1
|
Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, Sower I, Tucker JC, Morgan TJ, Ragland GJ. Transcriptomic and functional genetic evidence for distinct ecophysiological responses across complex life cycle stages. J Exp Biol 2022; 225:275641. [PMID: 35578907 DOI: 10.1242/jeb.244063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
Abstract
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved Cellular Stress Response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNAi (RNA interference) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially-expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA
| | - Jantina Toxopeus
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Zainab M Ali
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Nicholas Heter
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rebekah L Collier
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Isaiah Sower
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Joseph C Tucker
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| |
Collapse
|
2
|
Vatanparast M, Park Y. Comparative RNA-Seq Analyses of Solenopsis japonica (Hymenoptera: Formicidae) Reveal Gene in Response to Cold Stress. Genes (Basel) 2021; 12:genes12101610. [PMID: 34681004 PMCID: PMC8535336 DOI: 10.3390/genes12101610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Solenopsis japonica, as a fire ant species, shows some predatory behavior towards earthworms and woodlice, and preys on the larvae of other ant species by tunneling into a neighboring colony's brood chamber. This study focused on the molecular response process and gene expression profiles of S. japonica to low (9 °C)-temperature stress in comparison with normal temperature (25 °C) conditions. A total of 89,657 unigenes (the clustered non-redundant transcripts that are filtered from the longest assembled contigs) were obtained, of which 32,782 were annotated in the NR (nonredundant protein) database with gene ontology (GO) terms, gene descriptions, and metabolic pathways. The results were 81 GO subgroups and 18 EggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) keywords. Differentially expressed genes (DEGs) with log2fold change (FC) > 1 and log2FC < -1 with p-value ≤ 0.05 were screened for cold stress temperature. We found 215 unigenes up-regulated and 115 unigenes down-regulated. Comparing transcriptome profiles for differential gene expression resulted in various DE proteins and genes, including fatty acid synthases and lipid metabolism, which have previously been reported to be involved in cold resistance. We verified the RNA-seq data by qPCR on 20 up- and down-regulated DEGs. These findings facilitate the basis for the future understanding of the adaptation mechanisms of S. japonica and the molecular mechanisms underlying the response to low temperatures.
Collapse
|
3
|
False and true positives in arthropod thermal adaptation candidate gene lists. Genetica 2021; 149:143-153. [PMID: 33963492 DOI: 10.1007/s10709-021-00122-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Genome-wide studies are prone to false positives due to inherently low priors and statistical power. One approach to ameliorate this problem is to seek validation of reported candidate genes across independent studies: genes with repeatedly discovered effects are less likely to be false positives. Inversely, genes reported only as many times as expected by chance alone, while possibly representing novel discoveries, are also more likely to be false positives. We show that, across over 30 genome-wide studies that reported Drosophila and Daphnia genes with possible roles in thermal adaptation, the combined lists of candidate genes and orthologous groups are rapidly approaching the total number of genes and orthologous groups in the respective genomes. This is consistent with the expectation of high frequency of false positives. The majority of these spurious candidates have been identified by one or a few studies, as expected by chance alone. In contrast, a noticeable minority of genes have been identified by numerous studies with the probabilities of such discoveries occurring by chance alone being exceedingly small. For this subset of genes, different studies are in agreement with each other despite differences in the ecological settings, genomic tools and methodology, and reporting thresholds. We provide a reference set of presumed true positives among Drosophila candidate genes and orthologous groups involved in response to changes in temperature, suitable for cross-validation purposes. Despite this approach being prone to false negatives, this list of presumed true positives includes several hundred genes, consistent with the "omnigenic" concept of genetic architecture of complex traits.
