the mice from acute lethal MRAB infection. Considering its features, MRABP9 has the potential as an efficient candidate for prophylactic and therapeutic use against acute infections caused by MRAB strains.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China.
| | - Yong Shao
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Hongyang You
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chenyan Yuan
- Department of Clinical Laboratory, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Mengyan Zhai
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yi Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China; Department of Critical Care Medicine, Zhongda Hospital, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing, 210009, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, 210018, China
| |
Collapse
|
9
|
Fuochi V, Furnari S, Trovato L, Calvo M, Furneri PM. Therapies in preclinical and in early clinical development for the treatment of urinary tract infections: from pathogens to therapies. Expert Opin Investig Drugs 2024; 33:677-698. [PMID: 38700945 DOI: 10.1080/13543784.2024.2351509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Urinary tract infections (UTIs) are a prevalent health challenge characterized by the invasion and multiplication of microorganisms in the urinary system. The continuous exploration of novel therapeutic interventions is imperative. Advances in research offer hope for revolutionizing the management of UTIs and improving the overall health outcomes for individuals affected by these infections. AREAS COVERED This review aimed to provide an overview of existing treatments for UTIs, highlighting their strengths and limitations. Moreover, we explored and analyzed the latest therapeutic modalities under clinical development. Finally, the review offered a picture into the potential implications of these therapies on the future landscape of UTIs treatment, discussing possible advancements and challenges for further research. EXPERT OPINION Comprehensions into the pathogenesis of UTIs have been gleaned from foundational basic science studies, laying the groundwork for the exploration of novel therapeutic interventions. The primary source of evidence originates predominantly from animal studies conducted on murine models. Nevertheless, the lack of clinical trials interferes the acquisition of robust evidence in humans. The challenges presented by the heterogeneity and virulence of uropathogens add an additional layer of complexity, posing an obstacle that scientists and clinicians are actively grappling with in their pursuit of effective solutions.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Laura Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Catania, Italy
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. "Policlinico-San Marco", Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
11
|
Martins T, Parisi C, Guerra Pinto J, Ribeiro Brambilla IDP, Malanga M, Ferreira-Strixino J, Sortino S. Stepwise Nitric Oxide Release and Antibacterial Activity of a Nitric Oxide Photodonor Hosted within Cyclodextrin Branched Polymer Nanocarriers. ACS Med Chem Lett 2024; 15:857-863. [PMID: 38894929 PMCID: PMC11181500 DOI: 10.1021/acsmedchemlett.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/21/2024] Open
Abstract
A hydrophobic nitric oxide (NO) photodonor integrating both nitroso and nitro functionalities within its chromophoric skeleton has been synthesized. Excitation of this compound with blue light triggers the release of two NO molecules from the nitroso and the nitro functionalities via a stepwise mechanism. Encapsulation of the NO photodonor within biocompatible neutral, cationic, and anionic β-cyclodextrin branched polymers as suitable carriers leads to supramolecular nanoassemblies, which exhibit the same nature of the photochemical processes but NO photorelease performances enhanced by about 1 order of magnitude when compared with the free guest. Antibacterial tests carried out with methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii demonstrate an effective antibacterial activity exclusively under light activation and point out a differentiated role of the polymeric nanocarriers in determining the outcome of the antibacterial photodynamic action.
