1
|
Otti O, Rossel N, Reinhardt K. Semen adaptation to microbes in an insect. Evol Lett 2024; 8:638-646. [PMID: 39328283 PMCID: PMC11424074 DOI: 10.1093/evlett/qrae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 09/28/2024] Open
Abstract
Sperm function is suggested to evolve by sexual selection but is also reduced by microbial damage. Here, we provide experimental evidence that male fertility can adapt to microbes. We found that in vivo, male fertility was reduced by one-fifth if sperm encountered microbes in the females that they had not previously been exposed to, compared to sperm from males that coevolved with these microbes. The female immune system activation reduced male fertility by an additional 13 percentage points. For noncoevolved males, fertility was larger if microbes were injected into females after they had stored away the sperm, indicating microbial protection as a previously unrecognized benefit of female sperm storage. Both medical and evolutionary research on reproductive health and fertility will benefit from considering our findings that the impact of microbes on sperm depends on their joint evolutionary history. Our results may assist in reconciling contradictory results of sexually transmitted disease effects on sperm and bring empirical realism to a recently proposed role of locally adapted reproductive microbiomes to speciation.
Collapse
Affiliation(s)
- Oliver Otti
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Animal Population Ecology, Animal Ecology I, University of Bayreuth, Bayreuth, Germany
- Applied Zoology, TU Dresden, Dresden, Germany
| | - Natacha Rossel
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Reinhardt
- Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Applied Zoology, TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
McNamara KB, Dungan AM, Blackall LL, Simmons LW. Microbial biomarkers as indicators of sperm viability in an insect. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240734. [PMID: 39309259 PMCID: PMC11416813 DOI: 10.1098/rsos.240734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
Our understanding of microbial variation in male reproductive tissues is poorly understood, both regarding how it varies spatially across different tissues and its ability to affect male sperm and semen quality. To redress this gap, we explored the relationship between male sperm viability and male gut and reproductive tract microbiomes in the Pacific field cricket, Teleogryllus oceanicus. We selected cohorts of males within our populations with the highest and lowest natural sperm viability and characterized the bacterial microbiota present in the gut, testes, seminal vesicle, accessory glands and the spermatophore (ejaculate) using 16S ribosomal RNA gene metabarcoding. We identified bacterial taxa corresponding to sperm viability, highlighting for the first time an association between the host's microbial communities and male competitive fertilization success. We also found significant spatial variation in bacterial community structure of reproductive tissue types. Our data demonstrate the importance of considering the microbial diversity of both the host gut and reproductive tract when investigating male fertility in wildlife and potentially human clinical settings.
Collapse
Affiliation(s)
- Kathryn B. McNamara
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Ashley M. Dungan
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Linda L. Blackall
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, Victoria3010, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology & School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
3
|
Arad M, Ku K, Frey C, Hare R, McAfee A, Ghafourifar G, Foster LJ. What proteomics has taught us about honey bee (Apis mellifera) health and disease. Proteomics 2024:e2400075. [PMID: 38896501 DOI: 10.1002/pmic.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The Western honey bee, Apis mellifera, is currently navigating a gauntlet of environmental pressures, including the persistent threat of parasites, pathogens, and climate change - all of which compromise the vitality of honey bee colonies. The repercussions of their declining health extend beyond the immediate concerns of apiarists, potentially imposing economic burdens on society through diminished agricultural productivity. Hence, there is an imperative to devise innovative monitoring techniques for assessing the health of honey bee populations. Proteomics, recognized for its proficiency in biomarker identification and protein-protein interactions, is poised to play a pivotal role in this regard. It offers a promising avenue for monitoring and enhancing the resilience of honey bee colonies, thereby contributing to the stability of global food supplies. This review delves into the recent proteomic studies of A. mellifera, highlighting specific proteins of interest and envisioning the potential of proteomics to improve sustainable beekeeping practices amidst the challenges of a changing planet.