Collapse
|
4
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
5
|
Han W, Xue Q, Li G, Yin J, Zhang H, Zhu Y, Xing W, Cao Y, Su Y, Wang K, Zou J. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 2020; 112:2677-2687. [PMID: 32057912 DOI: 10.1016/j.ygeno.2020.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Inbreeding depression of chicken reproduction is a major concern in the conservation of chicken genetic resources. To investigate the potential DNA methylation sites involved in the inbreeding depression of chicken reproduction, we carried out whole-genome bisulfite sequencing (WGBS) of hypothalamus and ovary tissues from the strongly and weakly inbred Langshan chickens, respectively. 5948 and 4593 differentially methylated regions (DMRs) were identified in the hypothalamus and ovary between the strongly and weakly inbred Langshan chickens, respectively. Large numbers of DMR-related genes (DMGs) were enriched in reproduction-related pathways. By combining the WGBS and transcriptome data, two DMRs in SRD5A1 and CDC27 genes were inferred as the most likely biomarkers of inbreeding depression of reproduction in Langshan chicken. Our study provides the first systematic investigation of the DNA methylation changes in strongly inbred chickens, and extends our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction.
Collapse
Affiliation(s)
- Wei Han
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Qian Xue
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Guohui Li
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Jianmei Yin
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Huiyong Zhang
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Yunfen Zhu
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Weijie Xing
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Yuxia Cao
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Yijun Su
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Kehua Wang
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.
| | - Jianmin Zou
- National Chickens Genetic Resources, Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.
| |
Collapse
|
6
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
7
|
Three Quantitative Trait Loci Explain More than 60% of Variation for Chill Coma Recovery Time in a Natural Population of Drosophila ananassae. G3-GENES GENOMES GENETICS 2019; 9:3715-3725. [PMID: 31690597 PMCID: PMC6829138 DOI: 10.1534/g3.119.400453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ectothermic species such as insects are particularly vulnerable to climatic fluctuations. Nevertheless, many insects that evolved and diversified in the tropics have successfully colonized temperate regions all over the globe. To shed light on the genetic basis of cold tolerance in such species, we conducted a quantitative trait locus (QTL) mapping experiment for chill coma recovery time (CCRT) in Drosophila ananassae, a cosmopolitan species that has expanded its range from tropical to temperate regions. We created a mapping population of recombinant inbred advanced intercross lines (RIAILs) from two founder strains with diverging CCRT phenotypes. The RIAILs were phenotyped for their CCRT and, together with the founder strains, genotyped for polymorphic markers with double-digest restriction site-associated DNA (ddRAD) sequencing. Using a hierarchical mapping approach that combined standard interval mapping and a multiple-QTL model, we mapped three QTL which altogether explained 64% of the phenotypic variance. For two of the identified QTL, we found evidence of epistasis. To narrow down the list of cold tolerance candidate genes, we cross-referenced the QTL intervals with genes that we previously identified as differentially expressed in response to cold in D. ananassae, and with thermotolerance candidate genes of D. melanogaster. Among the 58 differentially expressed genes that were contained within the QTL, GF15058 showed a significant interaction of the CCRT phenotype and gene expression. Further, we identified the orthologs of four D. melanogaster thermotolerance candidate genes, MtnA, klarsicht, CG5246 (D.ana/GF17132) and CG10383 (D.ana/GF14829) as candidates for cold tolerance in D. ananassae.
