1
|
Lima-Cabello E, Escudero-Feliu J, Peralta-Leal A, Garcia-Fernandez P, Siddique KHM, Singh KB, Núñez MI, León J, Jimenez-Lopez JC. β-Conglutins' Unique Mobile Arm Is a Key Structural Domain Involved in Molecular Nutraceutical Properties of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2023; 24:7676. [PMID: 37108842 PMCID: PMC10143110 DOI: 10.3390/ijms24087676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of β-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tβ5 and tβ7) forms of NLL β5 and β7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete β5 and β7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1β), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tβ5 and tβ7 conglutin proteins did not have these molecular effects. These results suggest that β5 and β7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL β-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL β5 and β7 excellent innovative candidates as functional foods.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Julia Escudero-Feliu
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - Andreina Peralta-Leal
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Pedro Garcia-Fernandez
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, E-18071 Granada, Spain
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- CSIRO Agriculture and Food, Floreat, WA 6014, Australia
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Maria I. Núñez
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, E-18100 Granada, Spain
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, E-18006 Granada, Spain
| | - Jose C. Jimenez-Lopez
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
2
|
Nakamura A. Glucokinase as a therapeutic target based on findings from the analysis of mouse models. Endocr J 2022; 69:479-485. [PMID: 35418527 DOI: 10.1507/endocrj.ej21-0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
I investigated mouse models to elucidate the pathophysiology and to establish a new treatment strategy for type 2 diabetes, with a particular focus on glucokinase. The decrease in pancreatic beta-cell function and mass are important factors in the pathophysiology of type 2 diabetes. My group have shown that glucokinase plays an important role in high-fat diet-induced and high-starch diet-induced beta-cell expansion. The findings indicated that the mechanism of short-term high-fat diet-induced beta-cell proliferation involved a glucokinase-independent pathway, suggesting that there are different pathways and mechanisms in the proliferation of pancreatic beta-cells during short-term versus long-term high-fat diets. Because enhancement of glucose signals via glucokinase is important for beta-cell proliferation, it was thought that beta-cell mass would be increased and insulin secretion would be maintained by glucokinase activators. However, sub-chronic administration of a glucokinase activator in db/db mice produced an unsustained hypoglycemic effect and promoted hepatic fat accumulation without changes in beta-cell function and mass. In contrast, my group have shown that inactivating glucokinase in beta-cells prevented beta-cell failure and led to an improvement in glucose tolerance in db/db mice. Regulation of glucokinase activity has an influence on the pathophysiology of type 2 diabetes and can be one of the therapeutic targets.
Collapse
Affiliation(s)
- Akinobu Nakamura
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|