1
|
Grupstra CGB, Meyer-Kaiser KS, Bennett MJ, Andres MO, Juszkiewicz DJ, Fifer JE, Da-Anoy JP, Gomez-Campo K, Martinez-Rugerio I, Aichelman HE, Huzar AK, Hughes AM, Rivera HE, Davies SW. Holobiont Traits Shape Climate Change Responses in Cryptic Coral Lineages. GLOBAL CHANGE BIOLOGY 2024; 30:e17578. [PMID: 39600252 DOI: 10.1111/gcb.17578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
As ocean warming threatens reefs worldwide, identifying corals with adaptations to higher temperatures is critical for conservation. Genetically distinct but morphologically similar (i.e. cryptic) coral populations can be specialized to extreme habitats and thrive under stressful conditions. These corals often associate with locally beneficial microbiota (Symbiodiniaceae photobionts and bacteria), obscuring the main drivers of thermal tolerance. Here, we leverage a holobiont (massive Porites) with high fidelity for C15 photobionts to investigate adaptive variation across classic ("typical" conditions) and extreme reefs characterized by higher temperatures and light attenuation. We uncovered three cryptic lineages that exhibit limited micro-morphological variation; one lineage dominated classic reefs (L1), one had more even distributions (L2), and a third was restricted to extreme reefs (L3). L1 and L2 were more closely related to populations ~4300 km away, suggesting that some lineages are widespread. All corals harbored Cladocopium C15 photobionts; L1 and L2 shared a photobiont pool that differed in composition between reef types, yet L3 mostly harbored unique photobiont strains not found in the other lineages. Assemblages of bacterial partners differed among reef types in lineage-specific ways, suggesting that lineages employ distinct microbiome regulation strategies. Analysis of light-harvesting capacity and thermal tolerance revealed adaptive variation underpinning survival in distinct habitats: L1 had the highest light absorption efficiency and lowest thermal tolerance, suggesting that it is a classic reef specialist. L3 had the lowest light absorption efficiency and the highest thermal tolerance, showing that it is an extreme reef specialist. L2 had intermediate light absorption efficiency and thermal tolerance, suggesting that is a generalist lineage. These findings reveal diverging holobiont strategies to cope with extreme conditions. Resolving coral lineages is key to understanding variation in thermal tolerance among coral populations, can strengthen our understanding of coral evolution and symbiosis, and support global conservation and restoration efforts.
Collapse
Affiliation(s)
| | - Kirstin S Meyer-Kaiser
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Matthew-James Bennett
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | | | - David J Juszkiewicz
- Coral Conservation and Research Group (CORE), Trace and Environmental DNA Laboratory (TrEnD), School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - James E Fifer
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Ecology, Evolution, and Marine Biology, University of California San Diego, San Diego, USA
| | - Jeric P Da-Anoy
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Kelly Gomez-Campo
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Isabel Martinez-Rugerio
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Alexa K Huzar
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Annabel M Hughes
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Northeastern University Marine Science Center, Nahant, Massachusetts, USA
| | - Hanny E Rivera