Collapse
|
8
|
Schou MF, Bechsgaard J, Muñoz J, Kristensen TN. Genome-wide regulatory deterioration impedes adaptive responses to stress in inbred populations of Drosophila melanogaster. Evolution 2018; 72:1614-1628. [PMID: 29738620 DOI: 10.1111/evo.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 02/28/2024]
Abstract
Inbreeding depression is often intensified under environmental stress (i.e., inbreeding-stress interaction). Although the fitness consequences of this phenomenon are well-described, underlying mechanisms such as an increased expression of deleterious alleles under stress, or a lower capacity for adaptive responses to stress with inbreeding, have rarely been investigated. We investigated a fitness component (egg-to-adult viability) and gene-expression patterns using RNA-seq analyses in noninbred control lines and in inbred lines of Drosophila melanogaster exposed to benign temperature or heat stress. We find little support for an increase in the cumulative expression of deleterious alleles under stress. Instead, inbred individuals had a reduced ability to induce an adaptive gene regulatory stress response compared to controls. The decrease in egg-to-adult viability due to stress was most pronounced in the lines with the largest deviation in the adaptive stress response (R2 = 0.48). Thus, we find strong evidence for a lower capacity of inbred individuals to respond by gene regulation to stress and that this is the main driver of inbreeding-stress interactions. In comparison, the altered gene expression due to inbreeding at benign temperature showed no correlation with fitness and was pronounced in genomic regions experiencing the highest increase in homozygosity.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jesper Bechsgaard
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Joaquin Muñoz
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg East, Denmark
| |
Collapse
|
9
|
Boardman L, Mitchell KA, Terblanche JS, Sørensen JG. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:179-188. [PMID: 29038013 DOI: 10.1016/j.jinsphys.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/17/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
While single stress responses are fairly well researched, multiple, interactive stress responses are not-despite the obvious importance thereof. Here, using D. melanogaster, we investigated the effects of simultaneous exposures to low O2 (hypoxia) and varying thermal conditions on mortality rates, estimates of thermal tolerance and the transcriptome. We used combinations of 21 (normoxia), 10 or 5kPa O2 with control (23°C), cold (4°C) or hot (31°C) temperature exposures before assaying chill coma recovery time (CCRT) and heat knock down time (HKDT) as measures of cold and heat tolerance respectively. We found that mortality was significantly affected by temperature, oxygen partial pressure (PO2) and the interaction between the two. Cold treatments resulted in low mortality (<5%), regardless of PO2 treatment; while hot treatments resulted in higher mortality (∼20%), especially at 5kPa O2 which was lethal for most flies (∼80%). Both CCRT and HKDT were significantly affected by temperature, but not PO2, of the treatments, and the interaction of temperature and PO2 was non-significant. Hot treatments led to significantly longer CCRT, and shorter HKDT in comparison to cold treatments. Global gene expression profiling provided the first transcriptome level response to the combined stress of PO2 and temperature, showing that stressful treatments resulted in higher mortality and induced transcripts that were associated with protein kinases, catabolic processes (proteases, hydrolases, peptidases) and membrane function. Several genes and pathways that may be responsible for the protective effects of combined PO2 and cold treatments were identified. We found that urate oxidase was upregulated in all three cold treatments, regardless of the PO2. Small heat shock proteins Hsp22 and Hsp23 were upregulated after both 10 and 21kPa O2-hot treatments. Collectively, the data from PO2-hot treatments suggests that hypoxia does exacerbate heat stress, through an as yet unidentified mechanism. Hsp70B and an unannotated transcript (CG6733) were significantly differentially expressed after 5kPa O2-cold and 10kPa O2-hot treatments relative to their controls. Downregulation of these transcripts was correlated with reduced thermal tolerance (longer CCRT and shorter HKDT), suggesting that these genes may be important candidates for future research.
Collapse
Affiliation(s)
- Leigh Boardman
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Katherine A Mitchell
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa
| | - Jesper G Sørensen
- Section for Genetics, Ecology & Evolution, Department of Bioscience, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Hristova DG, Tanchev S, Velikov K, Gonchev P, Georgieva S. Single nucleotide polymorphism of the growth hormone (GH) encoding gene in inbred and outbred domestic rabbits. WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Taking into consideration that the growth hormone (GH) gene in rabbits is a candidate for meat production, understanding the genetic diversity and variation in this locus is of particular relevance. The present study comprised 86 rabbits (Oryctolagus cuniculus) divided into 3 groups: New Zealand White (NZW) outbred rabbits; first-generation inbred rabbits (F<sub>1</sub>) and second-generation inbred rabbits (F<sub>2</sub>). They were analysed by polymerase chain reaction-based restriction fragment length polymorphism method. A 231 bp fragment of the polymorphic site of the GH gene was digested with Bsh1236 restriction enzyme. Single nucleotide polymorphisms for the studied GH locus corresponding to 3 genotypes were detected in the studied rabbit populations: CC, CT and TT. In the synthetic inbred F<sub>1</sub> and F<sub>2</sub> populations, the frequency of the heterozygous genotype CT was 0.696 and 0.609, respectively, while for the homozygous CC genotype the frequency was lower (0.043 and 0.000), and respective values for the homozygous TT genotype were 0.261 and 0.391. This presumed a preponderance of the T allele (0.609 and 0.696) over the C allele (0.391 and 0.304) in these groups. In outbred rabbits, the allele frequencies were 0.613 (allele C) and 0.387 (allele Т); consequently, the frequency of the homozygous CC genotype was higher than that of the homozygous TT genotype (0.300 vs. 0.075). Observed heterozygosity for the GH gene was higher than expected, and the result was therefore a negative inbreeding coefficient (Fis=–0.317 for outbred NZW rabbits; –0.460 for inbred F<sub>1</sub> and –0.438 for inbred F<sub>2</sub>), indicating a sufficient number of heterozygous forms in all studied groups of rabbits. The application of narrow inbreeding by breeding full sibs in the synthetic population did not cause a rapid increase in homozygosity.
