1
|
Teets NM, MacMillan HA. Editorial overview: Insect cold tolerance research reaches a Swift new Era. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101284. [PMID: 39426675 DOI: 10.1016/j.cois.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, Martin-Gaton College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA.
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Bodelón A, Fablet M, Siqueira de Oliveira D, Vieira C, García Guerreiro MP. Impact of Heat Stress on Transposable Element Expression and Derived Small RNAs in Drosophila subobscura. Genome Biol Evol 2023; 15:evad189. [PMID: 37847062 PMCID: PMC10627563 DOI: 10.1093/gbe/evad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023] Open
Abstract
Global warming is forcing insect populations to move and adapt, triggering adaptive genetic responses. Thermal stress is known to alter gene expression, repressing the transcription of active genes, and inducing others, such as those encoding heat shock proteins. It has also been related to the activation of some specific transposable element (TE) families. However, the actual magnitude of this stress on the whole genome and the factors involved in these genomic changes are still unclear. We studied mRNAs and small RNAs in gonads of two Drosophila subobscura populations, considered a good model to study adaptation to temperature changes. In control conditions, we found that a few genes and TE families were differentially expressed between populations, pointing out their putative involvement in the adaptation of populations to their different environments. Under heat stress, sex-specific changes in gene expression together with a trend toward overexpression, mainly of heat shock response-related genes, were observed. We did not observe large changes of TE expression nor small RNA production due to stress. Only population and sex-specific expression changes of some TE families (mainly retrotransposons), or the amounts of siRNAs and piRNAs, derived from specific TE families were observed, as well as the piRNA production from some piRNA clusters. Changes in small RNA amounts and TE expression could not be clearly correlated, indicating that other factors as chromatin modulation could also be involved. This work provides the first whole transcriptomic study including genes, TEs, and small RNAs after a heat stress in D. subobscura.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut universitaire de France, Paris, France
| | - Daniel Siqueira de Oliveira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Holmstrup M, Sørensen JG, Dai W, Krogh PH, Schmelz RM, Slotsbo S. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance. J Comp Physiol B 2022; 192:435-445. [PMID: 35312816 DOI: 10.1007/s00360-022-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Tolerance to thermal extremes is critical for the geographic distributions of ectotherm species, many of which are probably going to be modified by future climatic changes. To predict species distributions it is important to understand the potential of species to adapt to changing thermal conditions. Here, we tested whether the thermal tolerance traits of a common freeze-tolerant potworm were correlated with climatic conditions and if adaptation to extreme cold constrains the evolutionary potential for high temperature tolerance. Further, we tested if evolution of thermal tolerance traits is associated with costs in other fitness traits (body size and reproduction). Lastly, we tested if slopes of temperature-survival curves (i.e., the sensitivity distribution) are related to tolerance itself. Using 24 populations of the potworm, Enchytraeus albidus Henle (Enchytraeidae), collected from a wide range of climatic conditions, we established a common garden experiment in which we determined high and low temperature tolerance (using survival as endpoint), average reproductive output and adult body size. Heat tolerance was not related to environmental temperatures whereas lower lethal temperature was about 10 °C lower in Arctic populations than in populations from temperate regions. Reproduction was not related to environmental temperature, but was negatively correlated with cold tolerance. One explanation for the trade-off between cold tolerance and reproduction could be that the more cold-hardy populations need to channel energy to large glycogen reserves at the expense of less energy expenditure for reproduction. Adult body size was negatively related to environmental temperature. Finally, the slopes of temperature-survival curves were significantly correlated with critical temperature limits for heat and cold tolerance; i.e., slopes increased with thermal tolerance. Our results suggest that relatively heat-sensitive populations possess genetic variation, leaving room for improved heat tolerance through evolutionary processes, which may alleviate the effects of a warmer future climate in the Arctic. On the other hand, we observed relatively narrow sensitivity distributions (i.e., less variation) in the most heat tolerant populations. Taken together, our results suggest that both cold and heat tolerance can only be selected for (and improved) until a certain limit has been reached.
