1
|
Reichard M, Koblmüller S, Blažek R, Zimmermann H, Katongo C, Bryjová A, Bryja J. Lack of host specialization despite selective host use in brood parasitic cuckoo catfish. Mol Ecol 2023; 32:6070-6082. [PMID: 37861460 DOI: 10.1111/mec.17173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Host-parasite dynamics involve coevolutionary arms races, which may lead to host specialization and ensuing diversification. Our general understanding of the evolution of host specialization in brood parasites is compromised by a restricted focus on bird and insect lineages. The cuckoo catfish (Synodontis multipunctatus) is an obligate parasite of parental care of mouthbrooding cichlids in Lake Tanganyika. Given the ecological and taxonomic diversity of mouthbrooding cichlids in the lake, we hypothesized the existence of sympatric host-specific lineages in the cuckoo catfish. In a sample of 779 broods from 20 cichlid species, we found four species parasitized by cuckoo catfish (with prevalence of parasitism of 2%-18%). All parasitized cichlids were from the tribe Tropheini, maternal mouthbrooders that spawn over a substrate (rather than in open water). Phylogenetic analysis based on genomic (ddRAD sequencing) and mitochondrial (Dloop) data from cuckoo catfish embryos showed an absence of host-specific lineages. This was corroborated by analyses of genetic structure and co-ancestry matrix. Within host species, parasitism was not associated with any individual characteristic we recorded (parent size, water depth), but was costly as parasitized parents carried smaller clutches of their own offspring. We conclude that the cuckoo catfish is an intermediate generalist and discuss costs, benefits and constraints of host specialization in this species and brood parasites in general.
Collapse
Affiliation(s)
- Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Radim Blažek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Holger Zimmermann
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Biology, University of Graz, Graz, Austria
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Anna Bryjová
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Axelrod CJ, Robinson BW, Laberge F. Evolutionary divergence in phenotypic plasticity shapes brain size variation between coexisting sunfish ecotypes. J Evol Biol 2022; 35:1363-1377. [PMID: 36073994 DOI: 10.1111/jeb.14085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Mechanisms that generate brain size variation and the consequences of such variation on ecological performance are poorly understood in most natural animal populations. We use a reciprocal-transplant common garden experiment and foraging performance trials to test for brain size plasticity and the functional consequences of brain size variation in Pumpkinseed sunfish (Lepomis gibbosus) ecotypes that have diverged between nearshore littoral and offshore pelagic lake habitats. Different age-classes of wild-caught juveniles from both habitats were exposed for 6 months to treatments that mimicked littoral and pelagic foraging. Plastic responses in oral jaw size suggested that treatments mimicked natural habitat-specific foraging conditions. Plastic brain size responses to foraging manipulations differed between ecotypes, as only pelagic sourced fish showed brain size plasticity. Only pelagic juveniles under 1 year-old expressed this plastic response, suggesting that plastic brain size responses decline with age and so may be irreversible. Finally, larger brain size was associated with enhanced foraging performance on live benthic but not pelagic prey, providing the first experimental evidence of a relationship between brain size and prey-specific foraging performance in fishes. The recent post-glacial origin of these ecotypes suggests that brain size plasticity can rapidly evolve and diverge in fish under contrasting ecological conditions.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Lattanzio MS. Climate mediates color morph turnover in a species exhibiting alternative reproductive strategies. Sci Rep 2022; 12:8474. [PMID: 35589926 PMCID: PMC9120169 DOI: 10.1038/s41598-022-12300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Sexual selection is considered the primary driver of morph turnover in many color polymorphic taxa, yet the potential for other factors (like climate) to contribute to polymorphism maintenance and evolution remains unclear. Appreciation for a role of environmental conditions in the maintenance and evolution of color polymorphisms has grown in recent years, generating evidence suggesting that color morphs linked to sexual selection may also diverge in climate sensitivity. Focusing on the three color components contributing to the male tree lizard (Urosaurus ornatus) color morphs, I reveal a marked concordance between patterns of turnover over space and time, with a general affinity of orange- and yellow-colored males to hotter, more variable conditions, and blue colored males to wetter, cooler conditions. An assessment of long-term turnover in the blue color component in response to recent climate change over the past 60 years reinforces these findings. Overall, behavioral asymmetries attributed to sexual selection likely expose competing morphs to divergent environmental conditions in heterogeneous habitats, creating opportunity for natural selection to shape climate sensitivities that also drive turnover in morph color composition. Ultimately, these processes may favor stark asymmetries in morph persistence over the coming decades.