Collapse
Affiliation(s)
- Maor Arad
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth Ku
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Connor Frey
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rhien Hare
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Golfam Ghafourifar
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Mullins LR, Brown DJ, Lovsey SR, Bowers TA, Gershman SN. Roundup and immune challenge have different effects on a native field cricket and its introduced competitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27866-6. [PMID: 37284949 DOI: 10.1007/s11356-023-27866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Animals face many natural challenges, and humans have added to this burden by applying potentially harmful herbicides and unintentionally introducing competitors. We examine the recently introduced Velarifictorus micado Japanese burrowing cricket which shares the same microhabitat and mating season as the native Gryllus pennsylvanicus field cricket. In this study, we assess the combined effects of Roundup (glyphosate-based herbicide) and a lipopolysaccharide (LPS) immune challenge on both crickets. In both species, an immune challenge reduced the numbers of eggs that the female laid; however, this effect was much larger in G. pennsylvanicus. Conversely, Roundup caused both species to increase egg production, potentially representing a terminal investment strategy. When exposed to both an immune challenge and herbicide, G. pennsylvanicus fecundity was harmed more than V. micado fecundity. Furthermore, V. micado females laid significantly more eggs than G. pennsylvanicus, suggesting that introduced V. micado may have a competitive edge in fecundity over native G. pennsylvanicus. LPS and Roundup each had differing effects on male G. pennsylvanicus and V. micado calling effort. Overall, introduced male V. micado spent significantly more time calling than native G. pennsylvanicus, which could potentially facilitate the spread of this introduced species. Despite the population-level spread of introduced V. micado, in our study, this species did not outperform native G. pennsylvanicus in tolerating immune and chemical challenge. Although V. micado appears to possess traits that make this introduced species successful in colonizing new habitats, it may be less successful in traits that would allow it to outcompete a native species.
Collapse
Affiliation(s)
- Lydia R Mullins
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Dylan J Brown
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA
| | - Shelly R Lovsey
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA
| | - Troy A Bowers
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Susan N Gershman
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University at Marion, 1465 Mount Vernon Ave, Marion, OH, 43302, USA.
| |
Collapse
|
5
|
Degueldre F, Aron S. Long-term sperm storage in eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:567-583. [PMID: 36397639 DOI: 10.1111/brv.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
In internally fertilizing species, sperm transfer is not always immediately followed by egg fertilization, and female sperm storage (FSS) may occur. FSS is a phenomenon in which females store sperm in a specialized organ for periods lasting from a few hours to several years, depending on the species. Eusocial hymenopterans (ants, social bees, and social wasps) hold the record for FSS duration. In these species, mating takes place during a single nuptial flight that occurs early in adult life for both sexes; they never mate again. Males die quickly after copulation but survive posthumously as sperm stored in their mates' spermathecae. Reproductive females, also known as queens, have a much longer life expectancy, up to 20 years in some species. Here, we review what is currently known about the molecular adaptations underlying the remarkable FSS capacities in eusocial hymenopterans. Because sperm quality is crucial to the reproductive success of both sexes, we also discuss the mechanisms involved in sperm storage and preservation in the male seminal vesicles prior to ejaculation. Finally, we propose future research directions that should broaden our understanding of this unique biological phenomenon.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| |
Collapse
|
6
|
Fertility costs of cryptic viral infections in a model social insect. Sci Rep 2022; 12:15857. [PMID: 36151143 PMCID: PMC9508145 DOI: 10.1038/s41598-022-20330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Declining insect populations emphasize the importance of understanding the drivers underlying reductions in insect fitness. Here, we investigated viruses as a threat to social insect reproduction, using honey bees as a model species. We report that in two independent surveys (N = 93 and N = 54, respectively) of honey bee (Apis mellifera) queens taken from a total of ten beekeeping operations across British Columbia, high levels of natural viral infection are associated with decreased ovary mass. Failed (poor quality) queens displayed higher levels of viral infection, reduced sperm viability, smaller ovaries, and altered ovary protein composition compared to healthy queens. We experimentally infected queens with Israeli acute paralysis virus (IAPV) and found that the ovary masses of IAPV-injected queens were significantly smaller than control queens, demonstrating a causal relationship between viral infection and ovary size. Queens injected with IAPV also had significantly lower expression of vitellogenin, the main source of nutrition deposited into developing oocytes, and higher levels of heat-shock proteins, which are part of the honey bee’s antiviral response. This work together shows that viral infections occurring naturally in the field are compromising queen reproductive success.