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Titus BM, Gibbs HL, Simões N, Daly M. Topology Testing and Demographic Modeling Illuminate a Novel Speciation Pathway in the Greater Caribbean Sea Following the Formation of the Isthmus of Panama. Syst Biol 2024; 73:758-768. [PMID: 39041315 DOI: 10.1093/sysbio/syae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Recent genomic analyses have highlighted the prevalence of speciation with gene flow in many taxa and have underscored the importance of accounting for these reticulate evolutionary processes when constructing species trees and generating parameter estimates. This is especially important for deepening our understanding of speciation in the sea where fast-moving ocean currents, expanses of deep water, and periodic episodes of sea level rise and fall act as soft and temporary allopatric barriers that facilitate both divergence and secondary contact. Under these conditions, gene flow is not expected to cease completely while contemporary distributions are expected to differ from historical ones. Here, we conduct range-wide sampling for Pederson's cleaner shrimp (Ancylomenes pedersoni), a species complex from the Greater Caribbean that contains three clearly delimited mitochondrial lineages with both allopatric and sympatric distributions. Using mtDNA barcodes and a genomic ddRADseq approach, we combine classic phylogenetic analyses with extensive topology testing and demographic modeling (10 site frequency replicates × 45 evolutionary models × 50 model simulations/replicate = 22,500 simulations) to test species boundaries and reconstruct the evolutionary history of what was expected to be a simple case study. Instead, our results indicate a history of allopatric divergence, secondary contact, introgression, and endemic hybrid speciation that we hypothesize was driven by the final closure of the Isthmus of Panama and the strengthening of the Gulf Stream Current ~3.5 Ma. The history of this species complex recovered by model-based methods that allow reticulation differs from that recovered by standard phylogenetic analyses and is unexpected given contemporary distributions. The geologically and biologically meaningful insights gained by our model selection analyses illuminate what is likely a novel pathway of species formation not previously documented that resulted from one of the most biogeographically significant events in Earth's history.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, 1325 Science and Engineering Complex, Tuscaloosa, AL 35487, USA
- Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Nuno Simões
- Facultad de Ciencias, Universidad Nacional Autonoma de Mexico-Sisal, Puerto de abrigo s/n, Sisal, CP 97356 Yucatán, Mexico
- International Chair for Coastal and Marine Studies in Mexico, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University, 6300 Ocean Dr, Corpus Christi, TX 78412, USA
- Laboratorio Nacional de Resilencia Costera (LANRESC, CONACYT), 97356 Sisal, Yucata´n, Mexico
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA
| |
Collapse
|
3
|
Baptista L, Curto M, Waeschenbach A, Berning B, Santos AM, Ávila SP, Meimberg H. Population genetic structure and ecological differentiation in the bryozoan genus Reteporella across the Azores Archipelago (central North Atlantic). Heliyon 2024; 10:e38765. [PMID: 39430515 PMCID: PMC11489315 DOI: 10.1016/j.heliyon.2024.e38765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
The processes shaping population dynamics of benthic marine invertebrates with non-planktotrophic larvae are still poorly understood but have seen a renewed interest in applying integrative taxonomic approaches. We used mitochondrial and microsatellite (SSR-GBAS) data to estimate connectivity across islands and seamounts in the central North Atlantic Azores Archipelago in five species of the bryozoan genus Reteporella Busk, 1884. Discordant patterns were inferred between datasets, which might be due to methodological constraints related to the application of multilocus approaches based on amplification to multiple species or due to interspecific introgression in deep waters. A divergent cryptic ecotype of Reteporella atlantica (Busk, 1884) was found in shallow waters, likely resulting from ecologically-driven incipient speciation, posing new questions regarding the role of bathymetrical zonation as a promoter of differentiation. The occurrence of ecologically-driven differentiation and potential interspecific introgression in other bryozoans should be considered, both with potentially important evolutionary and biogeographical consequences. The discovery of incipient species, prompted by ecological factors, calls for the need to consider marine invertebrates when developing conservation strategies in oceanic insular ecosystems.
