1
|
Sariyati NH, Othman N, Abdullah-Fauzi NAF, Chan E, Md-Zain BM, Karuppannan KV, Abdul-Latiff MAB. Characterizing the gastrointestinal microbiome diversity in endangered Malayan Siamang (Symphalangus syndactylus): Insights into group composition, age variability and sex-related patterns. J Med Primatol 2024; 53:e12730. [PMID: 39148344 DOI: 10.1111/jmp.12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The gut morphology of Symphalangus syndactylus exhibits an intermediate structure that aligns with its consumption of fruit and ability to supplement its diet with leaves. The Siamang relies on its gut microbiome for energy extraction, immune system development, and the synthesis of micronutrients. Gut microbiome composition may be structured based on several factors such as age, sex, and habitat. No study has yet been carried out on the gut microbiota of the Hylobatidae members in Malaysia especially S. syndactylus. METHODS This study aims to resolve the gut microbiome composition of S. syndactylus by using a fecal sample as DNA source, adapting high-throughput sequencing, and 16S rRNA as the targeted region. RESULTS A total of 1 272 903 operational taxonomic units (OTUs) reads were assigned to 22 phyla, 139 families, and 210 genera of microbes. The {Unknown Phylum} Bacteria-2 is the dominant phyla found across all samples. Meanwhile, {Unknown Phylum} Bacteria-2 and Firmicutes are genera that have the highest relative abundance found in the Siamang gut. CONCLUSIONS This study yields nonsignificance relationship between Siamang gut microbiome composition with these three factors: group, sex, and age.
Collapse
Affiliation(s)
- Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nurfatiha Akmal Fawwazah Abdullah-Fauzi
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Eddie Chan
- Treks Event Sdn Bhd, Lot AW/G5.00, GF, Awana Hotel Genting Highlands Resort, Genting Highlands, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN), Kuala Lumpur, Malaysia
| | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
2
|
Li B, Han Y, Fu Z, Chai Y, Guo X, Du S, Li C, Wang D. The causal relationship between gut microbiota and lymphoma: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1397485. [PMID: 38774867 PMCID: PMC11106390 DOI: 10.3389/fimmu.2024.1397485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background Previous studies have indicated a potential link between the gut microbiota and lymphoma. However, the exact causal interplay between the two remains an area of ambiguity. Methods We performed a two-sample Mendelian randomization (MR) analysis to elucidate the causal relationship between gut microbiota and five types of lymphoma. The research drew upon microbiome data from a research project of 14,306 participants and lymphoma data encompassing 324,650 cases. Single-nucleotide polymorphisms were meticulously chosen as instrumental variables according to multiple stringent criteria. Five MR methodologies, including the inverse variance weighted approach, were utilized to assess the direct causal impact between the microbial exposures and lymphoma outcomes. Moreover, sensitivity analyses were carried out to robustly scrutinize and validate the potential presence of heterogeneity and pleiotropy, thereby ensuring the reliability and accuracy. Results We discerned 38 potential causal associations linking genetic predispositions within the gut microbiome to the development of lymphoma. A few of the more significant results are as follows: Genus Coprobacter (OR = 0.619, 95% CI 0.438-0.873, P = 0.006) demonstrated a potentially protective effect against Hodgkin's lymphoma (HL). Genus Alistipes (OR = 0.473, 95% CI 0.278-0.807, P = 0.006) was a protective factor for diffuse large B-cell lymphoma. Genus Ruminococcaceae (OR = 0.541, 95% CI 0.341-0.857, P = 0.009) exhibited suggestive protective effects against follicular lymphoma. Genus LachnospiraceaeUCG001 (OR = 0.354, 95% CI 0.198-0.631, P = 0.0004) showed protective properties against T/NK cell lymphoma. The Q test indicated an absence of heterogeneity, and the MR-Egger test did not show significant horizontal polytropy. Furthermore, the leave-one-out analysis failed to identify any SNP that exerted a substantial influence on the overall results. Conclusion Our study elucidates a definitive causal link between gut microbiota and lymphoma development, pinpointing specific microbial taxa with potential causative roles in lymphomagenesis, as well as identifying probiotic candidates that may impact disease progression, which provide new ideas for possible therapeutic approaches to lymphoma and clues to the pathogenesis of lymphoma.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Han
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyu Fu
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujie Chai
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xifeng Guo
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shurui Du
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dao Wang
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Gumina ME, Hooper MJ, Zhou XA, Koralov SB. Role of Antigenic Stimulation in Cutaneous T-Cell Lymphomas. J Invest Dermatol 2024; 144:755-763. [PMID: 38149950 PMCID: PMC10960716 DOI: 10.1016/j.jid.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Cutaneous T-cell lymphoma (CTCL) involves a clonal expansion of malignant cells accumulating in the skin, a primary barrier site. CTCL has long been hypothesized to be caused or perpetuated by chronic antigen stimulation due to unknown exposures. These antigenic triggers, defined as any element that may cause activation of malignant T cells through TCR signaling, have been hypothesized to range from chemicals to microbes. This review covers current evidence supporting chemical and microbial stimuli that may act as antigenic triggers of CTCL and summarizes novel areas of investigation, in which the potential antigenicity of the exposure is still unknown.