Collapse
Affiliation(s)
- Tassia
J. Martins
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| | - Juliana Guerra Pinto
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | | | | | - Juliana Ferreira-Strixino
- Laboratory
of Photobiology Applied to Health, Research and Development Institute, University of Vale do Paraíba, Urbanova I-2911, Brazil
| | - Salvatore Sortino
- PhotoChemLab,
Department of Drug Sciences, University
of Catania, I-95125 Catania, Italy
| |
Collapse
|
12
|
Son SM, Ahn E, Ahn S, Cho S, Ryu S. Prevalence of antibiotic-resistant Acinetobacter spp. on soil and crops collected from agricultural fields in South Korea. Food Sci Biotechnol 2024; 33:1931-1937. [PMID: 38752113 PMCID: PMC11091005 DOI: 10.1007/s10068-023-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024] Open
Abstract
The emergence of antibiotic resistance in Acinetobacter spp. is a rising public health concern worldwide. The objective of this study was to investigate the prevalence of antibiotic-resistance genes and the virulence of Acinetobacter spp. isolated from soil and crops obtained from agricultural fields in South Korea. Eight Acinetobacter spp. isolates carried various antibiotic resistance genes, such as emrAB (100%), cat/craA (100%), and aadA gene (87.5%). Minimum inhibitory concentration (MIC) analysis revealed that strains harboring antibiotic resistance genes exhibited high resistance to the respective antibiotics, such as colistin, chloramphenicol, and streptomycin. Interestingly, most of these isolates had high capability of biofilm formation and swarming motility, along with faster growth rates. Taken together, our study demonstrated that antibiotic-resistant Acinetobacter isolated from agricultural settings in South Korea not only frequently carries antibiotic resistance genes but also has virulence-related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01496-7.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Eunbyeol Ahn
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sojin Ahn
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826 Republic of Korea
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, 05836 Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
13
|
Ji C, Guo W, Amir H. Experience of diagnosis and treatment of hard-to-heal wounds infected with Acinetobacter baumannii: a case study. J Wound Care 2024; 33:278-285. [PMID: 38573906 DOI: 10.12968/jowc.2024.33.4.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
OBJECTIVE To explore the efficacy of 0.01% hypochlorous acid (HOCl) in the treatment of hard-to-heal wounds infected by multidrug-resistant Acinetobacter baumannii. METHOD We report a case of hard-to-heal wounds on a patient's forearms that were infected by Acinetobacter baumannii. The wounds were treated with 0.01% HOCl. We reviewed the relevant literature and discussed the definition, epidemiology and pathogenesis of hard-to-heal wounds infected by Acinetobacter baumannii. We also explored the safety and efficacy of 0.01% HOCl for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii. RESULTS After 3-4 weeks of treatment with 0.01% HOCl, the pain and pruritus of the wounds was gradually alleviated, the infection was controlled and the granulation tissue was fresh. The ulcers also shrank and the nutritional condition of the patient improved. In the fifth week, the skin of the patient's right thigh was grafted to repair the wounds, which then healed within 18 days. During the three years of follow-up, the patient had no relapse. CONCLUSION In our case, the 0.01% HOCl seemed to effectively inactivate the bacterial biological biofilm. This helped to promote wound healing, and was non-toxic to the tissues. We consider low-concentration HOCl to be safe and effective for the treatment of hard-to-heal wounds infected with Acinetobacter baumannii.
Collapse
Affiliation(s)
- Chaochao Ji
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyong Guo
- Institute of Basic Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hammad Amir
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
14
|
Katip W, Rayanakorn A, Sornsuvit C, Wientong P, Oberdorfer P, Taruangsri P, Nampuan T. High-Loading-Dose Colistin with Nebulized Administration for Carbapenem-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients: A Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:287. [PMID: 38534721 DOI: 10.3390/antibiotics13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infections pose a serious threat, with high morbidity and mortality rates. This retrospective cohort study, conducted at Nakornping Hospital between January 2015 and October 2022, aimed to evaluate the efficacy and safety of a high loading dose (LD) of colistin combined with nebulized colistin in critically ill patients with CRAB pneumonia. Of the 261 patients included, 95 received LD colistin, and 166 received LD colistin with nebulized colistin. Multivariate Cox regression analysis, adjusted for baseline covariates using inverse probability weighting, showed no significant difference in 30-day survival between patients who received LD colistin and those who received LD colistin with nebulized colistin (adjusted hazard ratio [aHR]: 1.17, 95% confidence interval [CI]: 0.80-1.72, p = 0.418). Likewise, there were no significant differences in clinical response (aHR: 0.93, 95% CI: 0.66-1.31, p = 0.688), microbiological response (aHR: 1.21, 95% CI: 0.85-1.73, p = 0.279), or nephrotoxicity (aHR: 1.14, 95% CI: 0.79-1.64, p = 0.492) between the two treatment groups. No significant adverse events related to nebulized colistin were reported. These findings suggest that the addition of nebulized colistin may not offer additional benefits in terms of 30-day survival, clinical or microbiological response, or nephrotoxicity in these patients.
