1
|
Brandt JE, Wesner JS, Ruggerone GT, Jardine TD, Eagles-Smith CA, Ruso GE, Stricker CA, Voss KA, Walters DM. Continental-scale nutrient and contaminant delivery by Pacific salmon. Nature 2024; 634:875-882. [PMID: 39385021 PMCID: PMC11499284 DOI: 10.1038/s41586-024-07980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/21/2024] [Indexed: 10/11/2024]
Abstract
The movement of large amounts of nutrients by migrating animals has ecological benefits for recipient food webs1,2 that may be offset by co-transported contaminants3,4. Salmon spawning migrations are archetypal of this process, carrying marine-derived materials to inland ecosystems where they stimulate local productivity but also enhance contaminant exposure5-7. Pacific salmon abundance and biomass are higher now than in the last century, reflecting substantial shifts in community structure8 that probably altered nutrient versus contaminant delivery. Here we combined nutrient and contaminant concentrations with 40 years of annual Pacific salmon returns to quantify how changes in community structure influenced marine to freshwater inputs to western North America. Salmon transported tonnes of nutrients and kilograms of contaminants to freshwaters annually. Higher salmon returns (1976-2015) increased salmon-derived nutrient and contaminant inputs by 30% and 20%, respectively. These increases were dominated by pink salmon, which are short-lived, feed lower in marine food webs than other salmon species, and had the highest nutrient-to-contaminant ratios. As a result, the delivery of nutrients increased at a greater rate than the delivery of contaminants, and salmon inputs became more ecologically beneficial over time. Even still, contaminant loadings may represent exposure concerns for some salmon predators. The Pacific salmon example demonstrates how long-term environmental changes interact with nutrient and contaminant movement across large spatial scales and provides a model for exploring similar patterns with other migratory species9.
Collapse
Affiliation(s)
- Jessica E Brandt
- Department of Natural Resources and the Environment & Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, USA.
| | - Jeff S Wesner
- Department of Biology, University of South Dakota, Vermillion, SD, USA
| | | | - Timothy D Jardine
- School of Environment and Sustainability & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Collin A Eagles-Smith
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - Gabrielle E Ruso
- Missouri Cooperative Fish and Wildlife Research Unit, School of Natural Resources, University of Missouri, Columbia, MO, USA
| | - Craig A Stricker
- US Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | | | - David M Walters
- US Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| |
Collapse
|
2
|
Brown MS, Carvalheiro R, Taylor RS, Mekkawy W, Luke TDW, Rands L, Nieuwesteeg D, Evans BS, Wade NM, Lind CE, Hilder PE. Probabilistic reaction norm reveals family-related variation in the association between size, condition, and sexual maturation onset in Atlantic salmon (Salmo salar). JOURNAL OF FISH BIOLOGY 2024; 104:939-949. [PMID: 37996984 DOI: 10.1111/jfb.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the relationship between the size, condition, year class, family, and sexual maturity of Atlantic salmon (Salmo salar) using data collected in an aquaculture selective breeding programme. Males that were sexually mature at 2 years of age (maiden spawn) have, on average, greater fork length and condition factor (K) at 1 year of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 1 year of age, the odds of sexual maturity at 2 years of age increased by 1.48 or 1.22 times, respectively. Females that were sexually mature at 3 years of age (maiden spawn) have, on average, greater fork length and K at 2 years of age than their immature counterparts. For every 10-mm increase in fork length or 0.1 increase in K at 2 years of age, the odds of sexual maturity at 3 years of age increased by 1.06 or 1.44 times, respectively. The family explained 34.93% of the variation in sexual maturity among 2-year-old males that was not attributable to the average effects of fork length and K at 1 year of age and year class. The proportion of variation in sexual maturity among 3-year-old females explained by the family could not be investigated. These findings suggest that the onset of sexual maturation in Atlantic salmon is conditional on performance (with respect to energy availability) surpassing a threshold, the magnitude of which can vary between families and is determined by a genetic component. This could support the application of genetic selection to promote or inhibit the onset of sexual maturation in farmed stocks.
