1
|
Fisher DN, Bechsgaard J, Bilde T. Exploring changes in social spider DNA methylation profiles in all cytosine contexts following infection. Heredity (Edinb) 2024; 133:410-417. [PMID: 39266675 PMCID: PMC11589119 DOI: 10.1038/s41437-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Living at high density and with low genetic diversity are factors that should both increase the susceptibility of organisms to disease. Therefore, group living organisms, especially those that are inbred, should be especially vulnerable to infection and therefore have particular strategies to cope with infection. Phenotypic plasticity, underpinned by epigenetic changes, could allow group living organisms to rapidly respond to infection challenges. To explore the potential role of epigenetic modifications in the immune response to a group-living species with low genetic diversity, we compared the genome-wide DNA methylation profiles of five colonies of social spiders (Stegodyphus dumicola) in their natural habitat in Namibia at the point just before they succumbed to infection to a point at least six months previously where they were presumably healthier. We found increases in genome- and chromosome-wide methylation levels in the CpG, CHG, and CHH contexts, although the genome-wide changes were not clearly different from zero. These changes were most prominent in the CHG context, especially at a narrow region of chromosome 13, hinting at an as-of-yet unsuspected role of this DNA methylation context in phenotypic plasticity. However, there were few clear patterns of differential methylation at the base level, and genes with a known immune function in spiders had mean methylation changes close to zero. Our results suggest that DNA methylation may change with infection at large genomic scales, but that this type of epigenetic change is not necessarily integral to the immune response of social spiders.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
| | - Jesper Bechsgaard
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, Pfrender ME. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods. BMC Biol 2024; 22:229. [PMID: 39390511 PMCID: PMC11465517 DOI: 10.1186/s12915-024-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes. RESULTS We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants. CONCLUSIONS Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans.
Collapse
Affiliation(s)
- Yiyuan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
- Current Address: Informatics Group, Harvard University, Cambridge, MA, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Environmental Change Initiative, Notre Dame, IN, USA
| |
Collapse
|
3
|
Brenman-Suttner D, Zayed A. An integrative genomic toolkit for studying the genetic, evolutionary, and molecular underpinnings of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101231. [PMID: 38977215 DOI: 10.1016/j.cois.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
While genomic resources for social insects have vastly increased over the past two decades, we are still far from understanding the genetic and molecular basis of eusociality. Here, we briefly review three scientific advancements that, when integrated, can be highly synergistic for advancing our knowledge of the genetics and evolution of eusocial traits. Population genomics provides a natural way to quantify the strength of natural selection on coding and regulatory sequences, highlighting genes that have undergone adaptive evolution during the evolution or maintenance of eusociality. Genome-wide association studies (GWAS) can be used to characterize the complex genetic architecture underlying eusocial traits and identify candidate causal variants. Concurrently, CRISPR/Cas9 enables the precise manipulation of gene function to both validate genotype-phenotype associations and study the molecular biology underlying interesting traits. While each approach has its own advantages and disadvantages, which we discuss herein, we argue that their combination will ultimately help us better understand the genetics and evolution of eusocial behavior. Specifically, by triangulating across these three different approaches, researchers can directly identify and study loci that have a causal association with key phenotypes and have evidence of positive selection over the relevant timescales associated with the evolution and maintenance of eusociality in insects.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Ewart KM, Ho SYW, Chowdhury AA, Jaya FR, Kinjo Y, Bennett J, Bourguignon T, Rose HA, Lo N. Pervasive relaxed selection in termite genomes. Proc Biol Sci 2024; 291:20232439. [PMID: 38772424 DOI: 10.1098/rspb.2023.2439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Genetic changes that enabled the evolution of eusociality have long captivated biologists. More recently, attention has focussed on the consequences of eusociality on genome evolution. Studies have reported higher molecular evolutionary rates in eusocial hymenopteran insects compared with their solitary relatives. To investigate the genomic consequences of eusociality in termites, we analysed nine genomes, including newly sequenced genomes from three non-eusocial cockroaches. Using a phylogenomic approach, we found that termite genomes have experienced lower rates of synonymous substitutions than those of cockroaches, possibly as a result of longer generation times. We identified higher rates of non-synonymous substitutions in termite genomes than in cockroach genomes, and identified pervasive relaxed selection in the former (24-31% of the genes analysed) compared with the latter (2-4%). We infer that this is due to reductions in effective population size, rather than gene-specific effects (e.g. indirect selection of caste-biased genes). We found no obvious signature of increased genetic load in termites, and postulate efficient purging of deleterious alleles at the colony level. Additionally, we identified genomic adaptations that may underpin caste differentiation, such as genes involved in post-translational modifications. Our results provide insights into the evolution of termites and the genomic consequences of eusociality more broadly.
Collapse
Affiliation(s)
- Kyle M Ewart
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Frederick R Jaya
- Ecology & Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Okinawa International University, Okinawa, Japan
| | - Juno Bennett
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Harley A Rose
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Martinů J, Tarabai H, Štefka J, Hypša V. Highly Resolved Genomes of Two Closely Related Lineages of the Rodent Louse Polyplax serrata with Different Host Specificities. Genome Biol Evol 2024; 16:evae045. [PMID: 38478715 PMCID: PMC10972687 DOI: 10.1093/gbe/evae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
Sucking lice of the parvorder Anoplura are permanent ectoparasites with specific lifestyle and highly derived features. Currently, genomic data are only available for a single species, the human louse Pediculus humanus. Here, we present genomes of two distinct lineages, with different host spectra, of a rodent louse Polyplax serrata. Genomes of these ecologically different lineages are closely similar in gene content and display a conserved order of genes, with the exception of a single translocation. Compared with P. humanus, the P. serrata genomes are noticeably larger (139 vs. 111 Mbp) and encode a higher number of genes. Similar to P. humanus, they are reduced in sensory-related categories such as vision and olfaction. Utilizing genome-wide data, we perform phylogenetic reconstruction and evolutionary dating of the P. serrata lineages. Obtained estimates reveal their relatively deep divergence (∼6.5 Mya), comparable with the split between the human and chimpanzee lice P. humanus and Pediculus schaeffi. This supports the view that the P. serrata lineages are likely to represent two cryptic species with different host spectra. Historical demographies show glaciation-related population size (Ne) reduction, but recent restoration of Ne was seen only in the less host-specific lineage. Together with the louse genomes, we analyze genomes of their bacterial symbiont Legionella polyplacis and evaluate their potential complementarity in synthesis of amino acids and B vitamins. We show that both systems, Polyplax/Legionella and Pediculus/Riesia, display almost identical patterns, with symbionts involved in synthesis of B vitamins but not amino acids.