Collapse
Affiliation(s)
- Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ajaree Rayanakorn
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuleegone Sornsuvit
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Purida Wientong
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Peninnah Oberdorfer
- Epidemiological and Innovative Research Group of Infectious Diseases (EIRGID), Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Teerapong Nampuan
- Department of Pharmacy, Nakornping Hospital, Chiang Mai 50180, Thailand
| |
Collapse
|
15
|
Sun Y, Shuai W, Nie L, Li X, Jiang L. Investigating the Role of OrbF in Biofilm Biosynthesis and Regulation of Biofilm-Associated Genes in Bacillus cereus BC1. Foods 2024; 13:638. [PMID: 38472751 DOI: 10.3390/foods13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Bacillus cereus (B. cereus), a prevalent foodborne pathogen, constitutes a substantial risk to food safety due to its pronounced resilience under adverse environmental conditions such as elevated temperatures and ultraviolet radiation. This resilience can be attributed to its capacity for biofilm synthesis and sustained high viability. Our research aimed to elucidate the mechanisms governing biofilm biosynthesis in B. cereus. To this end, we constructed a 5088-mutant library of the B. cereus strain BC1 utilizing the transposon TnYLB-1. Systematic screening of this library yielded mutants exhibiting diminished biofilm formation capabilities. Twenty-four genes associated with the biofilm synthesis were identified by reverse PCR in these mutants, notably revealing a significant reduction in biofilm synthesis upon disruption of the orbF gene in B. cereus BC1. Comparative analysis between the wild type and orbF-deficient BC1 strains (BC1ΔorbF) indicated a marked downregulation (decreased by 11.7% to 96.7%) in the expression of genes implicated in biofilm formation, flagellar assembly, and bacterial chemotaxis in the BC1ΔorbF. Electrophoretic mobility shift assay (EMSA) further corroborated the role of OrbF, demonstrating its binding to the promoter region of the biofilm gene cluster, subsequently leading to the suppression of transcriptional activity of biofilm-associated genes in B. cereus BC1. Our findings underscore the pivotal role of orbF in biofilm biosynthesis in B. cereus, highlighting its potential as a target for strategies aimed at mitigating biofilm formation in this pathogen.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjing Shuai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lanmengya Nie
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
El-Soudany I, Attia N, Emad R, Rezk S. The Effect of Citric and Ascorbic Acids as Anti-Biofilm and Anti-Capsular Agents on Multidrug-Resistant Acinetobacter baumannii. Med Princ Pract 2024; 33:281-290. [PMID: 38359804 PMCID: PMC11175600 DOI: 10.1159/000537852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE Acinetobacter baumannii (A. baumannii) is an opportunistic bacterium with multiple virulence factors, including capsule and biofilm, and is known for its high drug resistance. Anti-virulence natural substances have been suggested as novel alternatives to conventional antibiotics. We aimed to evaluate the effect of citric and ascorbic acids as anti-biofilm and anti-capsular agents against multidrug-resistant (MDR) A. baumannii clinical isolates. MATERIALS AND METHODS Twenty-eight A. baumannii MDR isolates were collected from different clinical sources. The minimum inhibitory concentration (MIC) of each agent was estimated. Biofilm formation and capsule were investigated phenotypically in the absence and presence of both agents at ½ and ¼ MICs. The presence of 14 adhesive and nonadhesive virulence genes was investigated. RESULTS Phenotypically, all the isolates were biofilm producers and were capsulated. The MIC of citric acid ranged from 1.25 to 2.5 mg/mL, while that of ascorbic acid was 3 mg/mL for all isolates. Both agents showed significant reduction in biofilm and capsular thinning. Ascorbic acid showed a dose-dependent effect in both biofilm reduction and capsule thinning unlike citric acid. Four genes, papG23, sfa1, fyuA, and cvaC, were absent among all isolates, while iutA was present in 100% of isolates. Other genes showed different distributions among the isolates. These virulence genes were not correlated to the anti-biofilm effect of both agents. Ascorbic acid was observed to have a better effect than citric acid. This can provide a clue for a better treatment regimen including ascorbic acid against MDR A. baumannii infections.