Collapse
Affiliation(s)
| | | | | | - Wagdy Mekkawy
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | | - Lewis Rands
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Damien Nieuwesteeg
- Salmon Enterprises of Tasmania Pty. Ltd., Wayatinah, Tasmania, Australia
| | - Brad S Evans
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | - Nicholas M Wade
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, UK
| | - Curtis E Lind
- CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| | | |
Collapse
|
3
|
Nervino S, Polley T, Peterson JT, Schreck CB, Kent ML, Alexander JD. Intestinal lesions and parasites associated with senescence and prespawn mortality in Chinook Salmon (Oncorhynchus tshawytscha). JOURNAL OF FISH DISEASES 2024; 47:e13876. [PMID: 37888803 DOI: 10.1111/jfd.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Prespawn mortality (PSM) presents a major problem for the recovery of spring Chinook Salmon (Oncorhynchus tshawytscha) populations. In the Willamette River, Oregon, PSM exceeds 90% in some years but factors explaining it are not well understood. We examined intestinal tissue samples using histological slides from over 783 spring Chinook Salmon collected between 2009 and 2021, which included tissues from PSM fish, artificially spawned captive broodstock (BS) and normal river run fish, comprised of trapped (Live) and naturally post-spawned river (RPS) fish collected from the river. We observed degeneration of the intestinal epithelium and loss of villous structure, with concurrent severe enteritis. A natural progression of decline in epithelial integrity (EI) through the summer and fall until spawning and subsequent death was also observed. Live fish exhibited high EI scores (mean = 68%), BS exhibited variable EI scores (35%) and RPS exhibited severe loss of EI (14%). PSM fish exhibited prominent loss of intestinal epithelium with EI scores (13%), very similar to RPS fish, despite having been collected earlier in the year. Hence, we argue that low EI scores are strongly linked with PSM. Ceratonova shasta and Enterocytozoon schreckii were common in all groups, but neither were linked to either PSM or a decline in EI.
Collapse
Affiliation(s)
- Stephanie Nervino
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Tamsen Polley
- Department of Biomedical Sciences and Oregon Veterinary Diagnostic Service, Oregon State University, Corvallis, Oregon, USA
| | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Carl B Schreck
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- Department of Biomedical Sciences and Oregon Veterinary Diagnostic Service, Oregon State University, Corvallis, Oregon, USA
| | - Julie D Alexander
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Adams CM, Winkelman DL, Schaffer PA, Villeneuve DL, Cavallin JE, Ellman M, Rodriguez KS, Fitzpatrick RM. Elevated Winter Stream Temperatures below Wastewater Treatment Plants Shift Reproductive Development of Female Johnny Darter Etheostoma nigrum: A Field and Histologic Approach. FISHES 2022; 7:1-22. [PMID: 36761383 PMCID: PMC9904396 DOI: 10.3390/fishes7060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
River water temperatures are increasing globally, particularly in urban systems. In winter, wastewater treatment plant (WWTP) effluent inputs are of particular concern because they increase water temperatures from near freezing to ~7-15 °C. Recent laboratory studies suggest that warm overwinter temperatures impact the reproductive timing of some fishes. To evaluate winter water temperature's influence in the wild, we sampled Johnny Darter Etheostoma nigrum from three urban South Platte River tributaries in Colorado upstream and downstream of WWTP effluent discharge sites. Fish were collected weekly during the spring spawning season of 2021 and reproductive development was determined from histological analysis of the gonads. Winter water temperatures were approximately 5-10 °C greater ~300 m downstream of the WWTP effluent compared to upstream sites, and approximately 3°C warmer at sampling sites ~5000 m downstream of the effluent discharge. Females collected downstream of WWTP effluent experienced accelerated reproductive development compared to upstream by 1-2 weeks. Water quality, including total estrogenicity, and spring water temperatures did not appear to explain varying reproductive development. It appears that small increases in winter water temperature influence the reproductive timing in E. nigrum. Further investigations into how shifts in reproductive timing influence other population dynamics are warranted.