Collapse
|
7
|
Breiner DJ, Whalen MR, Worthington AM. The developmental high wire: Balancing resource investment in immunity and reproduction. Ecol Evol 2022; 12:e8774. [PMID: 35414895 PMCID: PMC8986548 DOI: 10.1002/ece3.8774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
The strategic allocation of resources into immunity poses a unique challenge for individuals, where infection at different stages of development may result in unique trade-offs with concurrent physiological processes or future fitness-enhancing traits. Here, we experimentally induced an immune challenge in female Gryllus firmus crickets to test whether illness at discrete life stages differentially impacts fitness. We injected heat-killed Serratia marcescens bacteria into antepenultimate juveniles, penultimate juveniles, sexually immature adults, and sexually mature adults, and then measured body growth, instar duration, mating rate, viability of stored sperm, egg production, oviposition rate, and egg viability. Immune activation significantly impacted reproductive traits, where females that were immune challenged as adults had decreased mating success and decreased egg viability compared to healthy individuals or females that were immune challenged as juveniles. Although there was no effect of an immune challenge on the other traits measured, the stress of handling resulted in reduced mass gain and smaller adult body size in females from the juvenile treatments, and females in the adult treatments suffered from reduced viability of sperm stored within their spermatheca. In summary, we found that an immune challenge does have negative impacts on reproduction, but also that even minor acute stressors can have significant impacts on fitness-enhancing traits. These findings highlight that the factors affecting fitness can be complex and at times unpredictable, and that the consequences of illness are specific to when during an individual's life an immune challenge is induced.
Collapse
Affiliation(s)
- Daniel J. Breiner
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
| | - Matthew R. Whalen
- Department of Biological SciencesCreighton UniversityOmahaNebraskaUSA
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
8
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
9
|
Trade-offs between sperm viability and immune protein expression in honey bee queens (Apis mellifera). Commun Biol 2021; 4:48. [PMID: 33420325 PMCID: PMC7794525 DOI: 10.1038/s42003-020-01586-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Queens of many social hymenoptera keep sperm alive within their specialized storage organ, the spermatheca, for years, defying the typical trade-off between lifespan and reproduction. However, whether honey bee (Apis mellifera) queens experience a trade-off between reproduction and immunity is unknown, and the biochemical processes underlying sperm viability are poorly understood. Here, we survey quality metrics and viral loads of honey bee queens from nine genetic sources. Queens rated as 'failed' by beekeepers had lower sperm viability, fewer sperm, and higher levels of sacbrood virus and black queen cell virus. Quantitative proteomics on N = 123 spermathecal fluid samples shows, after accounting for sperm count, health status, and apiary effects, five spermathecal fluid proteins significantly correlating with sperm viability: odorant binding protein (OBP)14, lysozyme, serpin 88Ea, artichoke, and heat-shock protein (HSP)10. The significant negative correlation of lysozyme-a conserved immune effector-with sperm viability is consistent with a reproduction vs. immunity trade-off in honey bee queens.
Collapse
|
10
|
A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathog 2020; 16:e1008908. [PMID: 33347501 PMCID: PMC7785212 DOI: 10.1371/journal.ppat.1008908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/05/2021] [Accepted: 11/11/2020] [Indexed: 01/03/2023] Open
Abstract
Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors. Plasmodium falciparum, the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii, with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum, with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.