Collapse
Affiliation(s)
- Martin Holmstrup
- Department of Ecoscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark.
| | - Jesper G Sørensen
- Department of Biology, Section of Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Building 1540, 8000, Aarhus C, Denmark
| | - Wencai Dai
- Department of Ecoscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Paul Henning Krogh
- Department of Ecoscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Rüdiger M Schmelz
- IFAB, Institute for Applied Soil Biology, Tomberg 24a, 22337, Hamburg, Germany
| | - Stine Slotsbo
- Department of Ecoscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| |
Collapse
|
5
|
Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, Sower I, Tucker JC, Morgan TJ, Ragland GJ. Transcriptomic and functional genetic evidence for distinct ecophysiological responses across complex life cycle stages. J Exp Biol 2022; 225:275641. [PMID: 35578907 DOI: 10.1242/jeb.244063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/30/2022] [Indexed: 11/20/2022]
Abstract
Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved Cellular Stress Response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNAi (RNA interference) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to -5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially-expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, 1603 Old Claflin Place, Manhattan, KS 66506, USA
| | - Jantina Toxopeus
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Edwina J Dowle
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Zainab M Ali
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Nicholas Heter
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rebekah L Collier
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Isaiah Sower
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Joseph C Tucker
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver, CO 80204, USA
| |
Collapse
|
6
|
Lirakis M, Nolte V, Schlötterer C. Pool-GWAS on reproductive dormancy in Drosophila simulans suggests a polygenic architecture. G3 GENES|GENOMES|GENETICS 2022; 12:6523974. [PMID: 35137042 PMCID: PMC8895979 DOI: 10.1093/g3journal/jkac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
The genetic basis of adaptation to different environments has been of long-standing interest to evolutionary biologists. Dormancy is a well-studied adaptation to facilitate overwintering. In Drosophila melanogaster, a moderate number of genes with large effects have been described, which suggests a simple genetic basis of dormancy. On the other hand, genome-wide scans for dormancy suggest a polygenic architecture in insects. In D. melanogaster, the analysis of the genetic architecture of dormancy is complicated by the presence of cosmopolitan inversions. Here, we performed a genome-wide scan to characterize the genetic basis of this ecologically extremely important trait in the sibling species of D. melanogaster, D. simulans that lacks cosmopolitan inversions. We performed Pool-GWAS in a South African D. simulans population for dormancy incidence at 2 temperature regimes (10 and 12°C, LD 10:14). We identified several genes with SNPs that showed a significant association with dormancy (P-value < 1e-13), but the overall modest response suggests that dormancy is a polygenic trait with many loci of small effect. Our results shed light on controversies on reproductive dormancy in Drosophila and have important implications for the characterization of the genetic basis of this trait.
Collapse
Affiliation(s)
- Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, 1210 Wien, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
7
|
Mikucki EE, Lockwood BL. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies. J Exp Biol 2021; 224:272603. [PMID: 34694403 DOI: 10.1242/jeb.243118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms. Here, we simulated future warming conditions by comparing diapausing Pieris rapae butterfly pupae collected from disparate thermal environments and by exposing P. rapae pupae to acute and chronic increases in temperature. First, we compared internal freezing temperatures (supercooling points) of diapausing pupae that were developed in common-garden conditions but whose parents were collected from northern Vermont, USA, or North Carolina, USA. Matching the warmer winter climate of North Carolina, North Carolina pupae had significantly higher supercooling points than Vermont pupae. Next, we measured the effects of acute and chronic warming exposure in Vermont pupae and found that warming induced higher supercooling points. We further characterized the effects of chronic warming by profiling the metabolomes of Vermont pupae via untargeted LC-MS metabolomics. Warming caused significant changes in abundance of hundreds of metabolites across the metabolome. Notably, there were warming-induced shifts in key biochemical pathways, such as pyruvate metabolism, fructose and mannose metabolism, and β-alanine metabolism, suggesting shifts in energy metabolism and cryoprotection. These results suggest that warming affects various aspects of overwintering physiology in P. rapae and may be detrimental depending on the frequency and variation of winter warming events. Further research is needed to ascertain the extent to which the effects of warming are felt among a broader set of populations of P. rapae, and among other species, in order to better predict how insects may respond to changes in winter thermal environments.