Collapse
|
11
|
Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:75-84. [PMID: 28921779 DOI: 10.1111/plb.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/13/2017] [Indexed: 05/28/2023]
Abstract
Primary colonisation in invasive ranges most commonly occurs in disturbed habitats, where anthropogenic disturbance may cause physical damage to plants. The tolerance to such damage may differ between cytotypes and among populations as a result of differing population histories (adaptive differentiation between ruderal verus natural habitats). Moreover, founder populations often experience inbreeding depression, the effects of which may increase through physical damage due to inbreeding-environment interactions. We aimed to understand how such colonisation processes differ between diploid and tetraploid Centaurea stoebe populations, with a view to understanding why only tetraploids are invasive. We conducted a clipping experiment (frequency: zero, once or twice in the growing season) on inbred versus outbred offspring originating from 37 C. stoebe populations of varying cytotype, range and habitat type (natural versus ruderal). Aboveground biomass was harvested at the end of the vegetation period, while re-sprouting success was recorded in the following spring. Clipping reduced re-sprouting success and biomass, which was significantly more pronounced in natural than in ruderal populations. Inbreeding depression was not detected under benign conditions, but became increasingly apparent in biomass when plants were clipped. The effects of clipping and inbreeding did not differ between cytotypes. Adaptive differentiation in disturbance tolerance was higher among populations than between cytotypes, which highlights the potential of pre-adaptation in ruderal populations during early colonisation on anthropogenically disturbed sites. While the consequences of inbreeding increased through clipping-mediated stress, they were comparable between cytotypes, and consequently do not contribute to understanding the cytotype shift in the invasive range.
Collapse
Affiliation(s)
- C Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- UfU - Independent Institute for Environmental Issues, Berlin, Germany
| | - I Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - S Lachmuth
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Plant Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
12
|
Herrmann M, Ravindran SP, Schwenk K, Cordellier M. Population transcriptomics in Daphnia
: The role of thermal selection. Mol Ecol 2017; 27:387-402. [DOI: 10.1111/mec.14450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Maike Herrmann
- Institute for Environmental Sciences; University Koblenz-Landau; Landau in der Pfalz Germany
| | | | - Klaus Schwenk
- Institute for Environmental Sciences; University Koblenz-Landau; Landau in der Pfalz Germany
| | | |
Collapse
|
13
|
Xiao W, Chen P, Xiao J, Wang L, Liu T, Wu Y, Dong F, Jiang Y, Pan M, Zhang Y, Lu C. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS One 2017; 12:e0177641. [PMID: 28542312 PMCID: PMC5436693 DOI: 10.1371/journal.pone.0177641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/01/2017] [Indexed: 11/25/2022] Open
Abstract
Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs) using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO) analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours) and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours) showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.