Collapse
|
11
|
Nystrand M, Dowling DK. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans-a meta-analysis. BMC Biol 2020; 18:135. [PMID: 33028304 PMCID: PMC7541220 DOI: 10.1186/s12915-020-00856-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Life-history theory predicts a trade-off between investment into immune defence and other fitness-related traits. Accordingly, individuals are expected to upregulate their immune response when subjected to immune challenge. However, this is predicted to come at the expense of investment into a range of other traits that are costly to maintain, such as growth, reproduction and survival. Currently, it remains unclear whether the magnitude of such costs, and trade-offs involving immune investment and other traits, manifests consistently across species and sexes. To address this, we conducted a meta-analysis to investigate how changes in sex, ontogenetic stage and environmental factors shape phenotypic trait expression following an immune challenge. RESULTS We explored the effects of immune challenge on three types of traits across sexually reproducing metazoans: life-history, morphological and proximate immune traits (235 effect sizes, 53 studies, 37 species [21 invertebrates vs. 16 vertebrates]). We report a general negative effect of immune challenge on survival and reproduction, a positive effect on immune trait expression, but no effect on morphology or development time. The negative effects of immune challenge on reproductive traits and survival were larger in females than males. We also report a pronounced effect of the immune treatment agent used (e.g. whether the treatment involved a live pathogen or not) on the host response to immune challenge, and find an effect of mating status on the host response in invertebrates. CONCLUSION These results suggest that costs associated with immune deployment following an immune challenge are context-dependent and differ consistently in their magnitude across the sexes of diverse taxonomic lineages. We synthesise and discuss the outcomes in the context of evolutionary theory on sex differences in life-history and highlight the need for future studies to carefully consider the design of experiments aimed at disentangling the costs of immune deployment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
12
|
Stahlschmidt ZR, Glass JR. Life History and Immune Challenge Influence Metabolic Plasticity to Food Availability and Acclimation Temperature. Physiol Biochem Zool 2020; 93:271-281. [PMID: 32469272 DOI: 10.1086/709587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Animals vary in their rates of energy expenditure for self-maintenance (standard metabolic rate [SMR]). Yet we still lack a thorough understanding of the determinants of SMR, potentially because of complex interactions among environmental, life-history, and physiological factors. Thus, we used a factorial design in female sand field crickets (Gryllus firmus) to investigate the independent and interactive effects of food availability (unlimited or limited access), acclimation temperature (control or simulated heat wave), life-history strategy (flight-capable or flight-incapable wing morphology), and immune status (control or chronic immune activation) on SMR (CO2 production rate) measured at 28°C. Both environmental factors independently affected SMR where heat wave and food limitation reduced SMR. Furthermore, wing morphology and immune status mediated the plasticity of SMR to food and temperature. For example, the hypermetabolic effect of food availability was greater in flight-capable crickets and reduced in immune-challenged crickets. Therefore, although SMR was directly affected by food availability and acclimation temperature, interactive effects on SMR were more common, meaning several factors (e.g., life history and immune status) influenced metabolic plasticity to food and temperature. We encourage continued use of factorial experiments to reveal interaction dynamics, which are critical to understanding emergent physiological processes.