Collapse
Affiliation(s)
- Jana Martinů
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Tarabai
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
| | - Jan Štefka
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Costa-da-Silva AL, Cabal S, Lopez K, Boloix J, Rodriguez BG, Marrero KM, Bellantuono AJ, DeGennaro M. Female Aedes aegypti mosquitoes use communal cues to manage population density at breeding sites. Commun Biol 2024; 7:143. [PMID: 38297108 PMCID: PMC10830494 DOI: 10.1038/s42003-024-05830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Where a female mosquito lays her eggs creates the conditions for reproductive success. Here we identify a communal behavior among ovipositing female mosquitoes. When choosing equal breeding sites, gravid Aedes aegypti aggregate more often than expected. This aggregation occurs when water contact is restricted and does not require the presence of eggs. Instead, the aggregation is regulated by the number of females present at the breeding site. Using assays with both occupied and empty oviposition sites, we show that the Orco olfactory co-receptor and a carbon dioxide receptor, Gr3, detect the presence of mosquitoes. orco mutants aggregate more often in empty sites, suggesting attractive olfactory cues influence females to associate with one another. Gr3 mutant females do not prefer either site, suggesting that the CO2 receptor is necessary to evaluate mosquito population density at breeding sites. Further, raising CO2 levels is sufficient to cause wild-type mosquitoes to avoid empty oviposition sites. Our results demonstrate that female mosquitoes can regulate their own population density at breeding sites using attractive and repellent communal cues.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Silvia Cabal
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kristian Lopez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Jean Boloix
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Brian Garcia Rodriguez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kaylee M Marrero
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
8
|
Chisholm RA, Kristensen NP, Rheindt FE, Chong KY, Ascher JS, Lim KKP, Ng PKL, Yeo DCJ, Meier R, Tan HH, Giam X, Yeoh YS, Seah WW, Berman LM, Tan HZ, Sadanandan KR, Theng M, Jusoh WFA, Jain A, Huertas B, Tan DJX, Ng ACR, Teo A, Yiwen Z, Cho TJY, Sin YCK. Two centuries of biodiversity discovery and loss in Singapore. Proc Natl Acad Sci U S A 2023; 120:e2309034120. [PMID: 38079550 PMCID: PMC10743369 DOI: 10.1073/pnas.2309034120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023] Open
Abstract
There is an urgent need for reliable data on the impacts of deforestation on tropical biodiversity. The city-state of Singapore has one of the most detailed biodiversity records in the tropics, dating back to the turn of the 19th century. In 1819, Singapore was almost entirely covered in primary forest, but this has since been largely cleared. We compiled more than 200 y of records for 10 major taxonomic groups in Singapore (>50,000 individual records; >3,000 species), and we estimated extinction rates using recently developed and novel statistical models that account for "dark extinctions," i.e., extinctions of undiscovered species. The estimated overall extinction rate was 37% (95% CI [31 to 42%]). Extrapolating our Singapore observations to a future business-as-usual deforestation scenario for Southeast Asia suggests that 18% (95% CI [16 to 22%]) of species will be lost regionally by 2100. Our extinction estimates for Singapore and Southeast Asia are a factor of two lower than previous estimates that also attempted to account for dark extinctions. However, we caution that particular groups such as large mammals, forest-dependent birds, orchids, and butterflies are disproportionately vulnerable.
Collapse
Affiliation(s)
- Ryan A. Chisholm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Nadiah P. Kristensen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Frank E. Rheindt
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Kwek Yan Chong
- Singapore Botanic Gardens, National Parks Board, Singapore259569, Singapore
| | - John S. Ascher
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Kelvin K. P. Lim
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore117377, Singapore
| | - Peter K. L. Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore117377, Singapore
| | - Darren C. J. Yeo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore117377, Singapore
| | - Rudolf Meier
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin10115, Germany
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore117377, Singapore
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, TN37996
| | - Yi Shuen Yeoh
- Singapore Botanic Gardens, National Parks Board, Singapore259569, Singapore
| | - Wei Wei Seah
- Singapore Botanic Gardens, National Parks Board, Singapore259569, Singapore
| | - Laura M. Berman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Hui Zhen Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Keren R. Sadanandan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, Seewiesen82319, Germany
| | - Meryl Theng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, Adelaide, SA5005, Australia
| | - Wan F. A. Jusoh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- School of Science, Monash University Malaysia, Subang Jaya47500, Malaysia
| | - Anuj Jain
- Nature Society (Singapore), Singapore389466, Singapore
- bioSEA Pte Ltd., Singapore679521, Singapore
| | - Blanca Huertas
- Department of Life Sciences, Natural History Museum, LondonSW7 5BD, United Kingdom
| | - David J. X. Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131
| | - Alicia C. R. Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Aloysius Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Zeng Yiwen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
- Centre for Nature-based Climate Solutions, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Tricia J. Y. Cho
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| | - Y. C. Keita Sin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117558, Singapore
| |
Collapse
|
9
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
10
|
Françoso E, Zuntini AR, Ricardo PC, Santos PKF, de Souza Araujo N, Silva JPN, Gonçalves LT, Brito R, Gloag R, Taylor BA, Harpur B, Oldroyd BP, Brown MJF, Arias MC. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int J Biol Macromol 2023; 242:124568. [PMID: 37100315 DOI: 10.1016/j.ijbiomac.2023.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The extreme conservation of mitochondrial genomes in metazoans poses a significant challenge to understanding mitogenome evolution. However, the presence of variation in gene order or genome structure, found in a small number of taxa, can provide unique insights into this evolution. Previous work on two stingless bees in the genus Tetragonula (T. carbonaria and T. hockingsi) revealed highly divergent CO1 regions between them and when compared to the bees from the same tribe (Meliponini), indicating rapid evolution. Using mtDNA isolation and Illumina sequencing, we elucidated the mitogenomes of both species. In both species, there has been a duplication of the whole mitogenome to give a total genome size of 30,666 bp in T. carbonaria; and 30,662 bp in T. hockingsi. These duplicated genomes present a circular structure with two identical and mirrored copies of all 13 protein coding genes and 22 tRNAs, with the exception of a few tRNAs that are present as single copies. In addition, the mitogenomes are characterized by rearrangements of two block of genes. We believe that rapid evolution is present in the whole Indo-Malay/Australasian group of Meliponini but is extraordinarily elevated in T. carbonaria and T. hockingsi, probably due to founder effect, low effective population size and the mitogenome duplication. All these features - rapid evolution, rearrangements, and duplication - deviate significantly from the vast majority of the mitogenomes described so far, making the mitogenomes of Tetragonula unique opportunities to address fundamental questions of mitogenome function and evolution.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Natalia de Souza Araujo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | - Rosalyn Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Brock Harpur
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin P Oldroyd
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
11
|
Abstract
Insects constitute vital components of ecosystems. There is alarming evidence for global declines in insect species diversity, abundance, and biomass caused by anthropogenic drivers such as habitat degradation or loss, agricultural practices, climate change, and environmental pollution. This raises important concerns about human food security and ecosystem functionality and calls for more research to assess insect population trends and identify threatened species and the causes of declines to inform conservation strategies. Analysis of genetic diversity is a powerful tool to address these goals, but so far animal conservation genetics research has focused strongly on endangered vertebrates, devoting less attention to invertebrates, such as insects, that constitute most biodiversity. Insects' shorter generation times and larger population sizes likely necessitate different analytical methods and management strategies. The availability of high-quality reference genome assemblies enables population genomics to address several key issues. These include precise inference of past demographic fluctuations and recent declines, measurement of genetic load levels, delineation of evolutionarily significant units and cryptic species, and analysis of genetic adaptation to stressors. This enables identification of populations that are particularly vulnerable to future threats, considering their potential to adapt and evolve. We review the application of population genomics to insect conservation and the outlook for averting insect declines.