Collapse
Affiliation(s)
- Ingy El-Soudany
- Microbiology and Immunology Department, Pharos University in Alexandria, Alexandria, Egypt
| | - Nancy Attia
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rasha Emad
- Alexandria Main University Hospital, Alexandria University, Alexandria, Egypt
| | - Shahinda Rezk
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Ji F, Tian G, Shang D, Jiang F. Antimicrobial peptide 2K4L disrupts the membrane of multidrug-resistant Acinetobacter baumannii and protects mice against sepsis. Front Microbiol 2023; 14:1258469. [PMID: 37942076 PMCID: PMC10628664 DOI: 10.3389/fmicb.2023.1258469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Antimicrobial peptides represent a promising therapeutic alternative for the treatment of antibiotic-resistant bacterial infections. 2K4L is a rationally-designed analog of a short peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L adopt an α-helical confirm in a membrane-mimetic environment and displayed an improved and broad-spectrum antibacterial activity against sensitive and multidrug-resistant Gram-negative and Gram-positive bacterial strains. Here, the action mechanism of 2K4L on multidrug resistant Acinetobacter baumannii (MRAB) and protection on MRAB-infected mice was investigated. The results demonstrated high bactericidal activity of 2K4L against both a multidrug resistant A. baumannii 0227 strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22934), indicating a potential therapeutic advantage of this peptide. Strong positively-charged residues significantly promoted the electrostatic interaction on 2K4L with lipopolysaccharides (LPS) of the bacterial outer membrane. High hydrophobicity and an α-helical confirm endowed 2K4L remarkably increase the permeability of A. baumannii cytoplasmic membrane by depolarization of membrane potential and disruption of membrane integration, as well as leakage of fluorescein from the liposomes. Additionally, 2K4L at low concentrations inhibited biofilm formation and degraded mature 1-day-old MRAB 0227 biofilms by reducing the expression of biofilm-related genes. In an invasive A. baumannii infection model, 2K4L enhanced the survival of sepsis mice and decreased the production of the proinflammatory cytokines downregulating the phosphorylation level of signaling protein in MAPK and NF-κB signaling pathways, indicating that 2K4L represents a novel therapeutic antibiotic candidate against invasive multidrug-resistant bacterial strain infections.
Collapse
Affiliation(s)
- Fangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Guoxu Tian
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Fengquan Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Luo T, Dai X, Wei W, Xu Q, Ni BJ. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14611-14621. [PMID: 37733635 DOI: 10.1021/acs.est.3c02815] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Margulieux KR, Bird JT, Kevorkian RT, Ellison DW, Nikolich MP, Mzhavia N, Filippov AA. Complete genome sequence of the broad host range Acinetobacter baumannii phage EAb13. Microbiol Resour Announc 2023; 12:e0034123. [PMID: 37607055 PMCID: PMC10508131 DOI: 10.1128/mra.00341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
We describe the genome of a lytic phage EAb13 isolated from sewage, with broad activity against multidrug-resistant Acinetobacter baumannii. EAb13 is an unclassified siphovirus. Its genome consists of 82,411 bp, with 40.15% GC content, 126 protein-coding sequences, 1 tRNA, and 2,177 bp-long direct terminal repeats.