Collapse
Affiliation(s)
- Matthew S Lattanzio
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606, USA.
| |
Collapse
|
4
|
Low connectivity between sympatric populations of sunfish ecotypes suggests ecological opportunity contributes to diversification. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10042-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Axelrod CJ, Laberge F, Robinson BW. Isolating the effects of ontogenetic niche shift on brain size development using pumpkinseed sunfish ecotypes. Evol Dev 2020; 22:312-322. [DOI: 10.1111/ede.12333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caleb J. Axelrod
- Department of Integrative BiologyUniversity of Guelph Guelph Ontario Canada
| | - Frédéric Laberge
- Department of Integrative BiologyUniversity of Guelph Guelph Ontario Canada
| | - Beren W. Robinson
- Department of Integrative BiologyUniversity of Guelph Guelph Ontario Canada
| |
Collapse
|
6
|
Delaney EK, Hoekstra HE. Diet-based assortative mating through sexual imprinting. Ecol Evol 2019; 9:12045-12050. [PMID: 31844516 PMCID: PMC6854104 DOI: 10.1002/ece3.5630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 11/11/2022] Open
Abstract
Speciation is facilitated by "magic traits," where divergent natural selection on such traits also results in assortative mating. In animal populations, diet has the potential to act as a magic trait if populations diverge in consumed food that incidentally affects mating and therefore sexual isolation. While diet-based assortative mating has been observed in the laboratory and in natural populations, the mechanisms causing positive diet-based assortment remain largely unknown. Here, we experimentally created divergent diets in a sexually imprinting species of mouse, Peromyscus gossypinus (the cotton mouse), to test the hypothesis that sexual imprinting on diet could be a mechanism that generates rapid and significant sexual isolation. We provided breeding pairs with novel garlic- or orange-flavored water and assessed whether their offspring, exposed to these flavors in utero and in the nest before weaning, later preferred mates that consumed the same flavored water as their parents. While males showed no preference, females preferred males of their parental diet, which is predicted to yield moderate sexual isolation. Thus, our experiment demonstrates the potential for sexual imprinting on dietary cues learned in utero and/or postnatally to facilitate reproductive isolation and potentially speciation. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.n1qq6v3.
Collapse
Affiliation(s)
- Emily K. Delaney
- Department of Organismic & Evolutionary BiologyDepartment of Molecular & Cellular BiologyMuseum of Comparative ZoologyHoward Hughes Medical InstituteCambridgeMAUSA
- Present address:
Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| | - Hopi E. Hoekstra
- Department of Organismic & Evolutionary BiologyDepartment of Molecular & Cellular BiologyMuseum of Comparative ZoologyHoward Hughes Medical InstituteCambridgeMAUSA
| |
Collapse
|
7
|
Skúlason S, Parsons KJ, Svanbäck R, Räsänen K, Ferguson MM, Adams CE, Amundsen P, Bartels P, Bean CW, Boughman JW, Englund G, Guðbrandsson J, Hooker OE, Hudson AG, Kahilainen KK, Knudsen R, Kristjánsson BK, Leblanc CA, Jónsson Z, Öhlund G, Smith C, Snorrason SS. A way forward with eco evo devo: an extended theory of resource polymorphism with postglacial fishes as model systems. Biol Rev Camb Philos Soc 2019; 94:1786-1808. [PMID: 31215138 PMCID: PMC6852119 DOI: 10.1111/brv.12534] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well-suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism - emphasizing eco evo devo, and identify current gaps in knowledge.
Collapse
Affiliation(s)
- Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
- Icelandic Museum of Natural History, Brynjólfsgata 5ReykjavíkIS‐107Iceland
| | - Kevin J. Parsons
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgow, G12 8QQU.K.
| | - Richard Svanbäck
- Animal Ecology, Department of Ecology and Genetics, Science for Life LaboratoryUppsala University, Norbyvägen 18DUppsala, SE‐752 36Sweden
| | - Katja Räsänen
- Department of Aquatic EcologyEAWAG, Swiss Federal Institute of Aquatic Science and Technology, and Institute of Integrative Biology, ETH‐Zurich, Ueberlandstrasse 133CH‐8600DübendorfSwitzerland
| | - Moira M. Ferguson
- Department of Integrative BiologyUniversity of GuelphGuelph, Ontario N1G 2W1Canada
| | - Colin E. Adams
- Scottish Centre for Ecology and the Natural Environment, IBAHCMUniversity of GlasgowGlasgow G12 8QQU.K.
| | - Per‐Arne Amundsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | - Pia Bartels
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Colin W. Bean
- Scottish Natural Heritage, Caspian House, Mariner Court, Clydebank Business ParkClydebank, G81 2NRU.K.
| | - Janette W. Boughman
- Department of Integrative BiologyMichigan State UniversityEast Lansing, MI 48824U.S.A.
| | - Göran Englund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Jóhannes Guðbrandsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | | | - Alan G. Hudson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Campus Evenstad, Anne Evenstadvei 80Koppang, NO‐2480Norway
| | - Rune Knudsen
- Freshwater Ecology Group, Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsöTromsö, N‐9037Norway
| | | | - Camille A‐L. Leblanc
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókur, 551Iceland
| | - Zophonías Jónsson
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| | - Gunnar Öhlund
- Department of Ecology and Environmental ScienceUmeå UniversityUmeå, SE‐90187Sweden
| | - Carl Smith
- School of BiologyUniversity of St Andrews, St. AndrewsFife, KY16 9AJU.K.