Collapse
Affiliation(s)
- Matthew T Webster
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden;
| | - Alexis Beaurepaire
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
12
|
Tong C, Avilés L, Rayor LS, Mikheyev AS, Linksvayer TA. Genomic signatures of recent convergent transitions to social life in spiders. Nat Commun 2022; 13:6967. [PMID: 36414623 PMCID: PMC9681848 DOI: 10.1038/s41467-022-34446-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
The transition from solitary to social life is a major phenotypic innovation, but its genetic underpinnings are largely unknown. To identify genomic changes associated with this transition, we compare the genomes of 22 spider species representing eight recent and independent origins of sociality. Hundreds of genes tend to experience shifts in selection during the repeated transition to social life. These genes are associated with several key functions, such as neurogenesis, behavior, and metabolism, and include genes that previously have been implicated in animal social behavior and human behavioral disorders. In addition, social species have elevated genome-wide rates of molecular evolution associated with relaxed selection caused by reduced effective population size. Altogether, our study provides unprecedented insights into the genomic signatures of social evolution and the specific genetic changes that repeatedly underpin the evolution of sociality. Our study also highlights the heretofore unappreciated potential of transcriptomics using ethanol-preserved specimens for comparative genomics and phylotranscriptomics.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Linda S Rayor
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander S Mikheyev
- Evolutionary Genomics Group, Research School of Biology, Australian National University, Canberra, 0200, Australia
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
13
|
Berger J, Legendre F, Zelosko KM, Harrison MC, Grandcolas P, Bornberg-Bauer E, Fouks B. Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression. Genes (Basel) 2022; 13:1948. [PMID: 36360186 PMCID: PMC9689775 DOI: 10.3390/genes13111948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2023] Open
Abstract
(1) Unravelling the molecular basis underlying major evolutionary transitions can shed light on how complex phenotypes arise. The evolution of eusociality, a major evolutionary transition, has been demonstrated to be accompanied by enhanced gene regulation. Numerous pieces of evidence suggest the major impact of transposon insertion on gene regulation and its role in adaptive evolution. Transposons have been shown to be play a role in gene duplication involved in the eusocial transition in termites. However, evidence of the molecular basis underlying the eusocial transition in Blattodea remains scarce. Could transposons have facilitated the eusocial transition in termites through shifts of gene expression? (2) Using available cockroach and termite genomes and transcriptomes, we investigated if transposons insert more frequently in genes with differential expression in queens and workers and if those genes could be linked to specific functions essential for eusocial transition. (3) The insertion rate of transposons differs among differentially expressed genes and displays opposite trends between termites and cockroaches. The functions of termite transposon-rich queen- and worker-biased genes are related to reproduction and ageing and behaviour and gene expression, respectively. (4) Our study provides further evidence on the role of transposons in the evolution of eusociality, potentially through shifts in gene expression.
Collapse
Affiliation(s)
- Juliette Berger
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Frédéric Legendre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Kevin-Markus Zelosko
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| | - Mark C. Harrison
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| | - Philippe Grandcolas
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, Hüfferstrasse 1, 48149 Münster, Germany
| |
Collapse
|
14
|
Chak STC, Harris SE, Hultgren KM, Duffy JE, Rubenstein DR. Demographic inference provides insights into the extirpation and ecological dominance of eusocial snapping shrimps. J Hered 2022; 113:552-562. [PMID: 35921239 DOI: 10.1093/jhered/esac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Although eusocial animals often achieve ecological dominance in the ecosystems where they occur, many populations are unstable, resulting in local extinction. Both patterns may be linked to the characteristic demography of eusocial species-high reproductive skew and reproductive division of labor support stable effective population sizes that make eusocial groups more competitive in some species, but also lower effective population sizes that increase susceptibility to population collapse in others. Here, we examine the relationship between demography and social organization in Synalpheus snapping shrimps, a group in which eusociality has evolved recently and repeatedly. We show using coalescent demographic modelling that eusocial species have had lower but more stable effective population sizes across 100,000 generations. Our results are consistent with the idea that stable population sizes may enable competitive dominance in eusocial shrimps, but they also suggest that recent population declines are likely caused by eusocial shrimps' heightened sensitivity to environmental changes, perhaps as a result of their low effective population sizes and localized dispersal. Thus, although the unique life histories and demography of eusocial shrimps have likely contributed to their persistence and ecological dominance over evolutionary timescales, these social traits may also make them vulnerable to contemporary environmental change.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY, USA
| | - Stephen E Harris
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA.,Biology Department, SUNY Purchase College, Purchase, NY, USA
| | | | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Institution, Edgewater, MD, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Fontcuberta A, Kapun M, Tran Van P, Purcell J, Chapuisat M. Effects of social organization and elevation on spatial genetic structure in a montane ant. Ecol Evol 2022; 12:e8813. [PMID: 35600679 PMCID: PMC9108227 DOI: 10.1002/ece3.8813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Amaranta Fontcuberta
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Martin Kapun
- Center for Anatomy and Cell Biology Department of Cell and Developmental Biology Medical University of Vienna Vienna Austria
- Natural History Museum of Vienna Vienna Austria
| | - Patrick Tran Van
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| | - Jessica Purcell
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- Department of Entomology University of California Riverside California USA
| | - Michel Chapuisat
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
16
|
Garcia Bulle Bueno F, Garcia Bulle Bueno B, Buchmann G, Heard T, Latty T, Oldroyd BP, Hosoi AE, Gloag R. Males Are Capable of Long-Distance Dispersal in a Social Bee. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.843156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pollinator conservation is aided by knowledge of dispersal behavior, which shapes gene flow and population structure. In many bees, dispersal is thought to be male-biased, and males’ movements may be critical to maintaining gene flow in disturbed and fragmented habitats. Yet male bee movements are challenging to track directly and male dispersal ability remains poorly understood in most species. Here, we combine field manipulations and models to assess male dispersal ability in a stingless bee (Tetragonula carbonaria). We placed colonies with virgin queens at varying distances apart (1–48 km), genotyped the males that gathered at mating aggregations outside each colony, and used pairwise sibship assignment to determine the distribution of likely brothers across aggregations. We then compared simulations of male dispersal to our observed distributions and found best-fit models when males dispersed an average of 2–3 km (>2-fold female flight ranges), and maximum of 20 km (30-fold female flight ranges). Our data supports the view that male bee dispersal can facilitate gene flow over long-distances, and thus play a key role in bee populations’ resilience to habitat loss and fragmentation. In addition, we show that the number of families contributing to male aggregations can be used to estimate local stingless bee colony densities, allowing population monitoring of these important tropical pollinators.