Collapse
Affiliation(s)
- Megan E Gumina
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Sergei B Koralov
- Department of Pathology, Grossman School of Medicine, New York University, New York, New York, USA.
| |
Collapse
|
4
|
Rodríguez Baeza D, Bejarano Antonio L, González de Arriba M, Picó-Monllor JA, Cañueto J, Navarro-Lopez V. Cutaneous T-Cell Lymphoma and Microbiota: Etiopathogenesis and Potential New Therapeutic Targets. Dermatol Res Pract 2024; 2024:9919225. [PMID: 38435536 PMCID: PMC10904680 DOI: 10.1155/2024/9919225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Objective To review the scientific literature related to human microbiota and cutaneous T-cell lymphoma. Methodology. An exploratory and systematic review of the articles retrieved from the bibliographic databases MEDLINE (PubMed), Embase, The Cochrane Library, and Scopus, published in the last 10 years with the following descriptors: "lymphoma, T-cell, cutaneous," "microbiota," "Mycosis Fungoides," "Sézary Syndrome," "lymphoma, primary cutaneous anaplastic large cell," "Lymphomatoid Papulosis" and "Microbiota," "microbiota," "Microbial Community," and "Microbial Communities." Results Of the 87 references retrieved, after applying the inclusion and exclusion criteria, 21 articles were selected. Most studies linking cutaneous T-cell lymphoma and the microbiota focus on the cutaneous microbiome, with Staphylococcus aureus being the main related agent. Skin colonization by this bacterium could be involved in the hyperactivation of the STAT3 inflammatory pathway and in the overproduction of IL-17, both of which are widely related to the development of more aggressive and advanced forms of cutaneous T-cell lymphoma. We also found evidence of a possible relationship between intestinal dysbiosis and the development of cutaneous T-cell lymphoma, observing a decrease in taxonomic variability and an increase in certain genera such as Prevotella in the intestinal microbiome of patients with cutaneous T-cell lymphoma. The possible etiopathogenic mechanism underlying this relationship could be explained by an increase in systemic cytokine release, promoting the hyperactivation of STAT3 at the skin level. Conclusion There appears to be a relationship between cutaneous T-cell lymphoma and the cutaneous and intestinal microbiome, as well as a possible pathophysiological pathway involved. The possible modulation of the cutaneous and intestinal microbiome or the action on the signaling inflammatory pathway, using pharmacological tools such as JAK inhibitors or IL-17 inhibitors in the latter case, could open the possibility for future therapeutic studies for cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Daniel Rodríguez Baeza
- Dermatology Service, Rio Hortega University Hospital, Calle Dulzaina, 2, Valladolid 47012, Spain
- MiBioPath Research Group, Medicine Faculty, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, Murcia 30107, Spain
| | - Lía Bejarano Antonio
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
| | - Marta González de Arriba
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
| | - José Antonio Picó-Monllor
- Faculty of Pharmacy, Department of Pharmacology, Pediatrics and Organic Chemistry, Miguel Hernández University of Elche, Ctra. Alicante-Valencia N 332, 03550 Sant Joan Alacant, Alicante, Spain
| | - Javier Cañueto
- Dermatology Service, Salamanca University Hospital, Paseo de la Transición Española, Salamanca 37007, Spain
- IBSAL, Institute of Biomedical Research of Salamanca, P.º de San Vicente, 182, Salamanca 37007, Spain
| | - Vicente Navarro-Lopez
- MiBioPath Research Group, Medicine Faculty, Catholic University of Murcia (UCAM), Av. de los Jerónimos, 135, Murcia 30107, Spain
- Clinical Microbiology and Infectious Disease Unit, Vinalopó University Hospital, c/Tonico Sansano Mora, 14, Elche 03293, Spain
| |
Collapse
|
5
|
Ren Z, Chrisman LP, Pang Y, Nguyen M, Hooper MJ, LeWitt TM, Veon FL, Guitart J, Zhou XA. Chemical exposures and demographic associations in cutaneous T-cell lymphoma: a large single institution physician validated cohort study. Arch Dermatol Res 2024; 316:74. [PMID: 38236413 PMCID: PMC11493369 DOI: 10.1007/s00403-023-02799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/17/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