Collapse
Affiliation(s)
- Emily E Mikucki
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
8
|
Ramnarine TJS, Grath S, Parsch J. Natural variation in the transcriptional response of Drosophila melanogaster to oxidative stress. G3-GENES GENOMES GENETICS 2021; 12:6409858. [PMID: 34747443 PMCID: PMC8727983 DOI: 10.1093/g3journal/jkab366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Broadly distributed species must cope with diverse and changing environmental conditions, including various forms of stress. Cosmopolitan populations of Drosophila melanogaster are more tolerant to oxidative stress than those from the species’ ancestral range in sub-Saharan Africa, and the degree of tolerance is associated with an insertion/deletion polymorphism in the 3′ untranslated region of the Metallothionein A (MtnA) gene that varies clinally in frequency. We examined oxidative stress tolerance and the transcriptional response to oxidative stress in cosmopolitan and sub-Saharan African populations of D. melanogaster, including paired samples with allelic differences at the MtnA locus. We found that the effect of the MtnA polymorphism on oxidative stress tolerance was dependent on the genomic background, with the deletion allele increasing tolerance only in a northern, temperate population. Genes that were differentially expressed under oxidative stress included MtnA and other metallothioneins, as well as those involved in glutathione metabolism and other genes known to be part of the oxidative stress response or the general stress response. A gene coexpression analysis revealed further genes and pathways that respond to oxidative stress including those involved in additional metabolic processes, autophagy, and apoptosis. There was a significant overlap among the genes induced by oxidative and cold stress, which suggests a shared response pathway to these two stresses. Interestingly, the MtnA deletion was associated with consistent changes in the expression of many genes across all genomic backgrounds, regardless of the expression level of the MtnA gene itself. We hypothesize that this is an indirect effect driven by the loss of microRNA binding sites within the MtnA 3′ untranslated region.
Collapse
Affiliation(s)
- Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
9
|
Tregenza T, Rodríguez-Muñoz R, Boonekamp JJ, Hopwood PE, Sørensen JG, Bechsgaard J, Settepani V, Hegde V, Waldie C, May E, Peters C, Pennington Z, Leone P, Munk EM, Greenrod STE, Gosling J, Coles H, Gruffydd R, Capria L, Potter L, Bilde T. Evidence for genetic isolation and local adaptation in the field cricket Gryllus campestris. J Evol Biol 2021; 34:1624-1636. [PMID: 34378263 DOI: 10.1111/jeb.13911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022]
Abstract
Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | | | - Jelle J Boonekamp
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK.,Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Paul E Hopwood
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Jesper Givskov Sørensen
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Vinayaka Hegde
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Callum Waldie
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emma May
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Caleb Peters
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Zinnia Pennington
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Paola Leone
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Emil M Munk
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Samuel T E Greenrod
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Joe Gosling
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Harry Coles
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Rhodri Gruffydd
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Loris Capria
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Laura Potter
- Centre for Ecology & Conservation, School of Biosciences, University of Exeter, Penryn, UK
| | - Trine Bilde
- Genetics, Ecology & Evolution Section, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
10
|
Teets NM, Hayward SAL. Editorial on combatting the cold: Comparative physiology of low temperature and related stressors in arthropods. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111037. [PMID: 34274530 DOI: 10.1016/j.cbpa.2021.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | - Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Davis HE, Cheslock A, MacMillan HA. Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster. Sci Rep 2021; 11:10876. [PMID: 34035382 PMCID: PMC8149885 DOI: 10.1038/s41598-021-90401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Species from colder climates tend to be more chill tolerant regardless of the chill tolerance trait measured, but for Drosophila melanogaster, population-level differences in chill tolerance among populations are not always found when a single trait is measured in the laboratory. We measured chill coma onset temperature, chill coma recovery time, and survival after chronic cold exposure in replicate lines derived from multiple paired African and European D. melanogaster populations. The populations in our study were previously found to differ in chronic cold survival ability, which is believed to have evolved independently in each population pair; however, they did not differ in chill coma onset temperature and chill coma recovery time in a manner that reflected their geographic origins, even though these traits are known to vary with origin latitude among Drosophila species and are among the most common metrics of thermal tolerance in insects. While it is common practice to measure only one chill tolerance trait when comparing chill tolerance among insect populations, our results emphasise the importance of measuring more than one thermal tolerance trait to minimize the risk of missing real adaptive variation in insect thermal tolerance.
Collapse
Affiliation(s)
- Hannah E Davis
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Alexandra Cheslock
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
12
|
Littler AS, Garcia MJ, Teets NM. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110948. [PMID: 33819503 DOI: 10.1016/j.cbpa.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Cold stress can reduce insect fitness and is an important determinant of species distributions and responses to climate change. Cold tolerance is influenced by genotype and environmental conditions, with factors such as day length and temperature having a particularly strong influence. Recent studies also indicate that diet impacts cold tolerance, but it is unclear whether diet-mediated shifts in cold tolerance are consistent across distinct genotypes. The goal of this study was to determine the extent to which commonly used artificial diets influence cold tolerance in Drosophila melanogaster, and whether these effects are consistent across genetically distinct lines. Specifically, we tested the impact of different fly diets on 1) ability to survive cold stress, 2) critical thermal minimum (CTmin), and 3) the ability to maintain reproduction after cold stress. Experiments were conducted across six isogenic lines from the Drosophila Genetic Reference Panel, and these lines were reared on different fly diets. Cold shock survival, CTmin, and reproductive output pre- and post-cold exposure varied considerably across diet and genotype combinations, suggesting strong genotype by environment interactions shape nutritionally mediated changes in cold tolerance. For example, in some lines cold shock survival remained consistently high or low across diets, while in others cold shock survival ranged from 5% to 75% depending on diet. Ultimately, these results add to a growing literature that cold tolerance is shaped by complex interactions between genotype and environment and inform practical considerations when selecting a laboratory diet for thermal tolerance experiments in Drosophila.