Collapse
|
17
|
Dyson CJ, Piscano OL, Durham RM, Thompson VJ, Johnson CH, Goodisman MAD. Temporal Analysis of Effective Population Size and Mating System in a Social Wasp. J Hered 2021; 112:626-634. [PMID: 34558622 DOI: 10.1093/jhered/esab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at 3 separate timepoints spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations.
Collapse
Affiliation(s)
- Carl J Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Olivia L Piscano
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca M Durham
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Veronica J Thompson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Catherine H Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
18
|
Menzel F, Feldmeyer B. How does climate change affect social insects? CURRENT OPINION IN INSECT SCIENCE 2021; 46:10-15. [PMID: 33545433 DOI: 10.1016/j.cois.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Climate change poses a major threat to global biodiversity, already causing sharp declines of populations and species. In some social insect species we already see advanced phenologies, changes in distribution ranges, and changes in abundance Rafferty (2017) and Diamond et al. (2017). Physiologically, social insects are no different from solitary insects, but they possess a number of characteristics that distinguish their response to climate change. Here, we examine these traits, which might enable them to cope better with climate change than solitary insects, but only in the short term. In addition, we discuss how climate change will alter biotic interactions and ecosystem functions, and how it will affect invasive social insects.
Collapse
Affiliation(s)
- Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
20
|
Schrader L, Pan H, Bollazzi M, Schiøtt M, Larabee FJ, Bi X, Deng Y, Zhang G, Boomsma JJ, Rabeling C. Relaxed selection underlies genome erosion in socially parasitic ant species. Nat Commun 2021; 12:2918. [PMID: 34006882 PMCID: PMC8131649 DOI: 10.1038/s41467-021-23178-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Inquiline ants are highly specialized and obligate social parasites that infiltrate and exploit colonies of closely related species. They have evolved many times convergently, are often evolutionarily young lineages, and are almost invariably rare. Focusing on the leaf-cutting ant genus Acromyrmex, we compared genomes of three inquiline social parasites with their free-living, closely-related hosts. The social parasite genomes show distinct signatures of erosion compared to the host lineages, as a consequence of relaxed selective constraints on traits associated with cooperative ant colony life and of inquilines having very small effective population sizes. We find parallel gene losses, particularly in olfactory receptors, consistent with inquiline species having highly reduced social behavioral repertoires. Many of the genomic changes that we uncover resemble those observed in the genomes of obligate non-social parasites and intracellular endosymbionts that branched off into highly specialized, host-dependent niches.
Collapse
Affiliation(s)
- Lukas Schrader
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | | | - Martin Bollazzi
- Entomología, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fredrick J Larabee
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | | | - Guojie Zhang
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Rabeling
- Department of Biology, University of Rochester, Rochester, NY, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
21
|
Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. How to Make a Rodent Giant: Genomic Basis and Tradeoffs of Gigantism in the Capybara, the World's Largest Rodent. Mol Biol Evol 2021; 38:1715-1730. [PMID: 33169792 PMCID: PMC8097284 DOI: 10.1093/molbev/msaa285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Collapse
Affiliation(s)
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
22
|
Chak STC, Baeza JA, Barden P. Eusociality Shapes Convergent Patterns of Molecular Evolution across Mitochondrial Genomes of Snapping Shrimps. Mol Biol Evol 2021; 38:1372-1383. [PMID: 33211078 PMCID: PMC8480187 DOI: 10.1093/molbev/msaa297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eusociality is a highly conspicuous and ecologically impactful behavioral syndrome that has evolved independently across multiple animal lineages. So far, comparative genomic analyses of advanced sociality have been mostly limited to insects. Here, we study the only clade of animals known to exhibit eusociality in the marine realm-lineages of socially diverse snapping shrimps in the genus Synalpheus. To investigate the molecular impact of sociality, we assembled the mitochondrial genomes of eight Synalpheus species that represent three independent origins of eusociality and analyzed patterns of molecular evolution in protein-coding genes. Synonymous substitution rates are lower and potential signals of relaxed purifying selection are higher in eusocial relative to noneusocial taxa. Our results suggest that mitochondrial genome evolution was shaped by eusociality-linked traits-extended generation times and reduced effective population sizes that are hallmarks of advanced animal societies. This is the first direct evidence of eusociality impacting genome evolution in marine taxa. Our results also strongly support the idea that eusociality can shape genome evolution through profound changes in life history and demography.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Department of Biological Sciences, SUNY College at Old Westbury, Old Westbury, NY
| | - Juan Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL
- Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| |
Collapse
|
23
|
Imrit MA, Dogantzis KA, Harpur BA, Zayed A. Eusociality influences the strength of negative selection on insect genomes. Proc Biol Sci 2020; 287:20201512. [PMID: 32811314 PMCID: PMC7482261 DOI: 10.1098/rspb.2020.1512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
While much of the focus of sociobiology concerns identifying genomic changes that influence social behaviour, we know little about the consequences of social behaviour on genome evolution. It has been hypothesized that social evolution can influence the strength of negative selection via two mechanisms. First, division of labour can influence the efficiency of negative selection in a caste-specific manner; indirect negative selection on worker traits is theoretically expected to be weaker than direct selection on queen traits. Second, increasing social complexity is expected to lead to relaxed negative selection because of its influence on effective population size. We tested these two hypotheses by estimating the strength of negative selection in honeybees, bumblebees, paper wasps, fire ants and six other insects that span the range of social complexity. We found no consistent evidence that negative selection was significantly stronger on queen-biased genes relative to worker-biased genes. However, we found strong evidence that increased social complexity reduced the efficiency of negative selection. Our study clearly illustrates how changes in behaviour can influence patterns of genome evolution by modulating the strength of natural selection.