Collapse
Affiliation(s)
- Lara Baptista
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Institute for Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33, 1180, Wien, Austria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
| | - Manuel Curto
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
| | - Andrea Waeschenbach
- Science, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
| | - Björn Berning
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
| | - António M. Santos
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, no. 7, 4485-661, Vairão, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Sérgio P. Ávila
- CIBIO-InBIO, Universidade dos Açores, Departamento de Biologia, Rua Mãe de Deus 13A, 9501-801, Ponta Delgada, São Miguel, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
- UNESCO Chair – Land Within Sea: Biodiversity & Sustainability in Atlantic Islands, Universidade dos Açores, 9501-801, Ponta Delgada, Portugal
- Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, Department of Integrative Biology and Biodiversity Research, BOKU University, Gregor-Mendel-Straße 33, 1180, Wien, Austria
| |
Collapse
|
4
|
Gallery DN, Rippe JP, Matz MV. Decrypting Corals: Does Regulatory Evolution Underlie Environmental Specialisation of Coral Cryptic Lineages? Mol Ecol 2024:e17546. [PMID: 39400476 DOI: 10.1111/mec.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 10/15/2024]
Abstract
A recent sequencing study has shown that two common Caribbean corals, Montastraea cavernosa and Siderastrea siderea, each consist of four genetically distinct lineages in the Florida Keys. These lineages are specialised to a certain depth and, to a lesser extent, to nearshore or offshore habitats. We hypothesised that the lineages' environmental specialisation is at least in part due to regulatory evolution, which would manifest as the emergence of groups of coregulated genes ('modules') demonstrating lineage-specific responses to different reef environments. Our hypothesis also predicted that genes belonging to such modules would show greater genetic divergence between lineages than other genes. Contrary to these expectations, responses of cryptic lineages to natural environmental variation were essentially the same at the genome-wide gene coexpression network level, with much fewer differences in gene expression between lineages compared to between habitats. Moreover, none of the identified coregulated gene expression modules exhibit elevated genetic divergence between lineages. Possible explanations of these unexpected results range from the leading role of algal symbionts and/or microbiome in adaptation to strong action of spatially varying selection equalising gene expression patterns despite different genetic background. We discuss how future studies could assist in discriminating between these possibilities.
Collapse
Affiliation(s)
- Dominique N Gallery
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
6
|
Meziere Z, Popovic I, Prata K, Ryan I, Pandolfi J, Riginos C. Exploring coral speciation: Multiple sympatric Stylophora pistillata taxa along a divergence continuum on the Great Barrier Reef. Evol Appl 2024; 17:e13644. [PMID: 38283599 PMCID: PMC10818133 DOI: 10.1111/eva.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Understanding how biodiversity originates and is maintained are fundamental challenge in evolutionary biology. Speciation is a continuous process and progression along this continuum depends on the interplay between evolutionary forces driving divergence and forces promoting genetic homogenisation. Coral reefs are broadly connected yet highly heterogeneous ecosystems, and divergence with gene flow at small spatial scales might therefore be common. Genomic studies are increasingly revealing the existence of closely related and sympatric taxa within taxonomic coral species, but the extent to which these taxa might still be exchanging genes and sharing environmental niches is unclear. In this study, we sampled extensively across diverse habitats at multiple reefs of the Great Barrier Reef (GBR) and comprehensively examined genome-wide diversity and divergence histories within and among taxa of the Stylophora pistillata species complex. S. pistillata is one of the most abundant and well-studied coral species, yet we discovered five distinct taxa, with wide geographic ranges and extensive sympatry. Demographic modelling showed that speciation events have occurred with gene flow and that taxa are at different stages along a divergence continuum. We found significant correlations between genetic divergence and specific environmental variables, suggesting that niche partitioning may have played a role in speciation and that S. pistillata taxa might be differentially adapted to different environments. Conservation actions rely on estimates of species richness, population sizes and species ranges, which are biased if divergent taxa are lumped together. As coral reefs are rapidly degrading due to climate change, our study highlights the importance of recognising evolutionarily distinct and differentially adapted coral taxa to improve conservation and restoration efforts aiming at protecting coral genetic diversity.