Collapse
|
13
|
Pauletto M, Cattelan S, Pilastro A, Babbucci M, Bargelloni L, Gasparini C. Molecular insights into post-mating immune response in a fish with internal fertilization. J Evol Biol 2020; 33:751-761. [PMID: 32150779 DOI: 10.1111/jeb.13614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
The tight connection between immunity and reproduction has been studied for decades. However, basic knowledge at the molecular level of the effect of mating on immune function is still lacking in many taxa. Determining whether and how the immune system is engaged after mating is a crucial step in understanding post-mating mechanisms of reproduction and sexual selection. Here, we study the transcriptional changes in immunity-related genes caused by the ejaculate in the female reproductive tract using a model species for sexual selection studies, the guppy Poecilia reticulata. To study changes triggered by the ejaculate only, rather than caused by mating, we used artificial inseminations to transfer ejaculate into females. We then compared gene expression in the reproductive tract (gonoduct and ovary) of females artificially inseminated either with ejaculate or with a control solution, after 1 hr and after 6 hr. Overall, contact with ejaculate caused short-term changes in the expression of immune-related genes in the female reproductive tract, with a complex pattern of up- and down-regulation of immune-related pathways, but with clear indication of a marked down-regulation of the immune system shortly after ejaculate contact. This suggests a link between immune function and processes occurring between mating and fertilization in this species.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | | | | | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Clelia Gasparini
- Department of Biology, University of Padova, Padova, Italy.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. Effects of "Candidatus Liberibacter solanacearum" (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. INSECT SCIENCE 2020; 27:58-68. [PMID: 29676854 DOI: 10.1111/1744-7917.12599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Liberibacter solanacearum" (Lso) are phloem-restricted and unculturable Gram-negative bacteria. Presently five haplotypes have been identified worldwide; but only haplotypes A and B are associated with the vector Bactericera cockerelli (Šulc.) in the Americas. Previous studies showed that Lso-infection reduces B. cockerelli reproductive output and that Lso haplotype B is more pathogenic than Lso haplotype A. To understand the interaction of Lso haplotype B and B. cockerelli, the fitness of Lso-free and Lso B-infected insects, and the expression of vitellogenin (BcVg1-like), a gene involved directly in the insect reproduction were analyzed. Statistical differences in the number of eggs oviposited, and the total number of progeny nymphs and adults were found among crosses of insects with or without Lso. Significant differences in sex proportions were found between Lso B-infected and Lso-free crosses: a higher proportion of F1 adult females were obtained from Lso B-infected mothers. A significant reduction of BcVg1-like was observed in crosses performed with Lso B-infected females compared to the Lso-free insects. In female cohorts of different age, a significant reduction of BcVg1-like expression was measured in 7-d-old Lso B-infected females (virgin and mated) compared with 7-d-old Lso-free females (virgin and mated), respectively. The reduction of BcVg1-like transcript was associated with a lower number of developing oocytes observed in female's reproductive systems. Overall, this study represents the first step to understand the interaction of Lso B with B. cockerelli, highlighting the effect of Lso B infection on egg production, BcVg1-like expression, and oocyte development.
Collapse
Affiliation(s)
- Angélica Albuquerque Tomilhero Frias
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
- UEM-Depto. de Agronomia, Núcleo de Pesquisa em Biotecnologia Aplicada, Maringá, Brazil
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | - Azucena Mendoza
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | | | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| |
Collapse
|
15
|
Owhor LE, Reese S, Kölle S. Salpingitis Impairs Bovine Tubal Function and Sperm-Oviduct Interaction. Sci Rep 2019; 9:10893. [PMID: 31350463 PMCID: PMC6659645 DOI: 10.1038/s41598-019-47431-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023] Open
Abstract
Salpingitis is a common cause for subfertility and infertility both in humans and animals. However, the effects of salpingitis on tubal function and reproductive success are largely unknown. Therefore we set out to investigate the effects of inflammation on sperm and oocyte transport and gameto-maternal interaction in the oviduct using the bovine as a model. For this purpose, oviducts revealing mild (n = 45), moderate (n = 55) and severe (n = 45) inflammation were obtained from cows immediately after slaughter and investigated by live cell imaging, histochemistry and scanning electron microscopy. Our studies showed that endometritis was always correlated with salpingitis. Moderate and severe inflammation caused a significant increase in the thickness of tubal folds (p < 0.05). Severe inflammation was characterized by luminal accumulations of mucus and glycoproteins, increased apoptosis, loss of tight junctions and shedding of tubal epithelial cells. The mean ciliary beat frequency (CBF) in the ampulla was significantly reduced as compared to the controls (p < 0.05). The higher the grade of inflammation, the lower was the CBF (p < 0.001). In severe inflammation, spermatozoa were stuck in mucus resulting in decreased sperm motility. Our results imply that tubal inflammation impairs proper tubal function and leads to reduced sperm fertilizing capacity.