Collapse
Affiliation(s)
- Wenfu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Jinshu Xiao
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
| | - La Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Taihang Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yunfei Wu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yaming Jiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Youhong Zhang
- Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Sichuan Nanchong, China
- * E-mail: (CL); (YZ)
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
- * E-mail: (CL); (YZ)
| |
Collapse
|
14
|
Abstract
Drosophila melanogaster originated in tropical Africa before expanding into strikingly different temperate climates in Eurasia and beyond. Here, we find elevated cold tolerance in three distinct geographic regions: beyond the well-studied non-African case, we show that populations from the highlands of Ethiopia and South Africa have significantly increased cold tolerance as well. We observe greater cold tolerance in outbred versus inbred flies, but only in populations with higher inversion frequencies. Each cold-adapted population shows lower inversion frequencies than a closely-related warm-adapted population, suggesting that inversion frequencies may decrease with altitude in addition to latitude. Using the FST-based "Population Branch Excess" statistic (PBE), we found only limited evidence for parallel genetic differentiation at the scale of ∼4 kb windows, specifically between Ethiopian and South African cold-adapted populations. And yet, when we looked for single nucleotide polymorphisms (SNPs) with codirectional frequency change in two or three cold-adapted populations, strong genomic enrichments were observed from all comparisons. These findings could reflect an important role for selection on standing genetic variation leading to "soft sweeps". One SNP showed sufficient codirectional frequency change in all cold-adapted populations to achieve experiment-wide significance: an intronic variant in the synaptic gene Prosap. Another codirectional outlier SNP, at senseless-2, had a strong association with our cold trait measurements, but in the opposite direction as predicted. More generally, proteins involved in neurotransmission were enriched as potential targets of parallel adaptation. The ability to study cold tolerance evolution in a parallel framework will enhance this classic study system for climate adaptation.
Collapse
Affiliation(s)
- John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | | | - Justin B. Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
15
|
Lee CH, Rimesso G, Reynolds DM, Cai J, Baker NE. Whole-Genome Sequencing and iPLEX MassARRAY Genotyping Map an EMS-Induced Mutation Affecting Cell Competition in Drosophila melanogaster. G3 (BETHESDA, MD.) 2016; 6:3207-3217. [PMID: 27574103 PMCID: PMC5068942 DOI: 10.1534/g3.116.029421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
Cell competition, the conditional loss of viable genotypes only when surrounded by other cells, is a phenomenon observed in certain genetic mosaic conditions. We conducted a chemical mutagenesis and screen to recover new mutations that affect cell competition between wild-type and RpS3 heterozygous cells. Mutations were identified by whole-genome sequencing, making use of software tools that greatly facilitate the distinction between newly induced mutations and other sources of apparent sequence polymorphism, thereby reducing false-positive and false-negative identification rates. In addition, we utilized iPLEX MassARRAY for genotyping recombinant chromosomes. These approaches permitted the mapping of a new mutation affecting cell competition when only a single allele existed, with a phenotype assessed only in genetic mosaics, without the benefit of complementation with existing mutations, deletions, or duplications. These techniques expand the utility of chemical mutagenesis and whole-genome sequencing for mutant identification. We discuss mutations in the Atm and Xrp1 genes identified in this screen.
Collapse
Affiliation(s)
- Chang-Hyun Lee
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Gerard Rimesso
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David M Reynolds
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jinlu Cai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
16
|
von Heckel K, Stephan W, Hutter S. Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster. BMC Genomics 2016; 17:574. [PMID: 27502401 PMCID: PMC4977637 DOI: 10.1186/s12864-016-2866-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transcriptome analysis may provide means to investigate the underlying genetic causes of shared and divergent phenotypes in different populations and help to identify potential targets of adaptive evolution. Applying RNA sequencing to whole male Drosophila melanogaster from the ancestral tropical African environment and a very recently colonized cold-temperate European environment at both standard laboratory conditions and following a cold shock, we seek to uncover the transcriptional basis of cold adaptation. RESULTS In both the ancestral and the derived populations, the predominant characteristic of the cold shock response is the swift and massive upregulation of heat shock proteins and other chaperones. Although we find ~25 % of the genome to be differentially expressed following a cold shock, only relatively few genes (n = 16) are up- or down-regulated in a population-specific way. Intriguingly, 14 of these 16 genes show a greater degree of differential expression in the African population. Likewise, there is an excess of genes with particularly strong cold-induced changes in expression in Africa on a genome-wide scale. CONCLUSIONS The analysis of the transcriptional cold shock response most prominently reveals an upregulation of components of a general stress response, which is conserved over many taxa and triggered by a plethora of stressors. Despite the overall response being fairly similar in both populations, there is a definite excess of genes with a strong cold-induced fold-change in Africa. This is consistent with a detrimental deregulation or an overshooting stress response. Thus, the canalization of European gene expression might be responsible for the increased cold tolerance of European flies.