Collapse
Affiliation(s)
- Mohammad A. Imrit
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Kathleen A. Dogantzis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Brock A. Harpur
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN 47907, USA
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| |
Collapse
|
24
|
Lehtonen J. Longevity and the drift barrier: Bridging the gap between Medawar and Hamilton. Evol Lett 2020; 4:382-393. [PMID: 32774886 PMCID: PMC7403686 DOI: 10.1002/evl3.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
Most organisms have finite life spans. The maximum life span of mammals, for example, is at most some years, decades, or centuries. Why not thousands of years or more? Can we explain and predict maximum life spans theoretically, based on other traits of organisms and associated ecological constraints? Existing theory provides reasons for the prevalence of ageing, but making explicit quantitative predictions of life spans is difficult. Here, I show that there are important unappreciated differences between two backbones of the theory of senescence: Peter Medawar's verbal model, and William Hamilton's subsequent mathematical model. I construct a mathematical model corresponding more closely to Medawar's verbal description, incorporating mutations of large effect and finite population size. In this model, the drift barrier provides a standard by which the limits of natural selection on age‐specific mutations can be measured. The resulting model reveals an approximate quantitative explanation for typical maximum life spans. Although maximum life span is expected to increase with population size, it does so extremely slowly, so that even the largest populations imaginable have limited ability to maintain long life spans. Extreme life spans that are observed in some organisms are explicable when indefinite growth or clonal reproduction is included in the model.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Faculty of Science School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
25
|
Chak STC, Barden P, Baeza JA. The complete mitochondrial genome of the eusocial sponge-dwelling snapping shrimp Synalpheus microneptunus. Sci Rep 2020; 10:7744. [PMID: 32385299 PMCID: PMC7210941 DOI: 10.1038/s41598-020-64269-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 01/10/2023] Open
Abstract
In the marine realm, eusociality is only known to have evolved within a clade of sponge-dwelling snapping shrimps in the genus Synalpheus. Deciphering the genomic underpinnings of eusociality in these marine shrimps has been limited by the sparse genomic resources in this genus. Here, we report, for a eusocial shrimp Synalpheus microneptunus, a complete mitochondrial genome (22X coverage) assembled from short Illumina 150 bp paired-end reads. The 15,603 bp long mitochondrial genome of S. microneptunus is AT-rich and includes 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA genes and an 834 bp intergenic region assumed to be the D-loop. The gene order is identical to that reported for most caridean shrimps and corresponds to the presumed Pancrustacean ground pattern. All PCGs showed signs of purifying selection, with KA/KS <<1 across the whole PCGs and most sliding windows within PCGs. Maximum-likelihood and Bayesian inference phylogenetic analyses of 13 PCGs and 68 terminals supports the monophyly of the Caridea and the family Alpheidae. The complete mitochondrial genome of the eusocial shrimp Synalpheus microneptunus will contribute to a better understanding of the selective pressures and rates of molecular evolution in marine eusocial animals.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Phillip Barden
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - J Antonio Baeza
- Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC, 29634, USA. .,Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, Florida, 34949, USA. .,Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile.
| |
Collapse
|
26
|
Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. Comparative Genomics Identifies Putative Signatures of Sociality in Spiders. Genome Biol Evol 2020; 12:122-133. [PMID: 31960912 PMCID: PMC7108510 DOI: 10.1093/gbe/evaa007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Comparative genomics has begun to elucidate the genomic basis of social life in insects, but insight into the genomic basis of spider sociality has lagged behind. To begin, to characterize genomic signatures associated with the evolution of social life in spiders, we performed one of the first spider comparative genomics studies including five solitary species and two social species, representing two independent origins of sociality in the genus Stegodyphus. We found that the two social spider species had a large expansion of gene families associated with transport and metabolic processes and an elevated genome-wide rate of molecular evolution compared with the five solitary spider species. Genes that were rapidly evolving in the two social species relative to the five solitary species were enriched for transport, behavior, and immune functions, whereas genes that were rapidly evolving in the solitary species were enriched for energy metabolism processes. Most rapidly evolving genes in the social species Stegodyphus dumicola were broadly expressed across four tissues and enriched for transport functions, but 12 rapidly evolving genes showed brain-specific expression and were enriched for social behavioral processes. Altogether, our study identifies putative genomic signatures and potential candidate genes associated with spider sociality. These results indicate that future spider comparative genomic studies, including broader sampling and additional independent origins of sociality, can further clarify the genomic causes and consequences of social life.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania
| | - Gabriella M Najm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Jonathan N Pruitt
- Department of Psychology, Neurobiology & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
27
|
Meusemann K, Korb J, Schughart M, Staubach F. No Evidence for Single-Copy Immune-Gene Specific Signals of Selection in Termites. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Grozinger CM, Zayed A. Improving bee health through genomics. Nat Rev Genet 2020; 21:277-291. [DOI: 10.1038/s41576-020-0216-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
|
29
|
Khimoun A, Doums C, Molet M, Kaufmann B, Peronnet R, Eyer PA, Mona S. Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biol Lett 2020; 16:20190741. [PMID: 31992150 DOI: 10.1098/rsbl.2019.0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urban alteration of neutral and adaptive evolutionary processes is still underexplored. Using a genome-wide SNP dataset, we investigated (i) urban-induced modifications of population demography, genetic diversity and population structure and (ii) signature of divergent selection between urban and forest populations in the ant species, Temnothorax nylanderi. Our results did not reveal an impact of urbanization on neutral processes since we observed: (i) analogous genetic diversity among paired urban/forest sites and two control populations; (ii) weak population genetic structure explained neither by habitat (urban versus forest) nor by geography; (iii) a remarkably similar demographic history across populations with an ancestral growth followed by a recent decline, regardless of their current habitat or geographical location. The micro-geographical home range of ants may explain their resilience to urbanization. Finally, we detected 19 candidate loci discriminating urban/forest populations and associated with core cellular components, molecular function or biological process. Two of these loci were associated with a gene ontology term that was previously found to belong to a module of co-expressed genes related to caste phenotype. These results call for transcriptomics analyses to identify genes associated with ant social traits and to infer their potential role in urban adaptation.
Collapse
Affiliation(s)
- A Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - C Doums
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| | - M Molet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - B Kaufmann
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, Villeurbanne 69622, France
| | - R Peronnet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - P A Eyer
- Department of Entomology, Texas A&M University, 2143 TAMU, College Station, TX 77843-2143, USA
| | - S Mona
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| |
Collapse
|
30
|
Aardema ML, vonHoldt BM, Fritz ML, Davis SR. Global evaluation of taxonomic relationships and admixture within the Culex pipiens complex of mosquitoes. Parasit Vectors 2020; 13:8. [PMID: 31915057 PMCID: PMC6950815 DOI: 10.1186/s13071-020-3879-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Within the Culex pipiens mosquito complex, there are six contemporarily recognized taxa: Cx. quinquefasciatus, Cx. pipiens f. pipiens, Cx. pipiens f. molestus, Cx. pipiens pallens, Cx. australicus and Cx. globocoxitus. Many phylogenetic aspects within this complex have eluded resolution, such as the relationship of the two Australian endemic taxa to the other four members, as well as the evolutionary origins and taxonomic status of Cx. pipiens pallens and Cx. pipiens f. molestus. Ultimately, insights into lineage relationships within the complex will facilitate a better understanding of differential disease transmission by these mosquitoes. To this end, we have combined publicly available data with our own sequencing efforts to examine these questions. RESULTS We found that the two Australian endemic complex members, Cx. australicus and Cx. globocoxitus, comprise a monophyletic group, are genetically distinct, and are most closely related to the cosmopolitan Cx. quinquefasciatus. Our results also show that Cx. pipiens pallens is genetically distinct, but may have arisen from past hybridization. Lastly, we observed complicated patterns of genetic differentiation within and between Cx. pipiens f. pipiens and Cx. pipiens f. molestus. CONCLUSIONS Two Australian endemic Culex taxa, Cx. australicus and Cx. globocoxitus, belong within the Cx. pipiens complex, but have a relatively older evolutionary origin. They likely diverged from Cx. quinquefasciatus after its colonization of Australia. The taxon Cx. pipiens pallens is a distinct evolutionary entity that likely arose from past hybridization between Cx. quinquefasciatus and Cx. pipiens f. pipiens/Cx. pipiens f. molestus. Our results do not suggest it derives from ongoing hybridization. Finally, genetic differentiation within the Cx. pipiens f. pipiens and Cx. pipiens f. molestus samples suggests that they collectively form two separate geographic clades, one in North America and one in Europe and the Mediterranean. This may indicate that the Cx. pipiens f. molestus form has two distinct origins, arising from Cx. pipiens f. pipiens in each region. However, ongoing genetic exchange within and between these taxa have obscured their evolutionary histories, and could also explain the absence of monophyly among our samples. Overall, this work suggests many avenues that warrant further investigation.