Collapse
Affiliation(s)
- Loveth E Owhor
- School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland
| | - Sven Reese
- School of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, LMU, Munich, Germany
| | - Sabine Kölle
- School of Medicine, Health Sciences Centre, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
16
|
Abstract
The moment of the fertilization of an egg by a spermatozoon-the point of "sperm success"-is a key milestone in the biology of sexually reproducing species and is a fundamental requirement for offspring production. Fertilization also represents the culmination of a suite of sexually selected processes in both sexes and is commonly used as a landmark to measure reproductive success. Sperm success is heavily dependent upon interactions with other key aspects of male and female biology, with the immune system among the most important. The immune system is vital to maintaining health in both sexes; however, immune reactions can also have antagonistic effects on sperm success. The effects of immunity on sperm success are diverse, and may include trade-offs in the male between investment in the production or protection of sperm, as well as more direct, hostile, immune responses to sperm within the female, and potentially the male, reproductive tract. Here, we review current understanding of where the biology of immunity and sperm meet, and identify the gaps in our knowledge.
Collapse
Affiliation(s)
- Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Susan S Suarez
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Brian P Lazzaro
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mariana F Wolfner
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Adetula AA, Gu L, Nwafor CC, Du X, Zhao S, Li S. Transcriptome sequencing reveals key potential long non-coding RNAs related to duration of fertility trait in the uterovaginal junction of egg-laying hens. Sci Rep 2018; 8:13185. [PMID: 30181614 PMCID: PMC6123486 DOI: 10.1038/s41598-018-31301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Duration of fertility, (DF) is an important functional trait in poultry production and lncRNAs have emerged as important regulators of various process including fertility. In this study we applied a genome-guided strategy to reconstruct the uterovaginal junction (UVJ) transcriptome of 14 egg-laying birds with long- and short-DF (n = 7); and sought to uncover key lncRNAs related to duration of fertility traits by RNA-sequencing technology. Examination of RNA-seq data revealed a total of 9977 lncRNAs including 2576 novel lncRNAs. Differential expression (DE) analysis of lncRNA identified 223 lncRNAs differentially expressed between the two groups. DE-lncRNA target genes prediction uncovered over 200 lncRNA target genes and functional enrichment tests predict a potential function of DE-lncRNAs. Gene ontology classification and pathway analysis revealed 8 DE-lncRNAs, with the majority of their target genes enriched in biological functions such as reproductive structure development, developmental process involved in reproduction, response to cytokine, carbohydrate binding, chromatin organization, and immune pathways. Differential expression of lncRNAs and target genes were confirmed by qPCR. Together, these results significantly expand the utility of the UVJ transcriptome and our analysis identification of key lncRNAs and their target genes regulating DF will form the baseline for understanding the molecular functions of lncRNAs regulating DF.
Collapse
Affiliation(s)
- Adeyinka Abiola Adetula
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Lantao Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | | | - Xiaoyong Du
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
18
|
Gasparini C, Daymond E, Evans JP. Extreme fertilization bias towards freshly inseminated sperm in a species exhibiting prolonged female sperm storage. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172195. [PMID: 29657813 PMCID: PMC5882737 DOI: 10.1098/rsos.172195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/02/2018] [Indexed: 06/01/2023]
Abstract
The storage of sperm by females across successive reproductive cycles is well documented in internal fertilizers, yet the fate of stored sperm when they compete with 'new' sperm to fertilize a female's eggs has rarely been considered. This gap in our understanding is likely due to the logistical difficulties of controlling behavioural interactions during or after mating, which in turn may influence how many sperm are inseminated and how stored sperm are ultimately used during successive bouts of sperm competition with freshly inseminated sperm. Here, we use artificial insemination (AI) in guppies (Poecilia reticulata), a polyandrous live-bearing poeciliid fish exhibiting prolonged sperm storage by females, to overcome these challenges. The use of AI enables us to control potential differential maternal effects (e.g. behaviourally mediated cryptic female choice) and specifically test for post-copulatory paternity biases that favour either stored or fresh sperm when they compete to fertilize eggs. Our paternity analyses revealed the almost complete dominance of freshly inseminated sperm over stored sperm, supporting previous studies reporting similar patterns following natural matings across successive brood cycles. However, our use of AI, which excluded behavioural interactions between males and females, most likely generated a far stronger pattern of fresh sperm precedence compared with those reported in previous studies, possibly implicating 'cryptic' forms of selection by females that may sometimes bolster the success of stored sperm.