Collapse
Affiliation(s)
- Catherine M. Adams
- Colorado Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Dana L. Winkelman
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO 80523, USA
| | - Paula A. Schaffer
- CVMBS Microbiology, Immunology & Pathology Department, Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel L. Villeneuve
- Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Jenna E. Cavallin
- Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Michael Ellman
- Oak Ridge Institute for Science and Education, Environmental Protection Agency, Duluth, MN 55804, USA
| | - Kelvin Santana Rodriguez
- Oak Ridge Institute for Science and Education, Environmental Protection Agency, Duluth, MN 55804, USA
| | - Ryan M. Fitzpatrick
- Colorado Parks and Wildlife, Research, Policy, and Planning Section, Fort Collins, CO 80526, USA
| |
Collapse
|
5
|
Lin D, Zang N, Zhu K, Li G, Chen X. Energy acquisition strategy for reproduction in a semelparous squid. Front Zool 2022; 19:28. [DOI: 10.1186/s12983-022-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract
Background
Energy demand for reproduction leads to a wide diversity of foraging and life-history strategy among wild animals, linking to a common objective to maximize reproductive success. Semelparous squid species in particular can use up to 50% of the total energy intake for reproduction. However, the energy acquisition strategy for reproduction is still a controversial issue regarding whether the squid shift in diet ontogenetically. Here we used Argentinean shortfin squid (Illex argentinus) as a case study to investigate the strategy of energy acquisition for reproduction, by analyzing energy density of the squid’s reproductive tissues including ovary, nidamental glands and oviduct eggs, and stable isotopes and fatty acids of the squid’s ovary.
Results
The reproductive energy (the sum of the energy accumulated in ovary, nidamental glands and oviduct eggs) increased significantly with maturation. The ovary nitrogen stable isotopes (δ15N) showed a significant increase with maturation, but the increase by maturity stage was not equal to the typical enrichment of about 3‰ per trophic level. Isotopic niche width showed an increasing trend with maturation, and isotopic niche space exhibited greater overlap at advanced maturity stages. The relative amounts of 16:0, 20:5n3 and 20:4n6 in the ovary, tracing for carnivores and top predators, increased after the onset of maturation. The overall fatty acid profiles of the ovary showed significant differences among maturity stages, but obvious overlaps were found for mature squids. Mixed-effects model results revealed that reproductive energy was positively correlated with δ15N values. The reproductive energy was also positively related to the relative amounts of 18:0 and 20:4n6, respectively tracing for herbivores and top predators.
Conclusions
Our results validate that the squid shifts to feed on higher trophic prey for reproduction as energy demand increases once maturation commences. However, the squid does not shift feeding habits at a trophic level but instead broadens prey spectrum, coupled with increasing intake of higher trophic prey items, to meet the energy demand for reproduction. Such energy acquisition strategy may be selected by the squid to maximize reproductive success by balancing energy intake and expenditure from foraging, warranting future studies that aim to clarify such strategy for reproduction among semelparous species.
Collapse
|
6
|
Snyder MN, Schumaker NH, Dunham JB, Ebersole JL, Keefer ML, Halama J, Comeleo RL, Leinenbach P, Brookes A, Cope B, Wu J, Palmer J. Tough places and safe spaces: Can refuges save salmon from a warming climate? Ecosphere 2022; 13:10.1002/ecs2.4265. [PMID: 36505090 PMCID: PMC9728623 DOI: 10.1002/ecs2.4265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
The importance of thermal refuges in a rapidly warming world is particularly evident for migratory species, where individuals encounter a wide range of conditions throughout their lives. In this study, we used a spatially explicit, individual-based simulation model to evaluate the buffering potential of cold-water thermal refuges for anadromous salmon and trout (Oncorhynchus spp.) migrating upstream through a warm river corridor that can expose individuals to physiologically stressful temperatures. We considered upstream migration in relation to migratory phenotypes that were defined in terms of migration timing, spawn timing, swim speed, and use of cold-water thermal refuges. Individuals with different migratory phenotypes migrated upstream through riverine corridors with variable availability of cold-water thermal refuges and mainstem temperatures. Use of cold-water refuges (CWRs) decreased accumulated sublethal exposures to physiologically stressful temperatures when measured in degree-days above 20, 21, and 22°C. The availability of CWRs was an order of magnitude more effective in lowering accumulated sublethal exposures under current and future mainstem temperatures for summer steelhead than fall Chinook Salmon. We considered two emergent model outcomes, survival and percent of available energy used, in relation to thermal heterogeneity and migratory phenotype. Mean percent energy loss attributed to future warmer mainstem temperatures was at least two times larger than the difference in energy used in simulations without CWRs for steelhead and salmon. We also found that loss of CWRs reduced the diversity of energy-conserving migratory phenotypes when we examined the variability in entry timing and travel time outside of CWRs in relation to energy loss. Energy-conserving phenotypic space contracted by 7%-23% when CWRs were unavailable under the current thermal regime. Our simulations suggest that, while CWRs do not entirely mitigate for stressful thermal exposures in mainstem rivers, these features are important for maintaining a diversity of migration phenotypes. Our study suggests that the maintenance of diverse portfolios of migratory phenotypes and cool- and cold-water refuges might be added to the suite of policies and management actions presently being deployed to improve the likelihood of Pacific salmonid persistence into a future characterized by climate change.