Collapse
Affiliation(s)
- Korbinian von Heckel
- Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Stephan Hutter
- Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
17
|
MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJS, Sinclair BJ. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci Rep 2016; 6:28999. [PMID: 27357258 PMCID: PMC4928047 DOI: 10.1038/srep28999] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 01/05/2023] Open
Abstract
Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jose M Knee
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Alice B Dennis
- Landcare Research, Auckland, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Hiroko Udaka
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Katie E Marshall
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Thomas J S Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Schrieber K, Lachmuth S. The Genetic Paradox of Invasions revisited: the potential role of inbreeding × environment interactions in invasion success. Biol Rev Camb Philos Soc 2016; 92:939-952. [DOI: 10.1111/brv.12263] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Karin Schrieber
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
| | - Susanne Lachmuth
- Geobotany and Botanical Garden, Institute of Biology; Martin Luther University of Halle; 06108 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; 04103 Leipzig Germany
| |
Collapse
|
19
|
Božičević V, Hutter S, Stephan W, Wollstein A. Population genetic evidence for cold adaptation in European Drosophila melanogaster populations. Mol Ecol 2016; 25:1175-91. [PMID: 26558479 DOI: 10.1111/mec.13464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
We studied Drosophila melanogaster populations from Europe (the Netherlands and France) and Africa (Rwanda and Zambia) to uncover genetic evidence of adaptation to cold. We present here four lines of evidence for genes involved in cold adaptation from four perspectives: (i) the frequency of SNPs at genes previously known to be associated with chill-coma recovery time (CCRT), startle reflex (SR) and resistance to starvation stress (RSS) vary along environmental gradients and therefore among populations; (ii) SNPs of genes that correlate significantly with latitude and altitude in African and European populations overlap with SNPs that correlate with a latitudinal cline from North America; (iii) at the genomewide level, the top candidate genes are enriched in gene ontology (GO) terms that are related to cold tolerance; (iv) GO enriched terms from North American clinal genes overlap significantly with those from Africa and Europe. Each SNP was tested in 10 independent runs of Bayenv2, using the median Bayes factors to ascertain candidate genes. None of the candidate genes were found close to the breakpoints of cosmopolitan inversions, and only four candidate genes were linked to QTLs related to CCRT. To overcome the limitation that we used only four populations to test correlations with environmental gradients, we performed simulations to estimate the power of our approach for detecting selection. Based on our results, we propose a novel network of genes that is involved in cold adaptation.
Collapse
Affiliation(s)
- Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich, D-82152, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Kučerová L, Kubrak OI, Bengtsson JM, Strnad H, Nylin S, Theopold U, Nässel DR. Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics 2016; 17:50. [PMID: 26758761 PMCID: PMC4711038 DOI: 10.1186/s12864-016-2383-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022] Open
Abstract
Background In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. Results A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. Conclusions We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2383-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Kučerová
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Olga I Kubrak
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Jonas M Bengtsson
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Sören Nylin
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
21
|
Telonis-Scott M, Sgrò CM, Hoffmann AA, Griffin PC. Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster. Mol Biol Evol 2016; 33:1053-67. [PMID: 26733490 PMCID: PMC4776712 DOI: 10.1093/molbev/msv349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Philippa C Griffin
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Kvist J, Mattila ALK, Somervuo P, Ahola V, Koskinen P, Paulin L, Salmela L, Fountain T, Rastas P, Ruokolainen A, Taipale M, Holm L, Auvinen P, Lehtonen R, Frilander MJ, Hanski I. Flight-induced changes in gene expression in the Glanville fritillary butterfly. Mol Ecol 2015; 24:4886-900. [DOI: 10.1111/mec.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Jouni Kvist
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Anniina L. K. Mattila
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Panu Somervuo
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Virpi Ahola
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Patrik Koskinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Lars Paulin
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Leena Salmela