Collapse
|
19
|
Liu T, Yang P, Chen H, Huang Y, Liu Y, Waqas Y, Ahmed N, Chu X, Chen Q. Global analysis of differential gene expression related to long-term sperm storage in oviduct of Chinese Soft-Shelled Turtle Pelodiscus sinensis. Sci Rep 2016; 6:33296. [PMID: 27628424 PMCID: PMC5024102 DOI: 10.1038/srep33296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Important evolutionary and ecological consequences arise from the ability of female turtles to store viable spermatozoa for an extended period. Although previous morphological studies have observed the localization of spermatozoa in Pelodiscus sinensis oviduct, no systematic study on the identification of genes that are involved in long-term sperm storage has been performed. In this study, the oviduct of P. sinensis at different phases (reproductive and hibernation seasons) was prepared for RNA-Seq and gene expression profiling. In total, 2,662 differentially expressed genes (DEGs) including 1,224 up- and 1,438 down-regulated genes were identified from two cDNA libraries. Functional enrichment analysis indicated that many genes were predominantly involved in the immune response, apoptosis pathway and regulation of autophagy. RT-qPCR, ELISA, western blot and IHC analyses showed that the expression profiles of mRNA and protein in selected DEGs were in consistent with results from RNA-Seq analysis. Remarkably, TUNEL analysis revealed the reduced number of apoptotic cells during sperm storage. IHC and TEM analyses found that autophagy occurred in the oviduct epithelial cells, where the spermatozoa were closely attached. The outcomes of this study provide fundamental insights into the complex sperm storage regulatory process and facilitate elucidating the mechanism of sperm storage in P. sinensis.
Collapse
Affiliation(s)
- Tengfei Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xiaoya Chu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
20
|
Abstract
Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Robin A Schwenke
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; , ,
| |
Collapse
|
21
|
Orr TJ, Brennan PLR. Sperm storage: distinguishing selective processes and evaluating criteria. Trends Ecol Evol 2015; 30:261-72. [PMID: 25843274 DOI: 10.1016/j.tree.2015.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 01/18/2023]
Abstract
Sperm storage, the extended maintenance of viable sperm, probably occurs in most internally fertilizing animals. Because it temporally separates mating from conception, sperm storage can be adaptive in ecologically diverse habitats and affect life histories, mating systems, cryptic female choice, sperm competition, and sexual conflict. Sperm storage can result from different selective forces acting on females and/or males, sometimes resulting in coevolution. The various criteria often used to determine the presence of sperm storage in any given taxon can result from the action of any one or all of these selective forces. Here we discuss the criteria used to study sperm storage and how we can use these to better understand the evolution of diversity in sperm-storage adaptations.
Collapse
Affiliation(s)
- Teri J Orr
- Departments of Psychology and Biology, and Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Patricia L R Brennan
- Departments of Psychology and Biology, and Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
22
|
McNamara KB, van Lieshout E, Simmons LW. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J Evol Biol 2014; 27:1020-8. [DOI: 10.1111/jeb.12376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/19/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Affiliation(s)
- K. B. McNamara
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| | - E. van Lieshout
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| | - L. W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| |
Collapse
|