| | - Sigurður S. Snorrason
- Institute of Life and Environmental SciencesUniversity of IcelandReykjavik, 101Iceland
| |
Collapse
|
8
|
Scale-dependent patterns of intraspecific trait variations in two globally invasive species. Oecologia 2019; 189:1083-1094. [DOI: 10.1007/s00442-019-04374-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
|
9
|
Axelrod CJ, Laberge F, Robinson BW. Intraspecific brain size variation between coexisting sunfish ecotypes. Proc Biol Sci 2018; 285:rspb.2018.1971. [PMID: 30404883 DOI: 10.1098/rspb.2018.1971] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat. Sunfish using the littoral habitat have on average 8.3% larger brains than those using the pelagic habitat. We found little difference in the proportional sizes of five brain regions between ecotypes. The results suggest that cognitive demands on sunfish may be reduced in the pelagic habitat given no habitat-specific differences in body condition. They also suggest that either a short divergence time or physiological processes may constrain changes to concerted, global modifications of brain size between sunfish ecotypes.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
10
|
Jarvis WMC, Comeau SM, Colborne SF, Robinson BW. Flexible mate choice may contribute to ecotype assortative mating in pumpkinseed sunfish (Lepomis gibbosus). J Evol Biol 2017; 30:1810-1820. [PMID: 28590579 DOI: 10.1111/jeb.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
Gene flow is expected to limit adaptive divergence, but the ecological and behavioural factors that govern gene flow are still poorly understood, particularly at the earliest stages of population divergence. Reduced gene flow through mate choice (sexual isolation) can evolve even under conditions of subtle population divergence if intermediate phenotypes have reduced fitness. We indirectly tested the hypothesis that mate choice has evolved between coexisting littoral and pelagic ecotypes of polyphenic pumpkinseed sunfish (Lepomis gibbosus) that have diverged in morphology and resource use and where intermediate phenotypes have reduced performance. We assessed the ecotype of nesting males and females using stable isotope estimates of diet and a divergent male morphological trait, oral jaw width. We found positive assortative mating between ecotypes in a common spawning habitat along exposed lake shorelines, but contrary to expectations, assortative mating was variably expressed between two sampling years. Although the factors that influence variable assortative mating remain unclear, our results are consistent with mate choice being expressed by ecotypes. Despite being variably expressed, mate choice will reduce gene flow between ecotypes and could contribute to further adaptive divergence depending on its frequency and strength in the population. Our findings add to a growing body of evidence indicating mate choice behaviour can be a plastic trait, an idea that should be more explicitly considered in empirical studies of mate choice as well as conceptual frameworks of mate choice evolution and adaptive divergence.
Collapse
Affiliation(s)
- W M C Jarvis
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - S M Comeau
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - S F Colborne
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - B W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
11
|
Kautt AF, Machado-Schiaffino G, Torres-Dowdall J, Meyer A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol Evol 2016; 6:5342-57. [PMID: 27551387 PMCID: PMC4984508 DOI: 10.1002/ece3.2287] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Understanding how speciation can occur without geographic isolation remains a central objective in evolutionary biology. Generally, some form of disruptive selection and assortative mating are necessary for sympatric speciation to occur. Disruptive selection can arise from intraspecific competition for resources. If this competition leads to the differential use of habitats and variation in relevant traits is genetically determined, then assortative mating can be an automatic consequence (i.e., habitat isolation). In this study, we caught Midas cichlid fish from the limnetic (middle of the lake) and benthic (shore) habitats of Crater Lake Asososca Managua to test whether some of the necessary conditions for sympatric speciation due to intraspecific competition and habitat isolation are given. Lake As. Managua is very small (<900 m in diameter), extremely young (maximally 1245 years of age), and completely isolated. It is inhabited by, probably, only a single endemic species of Midas cichlids, Amphilophus tolteca. We found that fish from the limnetic habitat were more elongated than fish collected from the benthic habitat, as would be predicted from ecomorphological considerations. Stable isotope analyses confirmed that the former also exhibit a more limnetic lifestyle than the latter. Furthermore, split‐brood design experiments in the laboratory suggest that phenotypic plasticity is unlikely to explain much of the observed differences in body elongation that we observed in the field. Yet, neutral markers (microsatellites) did not reveal any genetic clustering in the population. Interestingly, demographic inferences based on RAD‐seq data suggest that the apparent lack of genetic differentiation at neutral markers could simply be due to a lack of time, as intraspecific competition may only have begun a few hundred generations ago.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | | | - Julian Torres-Dowdall
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Department of Biology University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|