Collapse
Affiliation(s)
- Zoe Meziere
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Katharine Prata
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Isobel Ryan
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - John Pandolfi
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of the EnvironmentThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
7
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
8
|
Lin X, Hu L, Chen Z, Dong Y. Thermal heterogeneity is an important factor for maintaining the genetic differentiation pattern of the pelagic barnacle Lepas anatifera in the northwest Pacific. Ecol Evol 2023; 13:e9843. [PMID: 36844671 PMCID: PMC9944158 DOI: 10.1002/ece3.9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Macrobenthic invertebrates are ubiquitously distributed in the epipelagic zone of the open ocean. Yet, our understanding of their genetic structure patterns remains poorly understood. Investigating the genetic differentiation patterns of pelagic Lepas anatifera and clarifying the potential roles of temperature maintaining this pattern are crucial for our understanding of the distribution and biodiversity of pelagic macrobenthos. In the present study, mitochondrial cytochrome oxidase subunit I (mtDNA COI) from three South China Sea (SCS) populations and six Kuroshio Extension (KE) region populations of L. anatifera sampled from fixed buoys and genome-wide SNPs from a subset of populations (two SCS populations and four KE region populations) were sequenced and analyzed for investigating the genetic pattern of the pelagic barnacle. Water temperature was different among sampling sites; in other words, the water temperature decreased with latitude increases, and the water temperature on the surface was higher than in the subsurface. Our result showed that three lineages with clear genetic differentiation were found in different geographical locations and depths based on mtDNA COI, all SNPs, neutral SNPs, and outlier SNPs. Lineage 1 and lineage 2 were dominant in the subsurface populations and surface populations from the KE region, respectively. Lineage 3 was dominant in the SCS populations. Historical events during the Pliocene epoch shaped the differentiation of the three lineages, while, nowadays, temperature heterogeneity maintains the current genetic pattern of L. anatifera in the northwest Pacific. The subsurface populations were genetically isolated from the surface populations in the Kuroshio Extension (KE) region, implying small-scale vertical thermal heterogeneity was also an important factor maintaining the genetic differentiation pattern of the pelagic species.
Collapse
Affiliation(s)
- Xiao‐Nie Lin
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
| | - Li‐Sha Hu
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Zhao‐Hui Chen
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
- Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yun‐Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries CollegeOcean University of ChinaQingdaoChina
- Function Laboratory for Marine Fisheries Science and Food Production ProcessesPilot National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
9
|
Mifsud JCO, Costa VA, Petrone ME, Marzinelli EM, Holmes EC, Harvey E. Transcriptome mining extends the host range of the Flaviviridae to non-bilaterians. Virus Evol 2022; 9:veac124. [PMID: 36694816 PMCID: PMC9854234 DOI: 10.1093/ve/veac124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022] Open
Abstract
The flavivirids (family Flaviviridae) are a group of positive-sense RNA viruses that include well-documented agents of human disease. Despite their importance and ubiquity, the timescale of flavivirid evolution is uncertain. An ancient origin, spanning millions of years, is supported by their presence in both vertebrates and invertebrates and by the identification of a flavivirus-derived endogenous viral element in the peach blossom jellyfish genome (Craspedacusta sowerbii, phylum Cnidaria), implying that the flaviviruses arose early in the evolution of the Metazoa. To date, however, no exogenous flavivirid sequences have been identified in these hosts. To help resolve the antiquity of the Flaviviridae, we mined publicly available transcriptome data across the Metazoa. From this, we expanded the diversity within the family through the identification of 32 novel viral sequences and extended the host range of the pestiviruses to include amphibians, reptiles, and ray-finned fish. Through co-phylogenetic analysis we found cross-species transmission to be the predominate macroevolutionary event across the non-vectored flavivirid genera (median, 68 per cent), including a cross-species transmission event between bats and rodents, although long-term virus-host co-divergence was still a regular occurrence (median, 23 per cent). Notably, we discovered flavivirus-like sequences in basal metazoan species, including the first associated with Cnidaria. This sequence formed a basal lineage to the genus Flavivirus and was closer to arthropod and crustacean flaviviruses than those in the tamanavirus group, which includes a variety of invertebrate and vertebrate viruses. Combined, these data attest to an ancient origin of the flaviviruses, likely close to the emergence of the metazoans 750-800 million years ago.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Mary E Petrone
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney NSW 2006, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 Singapore
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
10
|
Muto N, Kai Y. Allopatric origin, secondary contact and subsequent isolation of sympatric rockfishes (Sebastidae: Sebastes) in the north-western Pacific. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Understanding how speciation occurs is central to biology. Gene flow between diverging taxa is correlated with geography and other aspects of speciation; therefore, the examination of gene flow during divergence is a potent approach to understanding the nature of speciation. Here, we inferred the speciation process of the sympatric rockfishes Sebastes steindachneri and Sebastes wakiyai in the north-western Pacific and its marginal seas based on genome-wide single nucleotide polymorphism and mitochondrial DNA data. Model-based demographic inference showed that gene flow between the two species was absent in the initial and late stages of divergence and present only in the middle stage. Population expansion occurred before or during the period of gene flow. The estimated timings of the initial divergence and population expansion fell within the Pleistocene, during which the seas currently inhabited by the two species were repeatedly isolated and reconnected. Contemporary isolation was supported by the absence of hybrids and the shared mitochondrial DNA haplotypes. Our results suggest that the two species initially diverged in allopatry, followed by secondary contact and introgression and by the completion of reproductive isolation. Given that complete isolation following secondary contact has rarely been tested or documented in marine organisms, we highlight the importance of careful consideration of alternative divergence scenarios to be tested, which should take into account the geological and environmental settings.