Collapse
Affiliation(s)
- Matthew L. Aardema
- Department of Biology, Montclair State University, Montclair, NJ USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY USA
| | | | - Megan L. Fritz
- Department of Entomology, University of Maryland, College Park, MD USA
| | - Steven R. Davis
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
| |
Collapse
|
31
|
Understanding Admixture: Haplodiploidy to the Rescue. Trends Ecol Evol 2019; 35:34-42. [PMID: 31703819 DOI: 10.1016/j.tree.2019.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
Hybridization has broad evolutionary consequences, from fueling or counteracting speciation to facilitating adaptation to novel environments. Hybridization and subsequent introgression appear widespread along the tree of life. However, our understanding of how distinct evolutionary forces shape admixed genomes and the fate of introgressed genetic variants remains scarce. Most admixture research in animals has focused on diploid organisms. We propose that haplodiploid organisms can help resolve open questions about the genomic consequences of hybridization in natural populations. The ploidy difference between haploid males and diploid females, the availability of genome-wide male haplotypes, and ongoing cases of admixture make haplodiploid organisms promising models to improve our knowledge with regards to the evolution of hybrid genomes.
Collapse
|
32
|
Abstract
Evolutionary rates and strength of selection differ markedly between haploid and diploid genomes. Any genes expressed in a haploid state will be directly exposed to selection, whereas alleles in a diploid state may be partially or fully masked by a homologous allele. This difference may shape key evolutionary processes, including rates of adaptation and inbreeding depression, but also the evolution of sex chromosomes, heterochiasmy, and stable sex ratio biases. All diploid organisms carry haploid genomes, most notably the haploid genomes in gametes produced by every sexually reproducing eukaryote. Furthermore, haploid expression occurs in genes with monoallelic expression, in sex chromosomes, and in organelles, such as mitochondria and plastids. A comparison of evolutionary rates among these haploid genomes reveals striking parallels. Evidence suggests that haploid selection has the potential to shape evolution in predominantly diploid organisms, and taking advantage of the rapidly developing technologies, we are now in the position to quantify the importance of such selection on haploid genomes.
Collapse
Affiliation(s)
- Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
33
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
34
|
Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Mol Biol Evol 2019; 35:1092-1103. [PMID: 29390090 DOI: 10.1093/molbev/msy015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
Collapse
Affiliation(s)
- Nicolas Galtier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Roux
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,UMR 8198 - Evo-Eco-Paleo, CNRS, Université de Lille-Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marjolaine Rousselle
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Glémin
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Nicolas Bierne
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
35
|
Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, Jones BM, Kent CF, Ruzzante L, Sloofman L, Stolle E, Waterhouse RM, Zayed A, Zhang G, Wcislo WT. Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: Nomia melanderi). G3 (BETHESDA, MD.) 2019; 9:625-634. [PMID: 30642875 PMCID: PMC6404593 DOI: 10.1534/g3.118.200865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/12/2019] [Indexed: 02/07/2023]
Abstract
Alkali bees (Nomia melanderi) are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States. We sequenced, assembled, and annotated a high-quality draft genome of 299.6 Mbp for this species. Repetitive content makes up more than one-third of this genome, and previously uncharacterized transposable elements are the most abundant type of repetitive DNA. We predicted 10,847 protein coding genes, and identify 479 of these undergoing positive directional selection with the use of population genetic analysis based on low-coverage whole genome sequencing of 19 individuals. We found evidence of recent population bottlenecks, but no significant evidence of population structure. We also identify 45 genes enriched for protein translation and folding, transcriptional regulation, and triglyceride metabolism evolving slower in alkali bees compared to other halictid bees. These resources will be useful for future studies of bee comparative genomics and pollinator health research.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT 84322
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Hailin Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brock A Harpur
- Department of Entomology, Purdue University, W. Lafayette, IN, 47907
| | - Panagiotis Ioannidis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, 70013 Vassilika Vouton, Heraklion, Greece
| | - Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Clement F Kent
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Livio Ruzzante
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laura Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Eckart Stolle
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Robert M Waterhouse
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
36
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
37
|
Bolívar P, Guéguen L, Duret L, Ellegren H, Mugal CF. GC-biased gene conversion conceals the prediction of the nearly neutral theory in avian genomes. Genome Biol 2019; 20:5. [PMID: 30616647 PMCID: PMC6322265 DOI: 10.1186/s13059-018-1613-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nearly neutral theory of molecular evolution predicts that the efficacy of natural selection increases with the effective population size. This prediction has been verified by independent observations in diverse taxa, which show that life-history traits are strongly correlated with measures of the efficacy of selection, such as the dN/dS ratio. Surprisingly, avian taxa are an exception to this theory because correlations between life-history traits and dN/dS are apparently absent. Here we explore the role of GC-biased gene conversion on estimates of substitution rates as a potential driver of these unexpected observations. RESULTS We analyze the relationship between dN/dS estimated from alignments of 47 avian genomes and several proxies for effective population size. To distinguish the impact of GC-biased gene conversion from selection, we use an approach that accounts for non-stationary base composition and estimate dN/dS separately for changes affected or unaffected by GC-biased gene conversion. This analysis shows that the impact of GC-biased gene conversion on substitution rates can explain the lack of correlations between life-history traits and dN/dS. Strong correlations between life-history traits and dN/dS are recovered after accounting for GC-biased gene conversion. The correlations are robust to variation in base composition and genomic location. CONCLUSIONS Our study shows that gene sequence evolution across a wide range of avian lineages meets the prediction of the nearly neutral theory, the efficacy of selection increases with effective population size. Moreover, our study illustrates that accounting for GC-biased gene conversion is important to correctly estimate the strength of selection.
Collapse
Affiliation(s)
- Paulina Bolívar
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Duret
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Carina F. Mugal
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| |
Collapse
|
38
|
Tahir D, Glémin S, Lascoux M, Kaj I. Modeling a trait-dependent diversification process coupled with molecular evolution on a random species tree. J Theor Biol 2018; 461:189-203. [PMID: 30340056 DOI: 10.1016/j.jtbi.2018.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022]
Abstract
Understanding the evolution of binary traits, which affects the birth and survival of species and also the rate of molecular evolution, remains challenging. In this work, we present a probabilistic modeling framework for binary trait, random species trees, in which the number of species and their traits are represented by an asymmetric, two-type, continuous time Markov branching process. The model involves a number of different parameters describing both character and molecular evolution on the so-called 'reduced' tree, consisting of only extant species at the time of observation. We expand our model by considering the impact of binary traits on dN/dS, the normalized ratio of nonsynonymous to synonymous substitutions. We also develop mechanisms which enable us to understand the substitution rates on a phylogenetic tree with regards to the observed traits. The properties obtained from the model are illustrated with a phylogeny of outcrossing and selfing plant species, which allows us to investigate not only the branching tree rates, but also the molecular rates and the intensity of selection.