Collapse
Affiliation(s)
- Katie R. Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Richard T. Kevorkian
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Damon W. Ellison
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P. Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Andrey A. Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
20
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
21
|
Gui S, Li X, Feng M, Liu H, Huang L, Niu X. A fresh pH-responsive imipenem-loaded nanocarrier against Acinetobacter baumannii with a synergetic effect. Front Bioeng Biotechnol 2023; 11:1166790. [PMID: 37113664 PMCID: PMC10128990 DOI: 10.3389/fbioe.2023.1166790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the treatment of Acinetobacter baumannii infections has become a pressing clinical challenge due to its increasing incidence and its serious pathogenic risk. The research and development of new antibacterial agents for A. baumannii have attracted the attention of the scientific community. Therefore, we have constructed a new pH-responsive antibacterial nano-delivery system (Imi@ZIF-8) for the antibacterial treatment of A. baumannii. Due to its pH-sensitive characteristics, the nano-delivery system offers an improved release of the loaded imipenem antibiotic at the acidic infection site. Based on the high loading capacity and positive charge of the modified ZIF-8 nanoparticles, they are excellent carriers and are suitable for imipenem loading. The Imi@ZIF-8 nanosystem features synergistic antibacterial effects, combining ZIF-8 and imipenem to eliminate A. baumannii through different antibacterial mechanisms. When the loaded imipenem concentration reaches 20 µg/mL, Imi@ZIF-8 is highly effective against A. baumannii in vitro. Imi@ZIF-8 not only inhibits the biofilm formation of A. baumannii but also has a potent killing effect. Furthermore, in mice with celiac disease, the Imi@ZIF-8 nanosystem demonstrates excellent therapeutic efficacy against A. baumannii at imipenem concentrations of 10 mg/kg, and it can inhibit inflammatory reaction and local leukocyte infiltration. Due to its biocompatibility and biosafety, this nano-delivery system is a promising therapeutic strategy in the clinical treatment of A. baumannii infections, providing a new direction for the treatment of antibacterial infections.
Collapse
Affiliation(s)
- Shumin Gui
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Cental South University, Changsha, Hunan, China
| | - Mingming Feng
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinqing Niu
- Department of Hematology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Xinqing Niu,
| |
Collapse
|
22
|
Sarshar M, Scribano D, Palamara AT, Ambrosi C, Masotti A. The Acinetobacter baumannii model can explain the role of small non-coding RNAs as potential mediators of host-pathogen interactions. Front Mol Biosci 2022; 9:1088783. [PMID: 36619166 PMCID: PMC9810633 DOI: 10.3389/fmolb.2022.1088783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial small RNAs (sRNAs) research has accelerated over the past decade, boosted by advances in RNA-seq technologies and methodologies for capturing both protein-RNA and RNA-RNA interactions. The emerging picture is that these regulatory sRNAs play important roles in controlling complex physiological processes and are required to survive the antimicrobial challenge. In recent years, the RNA content of OMVs/EVs has also gained increasing attention, particularly in the context of infection. Secreted RNAs from several bacterial pathogens have been characterized but the exact mechanisms promoting pathogenicity remain elusive. In this review, we briefly discuss how secreted sRNAs interact with targets in infected cells, thus representing a novel perspective of host cell manipulation during bacterial infection. During the last decade, Acinetobacter baumannii became clinically relevant emerging pathogens responsible for nosocomial and community-acquired infections. Therefore, we also summarize recent findings of regulation by sRNAs in A. baumannii and discuss how this emerging bacterium utilizes many of these sRNAs to adapt to its niche and become successful human pathogen.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,Department of Infectious Diseases, National Institute of Health, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy,IRCCS San Raffaele Roma, Rome, Italy
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Meysam Sarshar, ; Andrea Masotti,
| |
Collapse
|