- Department of Computer Science and Helsinki Institute for Information Technology HIIT; University of Helsinki; P.O. Box 68 (Gustaf Hällströmin katu 2b) Helsinki Finland
| | - Toby Fountain
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Pasi Rastas
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Annukka Ruokolainen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Minna Taipale
- Science for Life Laboratory; Department of Biosciences and Nutrition; Karolinska Institutet (Hälsovägen 7); SE-14157 Huddinge Sweden
| | - Liisa Holm
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Petri Auvinen
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 4) Helsinki Finland
| | - Rainer Lehtonen
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| | - Mikko J. Frilander
- Institute of Biotechnology; University of Helsinki; P.O. Box 56 (Viikinkaari 9) Helsinki Finland
| | - Ilkka Hanski
- Department of Biosciences; University of Helsinki; P.O. Box 65 (Viikinkaari 1) Helsinki FI-00014 Finland
| |
Collapse
|
23
|
Telonis-Scott M, Clemson AS, Johnson TK, Sgrò CM. Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits. Mol Ecol 2014; 23:6135-51. [PMID: 25401770 DOI: 10.1111/mec.13000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
The cellular stress response has long been the primary model for studying the molecular basis of thermal adaptation, yet the link between gene expression, RNA metabolism and physiological responses to thermal stress remains largely unexplored. We address this by comparing the transcriptional and physiological responses of three geographically distinct populations of Drosophila melanogaster from eastern Australia in response to, and recovery from, a severe heat stress with and without a prestress hardening treatment. We focus on starvin (stv), recently identified as an important thermally responsive gene. Intriguingly, stv encodes seven transcripts from alternative transcription sites and alternative splicing, yet appears to be rapidly heat inducible. First, we show genetic differences in upper thermal limits of the populations tested. We then demonstrate that the stv locus does not ubiquitously respond to thermal stress but is expressed as three distinct thermal and temporal RNA phenotypes (isoforms). The shorter transcript isoforms are rapidly upregulated under stress in all populations and show similar molecular signatures to heat-shock proteins. Multiple stress exposures seem to generate a reserve of pre-mRNAs, effectively 'priming' the cells for subsequent stress. Remarkably, we demonstrate a bypass in the splicing blockade in these isoforms, suggesting an essential role for these transcripts under heat stress. Temporal profiles for the weakly heat responsive stv isoform subset show opposing patterns in the two most divergent populations. Innate and induced transcriptome responses to hyperthermia are complex, and warrant moving beyond gene-level analyses.
Collapse
Affiliation(s)
- Marina Telonis-Scott
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | | | |
Collapse
|
24
|
Vermeulen CJ, Sørensen P, Gagalova KK, Loeschcke V. Flies who cannot take the heat: genome-wide gene expression analysis of temperature-sensitive lethality in an inbred line of Drosophila melanogaster. J Evol Biol 2014; 27:2152-62. [PMID: 25233925 DOI: 10.1111/jeb.12472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
Fitness decreases associated with inbreeding depression often become more pronounced in a stressful environment. The functional genomic causes of these inbreeding-by-environment (I × E) interactions, and of inbreeding depression in general, are poorly known. To further our understanding of I × E interactions, we performed a genome-wide gene expression study of a single inbred line that suffers from temperature-sensitive lethality. We confirmed that increased differential expression between the thermosensitive line and the control line occurs at the restrictive temperature. This demonstrates that I × E interactions in survival are reflected in similar I × E interactions at the gene expression level. To make an impression of the cellular response associated with the lethal effect, we analysed all functional annotation terms that were overrepresented among the differentially expressed genes. Some sets of differentially expressed genes function in the general stress response, and these are more likely to also be differentially expressed in other studies of inbreeding, inbreeding depression, immunity and heat stress. Other sets of differentially expressed genes are shared with studies of gene expression in inbred lines, but not studies of the response to extrinsic stress, and represent a general transcriptomic signature of inbreeding. Finally, some sets of genes have an annotation that is not reported in other studies. These we consider to be candidates for the genes harbouring the mutations responsible for the thermosensitive phenotype, as these mutations are expected to be unique to this line. These genes may also serve as candidate QTL in studies of thermal tolerance and heat resistance.
Collapse
Affiliation(s)
- C J Vermeulen
- Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus C, Denmark; Evolutionary Genetics, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|