Collapse
Affiliation(s)
- Daniah Tahir
- Department of Mathematics, Uppsala University, Box 480, Uppsala SE-751 06, Sweden.
| | - Sylvain Glémin
- Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18D, Uppsala SE-752 36, Sweden; UMR 5554 ISEM (Université de Montpellier-CNRS-IRD-EPHE), Montpellier Cedex 5 FR-34095, France.
| | - Martin Lascoux
- Department of Plant Ecology and Evolution, Uppsala University, Norbyvägen 18D, Uppsala SE-752 36, Sweden.
| | - Ingemar Kaj
- Department of Mathematics, Uppsala University, Box 480, Uppsala SE-751 06, Sweden.
| |
Collapse
|
39
|
Subramanian S. Influence of Effective Population Size on Genes under Varying Levels of Selection Pressure. Genome Biol Evol 2018; 10:756-762. [PMID: 29608718 PMCID: PMC5841380 DOI: 10.1093/gbe/evy047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 11/14/2022] Open
Abstract
The ratio of diversities at amino acid changing (nonsynonymous) and neutral (synonymous) sites (ω = πN/πS) is routinely used to measure the intensity of selection pressure. It is well known that this ratio is influenced by the effective population size (Ne) and selection coefficient (s). Here, we examined the effects of effective population size on ω by comparing protein-coding genes from Mus musculus castaneus and Mus musculus musculus-two mouse subspecies with different Ne. Our results revealed a positive relationship between the magnitude of selection intensity and the ω estimated for genes. For genes under high selective constraints, the ω estimated for the subspecies with small Ne (M. m. musculus) was three times higher than that observed for that with large Ne (M. m. castaneus). However, this difference was only 18% for genes under relaxed selective constraints. We showed that the observed relationship is qualitatively similar to the theoretical predictions. We also showed that, for highly expressed genes, the ω of M. m. musculus was 2.1 times higher than that of M.m. castaneus and this difference was only 27% for genes with low expression levels. These results suggest that the effect of effective population size is more pronounced in genes under high purifying selection. Hence the choice of genes is important when ω is used to infer the effective size of a population.
Collapse
Affiliation(s)
- Sankar Subramanian
- GeneCology Research Centre, The University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
40
|
Freitas L, Mello B, Schrago CG. Multispecies coalescent analysis confirms standing phylogenetic instability in Hexapoda. J Evol Biol 2018; 31:1623-1631. [PMID: 30058265 DOI: 10.1111/jeb.13355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022]
Abstract
The multispecies coalescent (MSC) has been increasingly used in phylogenomic analyses due to the accommodation of gene tree topological heterogeneity by taking into account population-level processes, such as incomplete lineage sorting. In this sense, the phylogeny of insect species, which are characterized by their large effective population sizes, is suitable for a coalescent-based analysis. Furthermore, studies so far recovered short internal branches at early divergences of the insect tree of life, indicating fast evolutionary radiations that increase the probability of incomplete lineage sorting in deep time. Here, we investigated the performance of the MSC for a phylogenomic data set of hexapods compiled by Misof et al. (2014, Science 346:763). Our analysis recovered the monophyly of most insect orders, and major phylogenetic relationships were in agreement with current insect systematics. We identified, however, some evolutionary associations that were consistently problematic. Most noticeable, Hexapod monophyly was disrupted by the sister group relationship between the remiped crustacean and Insecta. Additionally, the interordinal relationships within Polyneoptera and Neuropteroidea were found to be phylogenetically unstable. We show that these controversial phylogenetic arrangements were also poorly supported by previous analyses, and therefore, we evaluated their robustness to stochastic errors from sampling sites and terminals, confirming standing problems in hexapod phylogeny in the genomics age.
Collapse
Affiliation(s)
- Lucas Freitas
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos G Schrago
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
41
|
Glastad KM, Arsenault SV, Vertacnik KL, Geib SM, Kay S, Danforth BN, Rehan SM, Linnen CR, Kocher SD, Hunt BG. Variation in DNA Methylation Is Not Consistently Reflected by Sociality in Hymenoptera. Genome Biol Evol 2018; 9:1687-1698. [PMID: 28854636 PMCID: PMC5522706 DOI: 10.1093/gbe/evx128] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2017] [Indexed: 12/12/2022] Open
Abstract
Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing so, we generated new DNA methylomes for three species of interest, including one solitary and one facultatively eusocial halictid bee and a sawfly. We demonstrate that the strength of correlation between CpG content and DNA methylation varies widely among hymenopteran taxa, highlighting shortcomings in the utility of CpG content as a proxy for DNA methylation in comparative studies of taxa with sparse DNA methylomes. We observed strikingly high levels of DNA methylation in the sawfly relative to other investigated hymenopterans. Analyses of molecular evolution suggest the relatively distinct sawfly DNA methylome may be associated with positive selection on functional DNMT3 domains. Sawflies are an outgroup to all ants, bees, and wasps, and no sawfly species are eusocial. We find no evidence that either global expansions or variation within individual ortholog groups in DNA methylation are consistently associated with the evolution of social behavior.
Collapse
Affiliation(s)
- Karl M Glastad
- Department of Cell and Developmental Biology, University of Pennsylvania
| | | | | | - Scott M Geib
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii
| | - Sasha Kay
- Department of Entomology, University of Georgia
| | | | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | | | - Sarah D Kocher
- Lewis-Sigler Institute for Integrative Genomics, Princeton University
| | | |
Collapse
|
42
|
Bigot D, Atyame CM, Weill M, Justy F, Herniou EA, Gayral P. Discovery of Culex pipiens associated tunisia virus: a new ssRNA(+) virus representing a new insect associated virus family. Virus Evol 2018; 4:vex040. [PMID: 29340209 PMCID: PMC5763275 DOI: 10.1093/ve/vex040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In the global context of arboviral emergence, deep sequencing unlocks the discovery of new mosquito-borne viruses. Mosquitoes of the species Culex pipiens, C. torrentium, and C. hortensis were sampled from 22 locations worldwide for transcriptomic analyses. A virus discovery pipeline was used to analyze the dataset of 0.7 billion reads comprising 22 individual transcriptomes. Two closely related 6.8 kb viral genomes were identified in C. pipiens and named as Culex pipiens associated tunisia virus (CpATV) strains Ayed and Jedaida. The CpATV genome contained four ORFs. ORF1 possessed helicase and RNA-dependent RNA polymerase (RdRp) domains related to new viral sequences recently found mainly in dipterans. ORF2 and 4 contained a capsid protein domain showing strong homology with Virgaviridae plant viruses. ORF3 displayed similarities with eukaryotic Rhoptry domain and a merozoite surface protein (MSP7) domain only found in mosquito-transmitted Plasmodium, suggesting possible interactions between CpATV and vertebrate cells. Estimation of a strong purifying selection exerted on each ORFs and the presence of a polymorphism maintained in the coding region of ORF3 suggested that both CpATV sequences are genuine functional viruses. CpATV is part of an entirely new and highly diversified group of viruses recently found in insects, and that bears the genomic hallmarks of a new viral family.