Collapse
Affiliation(s)
- Nozomu Muto
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University , 5-1-1-1 Minamisawa, Minami-Ku, Sapporo, Hokkaido 005-8601 , Japan
| | - Yoshiaki Kai
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University , Nagahama, Maizuru, Kyoto 625-0086 , Japan
| |
Collapse
|
11
|
Geburzi JC, Heuer N, Homberger L, Kabus J, Moesges Z, Ovenbeck K, Brandis D, Ewers C. An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea. Ecol Evol 2022; 12:e8868. [PMID: 35600684 PMCID: PMC9121054 DOI: 10.1002/ece3.8868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.
Collapse
Affiliation(s)
- Jonas C. Geburzi
- Mangrove Ecology Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- Department of Organismic and Evolutionary Biology Museum of Comparative Zoology Harvard University Cambridge Massachusetts USA
- Zoological Museum Kiel University Kiel Germany
| | - Nele Heuer
- Zoological Museum Kiel University Kiel Germany
| | | | - Jana Kabus
- Zoological Museum Kiel University Kiel Germany
- Department Aquatic Ecotoxicology Institute of Ecology Diversity and Evolution Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Zoe Moesges
- Zoological Museum Kiel University Kiel Germany
| | | | | | | |
Collapse
|
12
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Rodriguez AK, Krug PJ. Ecological speciation by sympatric host shifts in a clade of herbivorous sea slugs, with introgression and localized mitochondrial capture between species. Mol Phylogenet Evol 2022; 174:107523. [PMID: 35589054 DOI: 10.1016/j.ympev.2022.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Host shifting in insect-plant systems was historically important to the development of ecological speciation theory, yet surprisingly few studies have examined whether host shifting drives diversification of marine herbivores. When small-bodied consumers feed and also mate on a preferred host, disruptive selection can split a population into host races despite gene flow. Support for host shifts is notably lacking for invertebrates associated with macroalgae, where the scale of dispersal by planktonic larvae often far exceeds the grain of host patchiness, and adults are typically less specialized than terrestrial herbivores. Here, we present a candidate example of ecological speciation in a clade of sea slugs that primarily consume green algae in the genus Caulerpa, including highly invasive species. Ancestral character state reconstructions supported 'sea grapes' (C. racemosa, C. lentillifera) as the ancestral host for a tropical radiation of 12 Elysia spp., with one shift onto alternative Caulerpa spp. in the Indo-Pacific. A Caribbean radiation of three species included symaptric host shifts to Rhipocephalus brevicaulis in the ancestor of E. pratensis Ortea & Espinosa, 1996, and to C. prolifera in E. hamanni Krug, Vendetti & Valdes 2016, plus a niche expansion to a range of Caulerpa spp. in E. subornata Verrill, 1901. All three species are broadly sympatric across the Caribbean but are host-partitioned at a fine grain, and distinct by morphology and at nuclear loci. However, non-recombining mtDNA revealed a history of gene flow between E. pratensis and E. subornata: COI haplotypes from E. subornata were 10.4% divergent from E. pratensis haplotypes from four sites, but closely related to all E. pratensis haplotypes sampled from six Bahamian islands, indicating historical introgression and localized "mitochondrial capture." Disruptive selective likely fueled divergence and adaptation to distinct host environments, indicating ecological speciation may be an under-appreciated driver of diversification for marine herbivores as well as epibionts and other resource specialists.