Collapse
Affiliation(s)
- Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| | - Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America; Department of Biology, College of Arts & Sciences, University of Louisiana at Lafayette, Lafayette, LA 70506, United States of America.
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| |
Collapse
|
13
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
14
|
Lecheta MC, Awde DN, O’Leary TS, Unfried LN, Jacobs NA, Whitlock MH, McCabe E, Powers B, Bora K, Waters JS, Axen HJ, Frietze S, Lockwood BL, Teets NM, Cahan SH. Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in Drosophila melanogaster. Front Genet 2020; 11:658. [PMID: 32655626 PMCID: PMC7324644 DOI: 10.3389/fgene.2020.00658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown. Here, using the model species Drosophila melanogaster, we used a combination of Genome Wide Association mapping (GWAS) and transcriptomic profiling to characterize whether genes associated with thermal tolerance are primarily involved in dynamic stress responses or preparatory processes that influence physiological condition at the time of thermal stress. To test our hypotheses, we measured the critical thermal minimum (CTmin) and critical thermal maximum (CTmax) of 100 lines of the Drosophila Genetic Reference Panel (DGRP) and used GWAS to identify loci that explain variation in thermal limits. We observed greater variation in lower thermal limits, with CTmin ranging from 1.81 to 8.60°C, while CTmax ranged from 38.74 to 40.64°C. We identified 151 and 99 distinct genes associated with CTmin and CTmax, respectively, and there was strong support that these genes are involved in both dynamic responses to thermal stress and preparatory processes that increase thermal resistance. Many of the genes identified by GWAS were involved in the direct transcriptional response to thermal stress (72/151 for cold; 59/99 for heat), and overall GWAS candidates were more likely to be differentially expressed than other genes. Further, several GWAS candidates were regulatory genes that may participate in the regulation of stress responses, and gene ontologies related to development and morphogenesis were enriched, suggesting many of these genes influence thermal tolerance through effects on development and physiological status. Overall, our results suggest that thermal tolerance alleles can influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance.
Collapse
Affiliation(s)
- Melise C. Lecheta
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - David N. Awde
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Thomas S. O’Leary
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Laura N. Unfried
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Nicholas A. Jacobs
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Miles H. Whitlock
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Eleanor McCabe
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Beck Powers
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Katie Bora
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - James S. Waters
- Department of Biology, Providence College, Providence, RI, United States
| | - Heather J. Axen
- Department of Biology and Biomedical Sciences, Salve Regina College, Providence, RI, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Brent L. Lockwood
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Nicholas M. Teets
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sara H. Cahan
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
15
|
Garcia MJ, Littler AS, Sriram A, Teets NM. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 2020; 74:1437-1450. [PMID: 32463118 DOI: 10.1111/evo.14025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits-critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior-along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)-across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Collapse
Affiliation(s)
- Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Aditya Sriram
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, Kentucky, 40546
| |
Collapse
|
16
|
Käfer H, Kovac H, Simov N, Battisti A, Erregger B, Schmidt AKD, Stabentheiner A. Temperature Tolerance and Thermal Environment of European Seed Bugs. INSECTS 2020; 11:insects11030197. [PMID: 32245048 PMCID: PMC7143385 DOI: 10.3390/insects11030197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Heteroptera, or true bugs populate many climate zones, coping with different environmental conditions. The aim of this study was the evaluation of their thermal limits and derived traits, as well as climatological parameters which might influence their distribution. We assessed the thermal limits (critical thermal maxima, CTmax, and minima, CTmin) of eight seed bug species (Lygaeidae, Pyrrhocoridae) distributed over four Köppen–Geiger climate classification types (KCC), approximately 6° of latitude, and four European countries (Austria, Italy, Croatia, Bulgaria). In test tubes, a temperature ramp was driven down to −5 °C for CTmin and up to 50 °C for CTmax (0.25 °C/min) until the bugs’ voluntary, coordinated movement stopped. In contrast to CTmin, CTmax depended significantly on KCC, species, and body mass. CTmax showed high correlation with bioclimatic parameters such as annual mean temperature and mean maximum temperature of warmest month (BIO5), as well as three parameters representing temperature variability. CTmin correlated with mean annual temperature, mean minimum temperature of coldest month (BIO6), and two parameters representing variability. Although the derived trait cold tolerance (TC = BIO6 − CTmin) depended on several bioclimatic variables, heat tolerance (TH = CTmax − BIO5) showed no correlation. Seed bugs seem to have potential for further range shifts in the face of global warming.