Cutaneous T-cell lymphomas (CTCL) are a rare group of T-cell neoplasms which infiltrate the skin and can result in substantial morbidity and mortality. Risk factors for CTCL are still poorly understood though recent studies suggest chemical exposures may play a role in its development. To further characterize patient-centered risk factors for CTCL, especially compared with matched controls, we performed one of the largest prospective cohort survey studies to date to examine patient-reported exposures and health-related quality of life (HRQoL) in association with concurrent clinical disease characteristics. Patient demographics, lifestyle factors, and chemical exposures were collected via clinical data and surveys. Descriptive statistics, ANOVA, Chi-square tests and t tests were utilized to compare patient-reported exposures and HRQoL in patients with CTCL versus matched healthy controls (HC). Statistically significant differences were identified between patients and HC in terms of race (non-white race 22.4% in CTCL patients vs. 18.8% in HC, P = 0.01), and education level (high school or less 41.6% in CTCL patients vs. 14.3% in HC, P = 0.001), but not with Fitzpatrick skin type (P = 0.11) or smoking status (P = 0.28). Notably, 36.0% of the CTCL patients reported exposures to chemicals, a near threefold increased percentage when compared to HC (12.9%). Among various chemical exposures, 27.0% of the CTCL patients specifically reported industrial chemical exposure, a more than two-fold increased percentage when compared to HC (12.9%). Itch and pain were significantly associated with skin disease severity (as evaluated by CTCL-specific mSWAT score) in advanced stage disease (stages IIB-IVB) (r = 0.48 and 0.57, P < 0.05). Itch and body mass index (BMI) were weakly associated with skin disease severity in early-stage disease (stages IA-IIA) (r = 0.27 and 0.20, P < 0.05).
Collapse
Affiliation(s)
- Ziyou Ren
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren P Chrisman
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yanzhen Pang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Morgan Nguyen
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madeline J Hooper
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tessa M LeWitt
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francesca L Veon
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaolong A Zhou
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Nguyen WQ, Chrisman LP, Enriquez GL, Hooper MJ, Griffin TL, Ahmad M, Rahman S, Green SJ, Seed PC, Guitart J, Burns MB, Zhou XA. Gut microbiota analyses of cutaneous T-cell lymphoma patients undergoing narrowband ultraviolet B therapy reveal alterations associated with disease treatment. Front Immunol 2024; 14:1280205. [PMID: 38274799 PMCID: PMC10808320 DOI: 10.3389/fimmu.2023.1280205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Recent studies have shown a close relationship between cutaneous T-cell lymphoma (CTCL) and its microbiome. CTCL disease progression is associated with gut dysbiosis and alterations in bacterial taxa parallel those observed in immunologically similar atopic dermatitis. Moreover, the microbial profile of lesional skin may predict response to narrowband ultraviolet B (nbUVB), a common skin-directed therapy. However, the relationship between the gut microbiome, an immunologically vital niche, and nbUVB remains unexplored in CTCL. Herein, we performed 16S rRNA sequencing and PICRUSt2 predictive metagenomics on DNA extracted from stool swabs of 13 CTCL patients treated with nbUVB, 8 non-treated patients, and 13 healthy controls. Disease response was assessed with modified Severity Weighted Assessment Tool (mSWAT); of nbUVB-treated patients, 6 improved (decreased mSWAT), 2 remained stable, and 5 worsened (increased mSWAT). Protective commensal bacteria including Lactobacillaceae and Erysipelatoclostridiaceae were significantly less abundant in CTCL patients compared to controls. With treatment, the CTCL gut microbiome exhibited decreased phylogenetic diversity and lower relative abundance of pro-inflammatory Sutterellaceae. Sutterellaceae was also significantly more abundant in patients who worsened, and Eggerthellaceae and Erysipelotrichaceae trended higher in patients who improved. Finally, PICRUSt2 functional predictions based on shifts in abundance of bacterial sequences repeatedly identified alterations in inositol degradation, which plays a key role in host immunomodulation, including inositol phospholipid signaling relevant to T-cell survival and proliferation. Our results bolster the paradigm of gut dysbiosis in CTCL and its functional implications in disease pathogenesis, and further delineate bacterial taxa associated with nbUVB response and with nbUVB treatment itself.