Collapse
Affiliation(s)
- Albert K Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A.
| |
Collapse
|
14
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
15
|
Rodríguez-Flores P, Macpherson E, Schnabel K, Ahyong S, Corbari L, Machordom A. Depth as a driver of evolution and diversification of ancient squat lobsters (Decapoda, Galatheoidea, Phylladiorhynchus). Mol Phylogenet Evol 2022; 171:107467. [DOI: 10.1016/j.ympev.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
|
16
|
Prata KE, Riginos C, Gutenkunst RN, Latijnhouwers KRW, Sánchez JA, Englebert N, Hay KB, Bongaerts P. Deep connections: divergence histories with gene flow in mesophotic
Agaricia
corals. Mol Ecol 2022; 31:2511-2527. [PMID: 35152496 PMCID: PMC9303685 DOI: 10.1111/mec.16391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Largely understudied, mesophotic coral ecosystems lie below shallow reefs (at >30 m depth) and comprise ecologically distinct communities. Brooding reproductive modes appear to predominate among mesophotic‐specialist corals and may limit genetic connectivity among populations. Using reduced representation genomic sequencing, we assessed spatial population genetic structure at 50 m depth in an ecologically important mesophotic‐specialist species Agaricia grahamae, among locations in the Southern Caribbean. We also tested for hybridisation with the closely related (but depth‐generalist) species Agaricia lamarcki, within their sympatric depth zone (50 m). In contrast to our expectations, no spatial genetic structure was detected between the reefs of Curaçao and Bonaire (~40 km apart) within A. grahamae. However, cryptic taxa were discovered within both taxonomic species, with those in A. lamarcki (incompletely) partitioned by depth and those in A. grahamae occurring sympatrically (at the same depth). Hybrid analyses and demographic modelling identified contemporary and historical gene flow among cryptic taxa, both within and between A. grahamae and A. lamarcki. These results (1) indicate that spatial connectivity and subsequent replenishment may be possible between islands of moderate geographic distances for A. grahamae, an ecologically important mesophotic species, (2) that cryptic taxa occur in the mesophotic zone and environmental selection along shallow to mesophotic depth gradients may drive divergence in depth‐generalists such as A. lamarcki, and (3) highlight that gene flow links taxa within this relativity diverse Caribbean genus.
Collapse
Affiliation(s)
- Katharine E. Prata
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
| | - Cynthia Riginos
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology University of Arizona Tuscon AZ USA
| | | | - Juan A. Sánchez
- Laboratorio de Biología Molecular Marina (BIOMMAR) Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Norbert Englebert
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Kyra B. Hay
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Pim Bongaerts
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
- Caribbean Research and Management of Biodiversity Foundation Willemstad, Curaçao
| |
Collapse
|
17
|
Mesophotic Gorgonian Corals Evolved Multiple Times and Faster Than Deep and Shallow Lineages. DIVERSITY 2021. [DOI: 10.3390/d13120650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesophotic Coral Ecosystems (MCEs) develop on a unique environment, where abrupt environmental changes take place. Using a time-calibrated molecular phylogeny (mtDNA: mtMutS), we examined the lineage membership of mesophotic gorgonian corals (Octocorallia: Cnidaria) in comparison to shallow and deep-sea lineages of the wider Caribbean-Gulf of Mexico and the Tropical Eastern Pacific. Our results show mesophotic gorgonians originating multiple times from old deep-sea octocoral lineages, whereas shallow-water species comprise younger lineages. The mesophotic gorgonian fauna in the studied areas is related to their zooxanthellate shallow-water counterparts in only two clades (Gorgoniidae and Plexauridae), where the bathymetrical gradient could serve as a driver of diversification. Interestingly, mesophotic clades have diversified faster than either shallow or deep clades. One of this groups with fast diversification is the family Ellisellidae, a major component of the mesophotic gorgonian coral assemblage worldwide.