Collapse
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Célestine M Atyame
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Mylène Weill
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Fabienne Justy
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université François-Rabelais, 37200 Tours, France
| |
Collapse
|
43
|
Harpur BA, Smith NMA. Digest: Gene duplication and social evolution-Using big, open data to answer big, open questions. Evolution 2017; 71:2952-2953. [PMID: 29105748 DOI: 10.1111/evo.13390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Brock A Harpur
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, ON M5S 3E2, Canada
| | - Nicholas M A Smith
- Behaviour and Genetics of Social Insects Laboratory, Macleay Building A12, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Bigot D, Dalmon A, Roy B, Hou C, Germain M, Romary M, Deng S, Diao Q, Weinert LA, Cook JM, Herniou EA, Gayral P. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J Gen Virol 2017; 98:2864-2875. [DOI: 10.1099/jgv.0.000957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Anne Dalmon
- INRA UR 406 Abeilles et environnement, Centre de recherche Provence-Alpes-Côte d'Azur, Site Agroparc, Domaine St Paul 228, Route de l'aérodrome CS40509 84914 Avignon, France
| | - Bronwen Roy
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Michèle Germain
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Manon Romary
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Lucy A. Weinert
- Institut des Sciences de l'Evolution UMR5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
- Present address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| |
Collapse
|
45
|
Warner MR, Mikheyev AS, Linksvayer TA. Genomic Signature of Kin Selection in an Ant with Obligately Sterile Workers. Mol Biol Evol 2017; 34:1780-1787. [PMID: 28419349 PMCID: PMC5455959 DOI: 10.1093/molbev/msx123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Kin selection is thought to drive the evolution of cooperation and conflict, but the specific genes and genome-wide patterns shaped by kin selection are unknown. We identified thousands of genes associated with the sterile ant worker caste, the archetype of an altruistic phenotype shaped by kin selection, and then used population and comparative genomic approaches to study patterns of molecular evolution at these genes. Consistent with population genetic theoretical predictions, worker-upregulated genes experienced reduced selection compared with genes upregulated in reproductive castes. Worker-upregulated genes included more taxonomically restricted genes, indicating that the worker caste has recruited more novel genes, yet these genes also experienced reduced selection. Our study identifies a putative genomic signature of kin selection and helps to integrate emerging sociogenomic data with longstanding social evolution theory.
Collapse
Affiliation(s)
- Michael R Warner
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Alexander S Mikheyev
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | | |
Collapse
|
46
|
Chau LM, Goodisman MAD. Gene duplication and the evolution of phenotypic diversity in insect societies. Evolution 2017; 71:2871-2884. [PMID: 28875541 DOI: 10.1111/evo.13356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.
Collapse
Affiliation(s)
- Linh M Chau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Michael A D Goodisman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
47
|
Schrader L, Helanterä H, Oettler J. Accelerated Evolution of Developmentally Biased Genes in the Tetraphenic Ant Cardiocondyla obscurior. Mol Biol Evol 2017; 34:535-544. [PMID: 27999112 PMCID: PMC5400372 DOI: 10.1093/molbev/msw240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior—a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity.
Collapse
Affiliation(s)
- Lukas Schrader
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany.,Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jan Oettler
- Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Mol Ecol 2017; 26:4197-4210. [DOI: 10.1111/mec.14196] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- V. Settepani
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - M. F. Schou
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - M. Greve
- Department of Plant Science; University of Pretoria; Hatfield South Africa
| | - L. Grinsted
- School of Biological Sciences; Royal Holloway University of London; Egham UK
| | - J. Bechsgaard
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| | - T. Bilde
- Department of Bioscience; Aarhus University; Aarhus C Denmark
| |
Collapse
|
49
|
Patterns of cross-contamination in a multispecies population genomic project: detection, quantification, impact, and solutions. BMC Biol 2017; 15:25. [PMID: 28356154 PMCID: PMC5370491 DOI: 10.1186/s12915-017-0366-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
Background Contamination is a well-known but often neglected problem in molecular biology. Here, we investigated the prevalence of cross-contamination among 446 samples from 116 distinct species of animals, which were processed in the same laboratory and subjected to subcontracted transcriptome sequencing. Results Using cytochrome oxidase 1 as a barcode, we identified a minimum of 782 events of between-species contamination, with approximately 80% of our samples being affected. An analysis of laboratory metadata revealed a strong effect of the sequencing center: nearly all the detected events of between-species contamination involved species that were sent the same day to the same company. We introduce new methods to address the amount of within-species, between-individual contamination, and to correct for this problem when calling genotypes from base read counts. Conclusions We report evidence for pervasive within-species contamination in this data set, and show that classical population genomic statistics, such as synonymous diversity, the ratio of non-synonymous to synonymous diversity, inbreeding coefficient FIT, and Tajima’s D, are sensitive to this problem to various extents. Control analyses suggest that our published results are probably robust to the problem of contamination. Recommendations on how to prevent or avoid contamination in large-scale population genomics/molecular ecology are provided based on this analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0366-6) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Boulay R, Aron S, Cerdá X, Doums C, Graham P, Hefetz A, Monnin T. Social Life in Arid Environments: The Case Study of Cataglyphis Ants. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:305-321. [PMID: 27860520 DOI: 10.1146/annurev-ento-031616-034941] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Unlike most desert-dwelling animals, Cataglyphis ants do not attempt to escape the heat; rather, they apply their impressive heat tolerance to avoid competitors and predators. This thermally defined niche has promoted a range of adaptations both at the individual and colony levels. We have also recently discovered that within the genus Cataglyphis there are incredibly diverse social systems, modes of reproduction, and dispersal, prompting the tantalizing question of whether social diversity may also be a consequence of the harsh environment within which we find these charismatic ants. Here we review recent advances regarding the physiological, behavioral, life-history, colony, and ecological characteristics of Cataglyphis and consider perspectives on future research that will build our understanding of organic adaptive responses to desertification.
Collapse
Affiliation(s)
- Raphaël Boulay
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Institute of Insect Biology, Tours University, 37200 Tours, France
| | - Serge Aron
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050, Belgium
| | - Xim Cerdá
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Claudie Doums
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Institute of Systematics, Evolution, and Biodiversity, CNRS, UPMC, EPHE, MNHN, 75005 Paris, France
| | - Paul Graham
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Abraham Hefetz
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Thibaud Monnin
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France;
- UMR 7618, Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, 75252 Paris, France
| |
Collapse
|