Collapse
Affiliation(s)
- Helmut Käfer
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Correspondence: (H.K.); (H.K.); (A.S.)
| | - Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Correspondence: (H.K.); (H.K.); (A.S.)
| | - Nikolay Simov
- National Museum of Natural History, 1000 Sofia, Bulgaria;
| | - Andrea Battisti
- School of Agricultural Sciences and Veterinary Medicine, University of Padova, 35122 Padova, Italy;
| | - Bettina Erregger
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Arne K. D. Schmidt
- Institute of Biology, University of Graz, 8010 Graz, Austria
- AGES, The Austrian Agency for Health and Food Safety, 1220 Vienna, Austria;
| | - Anton Stabentheiner
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Correspondence: (H.K.); (H.K.); (A.S.)
| |
Collapse
|
17
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
18
|
Nadeau EAW, Teets NM. Evidence for a rapid cold hardening response in cultured Drosophila S2 cells. ACTA ACUST UNITED AC 2020; 223:jeb.212613. [PMID: 31862846 DOI: 10.1242/jeb.212613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
The ability to quickly respond to changes in environmental temperature is critical for organisms living in thermally variable environments. To cope with sudden drops in temperature, insects and other ectotherms are capable of rapid cold hardening (RCH), in which mild chilling significantly enhances cold tolerance within minutes. While the ecological significance of RCH is well established, the mechanisms underlying RCH are still poorly understood. Previous work has demonstrated that RCH is regulated at the cellular level by post-translational signaling mechanisms, and here we tested the hypothesis that cultured cells are capable of RCH. A 2 h cold shock at -8°C significantly reduced the metabolic viability of Drosophila S2 cells, but pre-treatment with RCH at 4°C for 2 h prevented this decrease in viability. Thus, S2 cells are capable of RCH in a similar manner to whole insects and provide a new system for investigating the cell biology of RCH.
Collapse
Affiliation(s)
- Emily A W Nadeau
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
19
|
Salachan PV, Burgaud H, Sørensen JG. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103946. [PMID: 31525352 DOI: 10.1016/j.jinsphys.2019.103946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Critical thermal limits are important ecological parameters for studying thermal biology and for modelling species' distributions under current and changing climatic conditions (including predicting the risk of extinction for species from future warming). However, estimates of the critical thermal limits are biased by the choice of assay and assay conditions, which differ among studies. Furthermore, estimates of the potential for phenotypic plasticity (thermal acclimation) to buffer against thermal variability are usually based on single assay conditions and (usually linear) extrapolation from a few acclimation temperatures. We produced high resolution estimates of adult acclimation capacity for upper tolerance limits at different assay conditions (ramping rates and knock-down temperatures) using CTmax (dynamic) and knock-down (static) thermal assays in the model species Drosophila melanogaster. We found the reaction norms to be highly dependent on assay conditions. We confirmed that progressively lower ramping rates or higher knock-down temperatures led to overall lower tolerance estimates. More surprisingly, extended assays (lower ramping rates or lower knock-down temperatures) also led to increasingly non-linear reaction norms for upper thermal tolerance across adult acclimation temperatures. Our results suggest that the magnitude (capacity) and direction (beneficial or detrimental) of acclimation responses are highly sensitive to assay conditions. The results offer a framework for comparison of acclimation responses between different assay conditions and a potential for explaining disparate acclimation capacity theories. We advocate cautious interpretation of acclimation capacities and careful consideration of assay conditions, which should represent realistic environmental conditions based on species' ecological niches.
Collapse
Affiliation(s)
- Paul Vinu Salachan
- Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Hélène Burgaud
- Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | | |
Collapse
|
20
|
Angilletta MJ, Youngblood JP, Neel LK, VandenBrooks JM. The neuroscience of adaptive thermoregulation. Neurosci Lett 2019; 692:127-136. [DOI: 10.1016/j.neulet.2018.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|