Collapse
|
18
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
19
|
Warren DL, Eytan RI, Dornburg A, Iglesias TL, Brandley MC, Wainwright PC. Reevaluating claims of ecological speciation in Halichoeres bivittatus. Ecol Evol 2021; 11:11449-11456. [PMID: 34429932 PMCID: PMC8366890 DOI: 10.1002/ece3.7936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 11/11/2022] Open
Abstract
Allopatry has traditionally been viewed as the primary driver of speciation in marine taxa, but the geography of the marine environment and the larval dispersal capabilities of many marine organisms render this view somewhat questionable. In marine fishes, one of the earliest and most highly cited empirical examples of ecological speciation with gene flow is the slippery dick wrasse, Halichoeres bivittatus. Evidence for this cryptic or incipient speciation event was primarily in the form of a deep divergence in a single mitochondrial locus between the northern and southern Gulf of Mexico, combined with a finding that these two haplotypes were associated with different habitat types ("tropical" vs. "subtropical") in the Florida Keys and Bermuda, where they overlap. Here, we examine habitat assortment in the Florida Keys using a broader sampling of populations and habitat types than were available for the original study. We find no evidence to support the claim that haplotype frequencies differ between habitat types, and little evidence to support any differences between populations in the Keys. These results undermine claims of ecological speciation with gene flow in Halichoeres bivittatus. Future claims of this type should be supported by multiple lines of evidence that illuminate potential mechanisms and allow researchers to rule out alternative explanations for spatial patterns of genetic differences.
Collapse
Affiliation(s)
- Dan L. Warren
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Ron I. Eytan
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexasUSA
| | - Alex Dornburg
- Department of Bioinformatics and GenomicsUniversity of North Carolina CharlotteCharlotteNorth CarolinaUSA
| | - Teresa L. Iglesias
- Animal Resources SectionOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Matthew C. Brandley
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPAUSA
- Powdermill Nature ReserveCarnegie Museum of Natural HistoryRectorPennsylvaniaUSA
| | - Peter C. Wainwright
- Department of Evolution and EcologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
20
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
21
|
Rippe JP, Dixon G, Fuller ZL, Liao Y, Matz M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol Ecol 2021; 30:3468-3484. [PMID: 33894013 DOI: 10.1111/mec.15931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Collapse
Affiliation(s)
- John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
22
|
Prada C, Hellberg ME. Speciation-by-depth on coral reefs: Sympatric divergence with gene flow or cryptic transient isolation? J Evol Biol 2021; 34:128-137. [PMID: 33140895 PMCID: PMC7894305 DOI: 10.1111/jeb.13731] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022]
Abstract
The distributions of many sister species in the sea overlap geographically but are partitioned along depth gradients. The genetic changes leading to depth segregation may evolve in geographic isolation as a prerequisite to coexistence or may emerge during primary divergence leading to new species. These alternatives can now be distinguished via the power endowed by the thousands of scorable loci provided by second-generation sequence data. Here, we revisit the case of two depth-segregated, genetically isolated ecotypes of the nominal Caribbean candelabrum coral Eunicea flexuosa. Previous analyses based on a handful of markers could not distinguish between models of genetic exchange after a period of isolation (consistent with secondary contact) and divergence with gene flow (consistent with primary divergence). Analyses of the history of isolation, genetic exchange and population size based on 15,640 new SNP markers derived from RNAseq data best support models where divergence began 800K BP and include epochs of divergence with gene flow, but with an intermediate period of transient isolation. Results also supported the previous conclusion that recent exchange between the ecotypes occurs asymmetrically from the Shallow lineage to the Deep. Parallel analyses of data from two other corals with depth-segregated populations (Agaricia fragilis and Pocillopora damicornis) suggest divergence leading to depth-segregated populations may begin with a period of symmetric exchange, but that an epoch of population isolation precedes more complete isolation marked by asymmetric introgression. Thus, while divergence-with-gene flow may account for much of the differentiation that separates closely related, depth-segregated species, it remains to be seen whether any critical steps in the speciation process only occur when populations are isolated.
Collapse
Affiliation(s)
- Carlos Prada
- Department of Biological SciencesUniversity of Rhode IslandKingstonRIUSA
| | | |
Collapse
|