Collapse
Affiliation(s)
- William Q. Nguyen
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Lauren P. Chrisman
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Gail L. Enriquez
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Madeline J. Hooper
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Teresa L. Griffin
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Merjaan Ahmad
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Sophia Rahman
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Patrick C. Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Michael B. Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Xiaolong A. Zhou
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Savoia P, Azzimonti B, Rolla R, Zavattaro E. Role of the Microbiota in Skin Neoplasms: New Therapeutic Horizons. Microorganisms 2023; 11:2386. [PMID: 37894044 PMCID: PMC10608979 DOI: 10.3390/microorganisms11102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The skin and the gut are regularly colonized by a variety of microorganisms capable of interacting with the immune system through their metabolites and influencing the balance between immune tolerance and inflammation. Alterations in the composition and diversity of the skin microbiota have been described in various cutaneous diseases, including skin cancer, and the actual function of the human microbiota in skin carcinogenesis, such as in progression and metastasis, is currently an active area of research. The role of Human Papilloma Virus (HPV) in the pathogenesis of squamous cell carcinoma is well consolidated, especially in chronically immunosuppressed patients. Furthermore, an imbalance between Staphylococcus spp., such as Staphylococcus epidermidis and aureus, has been found to be strongly related to the progression from actinic keratosis to squamous cell carcinoma and differently associated with various stages of the diseases in cutaneous T-cell lymphoma patients. Also, in melanoma patients, differences in microbiota have been related to dissimilar disease course and prognosis and may affect the effectiveness and tolerability of immune checkpoint inhibitors, which currently represent one of the best chances of a cure. From this point of view, acting on microbiota can be considered a possible therapeutic option for patients with advanced skin cancers, even if several issues are still open.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy; (B.A.); (R.R.); (E.Z.)
| | | | | | | |
Collapse
|
8
|
Hooper MJ, Enriquez GL, Veon FL, LeWitt TM, Sweeney D, Green SJ, Seed PC, Choi J, Guitart J, Burns MB, Zhou XA. Narrowband ultraviolet B response in cutaneous T-cell lymphoma is characterized by increased bacterial diversity and reduced Staphylococcus aureus and Staphylococcus lugdunensis. Front Immunol 2022; 13:1022093. [PMID: 36439132 PMCID: PMC9692126 DOI: 10.3389/fimmu.2022.1022093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Skin microbiota have been linked to disease activity in cutaneous T-cell lymphoma (CTCL). As the skin microbiome has been shown to change after exposure to narrowband ultraviolet B (nbUVB) phototherapy, a common treatment modality used for CTCL, we performed a longitudinal analysis of the skin microbiome in CTCL patients treated with nbUVB. 16S V4 rRNA gene amplicon sequencing for genus-level taxonomic resolution, tuf2 amplicon next generation sequencing for staphylococcal speciation, and bioinformatics were performed on DNA extracted from skin swabs taken from lesional and non-lesional skin of 25 CTCL patients receiving nbUVB and 15 CTCL patients not receiving nbUVB from the same geographical region. Disease responsiveness to nbUVB was determined using the modified Severity Weighted Assessment Tool: 14 (56%) patients responded to nbUVB while 11 (44%) patients had progressive disease. Microbial α-diversity increased in nbUVB-responders after phototherapy. The relative abundance of Staphylococcus, Corynebacterium, Acinetobacter, Streptococcus, and Anaerococcus differentiated nbUVB responders and non-responders after treatment (q<0.05). Microbial signatures of nbUVB-treated patients demonstrated significant post-exposure depletion of S. aureus (q=0.024) and S. lugdunensis (q=0.004) relative abundances. Before nbUVB, responder lesional skin harboured higher levels of S. capitis (q=0.028) and S. warneri (q=0.026) than non-responder lesional skin. S. capitis relative abundance increased in the lesional skin of responders (q=0.05) after phototherapy; a similar upward trend was observed in non-responders (q=0.09). Post-treatment skin of responders exhibited significantly reduced S. aureus (q=0.008) and significantly increased S. hominis (q=0.006), S. pettenkoferi (q=0.021), and S. warneri (q=0.029) relative abundances compared to that of no-nbUVB patients. Staphylococcus species abundance was more similar between non-responders and no-nbUVB patients than between responders and no-nbUVB patients. In sum, the skin microbiome of CTCL patients who respond to nbUVB is different from that of non-responders and untreated patients, and is characterized by shifts in S. aureus and S. lugdunensis. Non-responsiveness to phototherapy may reflect more aggressive disease at baseline.
Collapse
Affiliation(s)
- Madeline J. Hooper
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Gail L. Enriquez
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Francesca L. Veon
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Tessa M. LeWitt
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Dagmar Sweeney
- Genome Research Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Patrick C. Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Joan Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Michael B. Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Xiaolong A. Zhou
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- *Correspondence: Xiaolong A. Zhou,
| |
Collapse
|