Collapse
Affiliation(s)
- Marcía N. Snyder
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Nathan H. Schumaker
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Jason B. Dunham
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon, USA
| | - Joseph L. Ebersole
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Matthew L. Keefer
- University of Idaho, Department of Fish and Wildlife Sciences, College of Natural Resources, Moscow, Idaho, USA
| | - Jonathan Halama
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
- Oak Ridge Institute for Science and Education/US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Randy L. Comeleo
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | | | - Allen Brookes
- US Environmental Protection Agency, Pacific Ecological Systems Division, Corvallis, Oregon, USA
| | - Ben Cope
- US Environmental Protection Agency, Seattle, Washington, USA
| | - Jennifer Wu
- US Environmental Protection Agency, Seattle, Washington, USA
| | - John Palmer
- US Environmental Protection Agency, Seattle, Washington, USA
| |
Collapse
|
7
|
FitzGerald AM, Martin BT. Quantification of thermal impacts across freshwater life stages to improve temperature management for anadromous salmonids. CONSERVATION PHYSIOLOGY 2022; 10:coac013. [PMID: 35492417 PMCID: PMC9041423 DOI: 10.1093/conphys/coac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 05/31/2023]
Abstract
Water temperature is the major controlling factor that shapes the physiology, behaviour and, ultimately, survival of aquatic ectotherms. Here we examine temperature effects on the survival of Chinook salmon (Oncorhynchus tshawytscha), a species of high economic and conservation importance. We implement a framework to assess how incremental changes in temperature impact survival across populations that is based on thermal performance models for three freshwater life stages of Chinook salmon. These temperature-dependent models were combined with local spatial distribution and phenology data to translate spatial-temporal stream temperature data into maps of life stage-specific physiological performance in space and time. Specifically, we converted temperature-dependent performance (i.e. energy used by pre-spawned adults, mortality of incubating embryos and juvenile growth rate) into a common currency that measures survival in order to compare thermal effects across life stages. Based on temperature data from two abnormally warm and dry years for three managed rivers in the Central Valley, California, temperature-dependent mortality during pre-spawning holding was higher than embryonic mortality or juvenile mortality prior to smolting. However, we found that local phenology and spatial distribution helped to mitigate negative thermal impacts. In a theoretical application, we showed that high temperatures may inhibit successful reintroduction of threatened Central Valley spring-run Chinook salmon to two rivers where they have been extirpated. To increase Chinook salmon population sizes, especially for the threatened and declining spring-run, our results indicate that adults may need more cold-water holding habitat than currently available in order to reduce pre-spawning mortality stemming from high temperatures. To conclude, our framework is an effective way to calculate thermal impacts on multiple salmonid populations and life stages within a river over time, providing local managers the information to minimize negative thermal impacts on salmonid populations, particularly important during years when cold-water resources are scarce.
Collapse
Affiliation(s)
| | - Benjamin T Martin
- Department of Theoretical and Computational Ecology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Enterocytozoon schreckii n. sp. Infects the Enterocytes of Adult Chinook Salmon ( Oncorhynchus tshawytscha) and May Be a Sentinel of Immunosenescence. mSphere 2022; 7:e0090821. [PMID: 34986317 PMCID: PMC8730814 DOI: 10.1128/msphere.00908-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A novel Enterocytozoon infection was identified in the intestines of sexually mature Chinook salmon. While microsporidian parasites are common across a diverse range of animal hosts, this novel species is remarkable because it demonstrates biological, pathological, and genetic similarity with Enterocytozoon bieneusi, the most common causative agent of microsporidiosis in AIDS patients. There are similarities in the immune and endocrine processes of sexually mature Pacific salmon and immunocompromised humans, suggesting possible common mechanisms of susceptibility in these two highly divergent host species. The discovery of Enterocytozoon schreckii n. sp. contributes to clarifying the phylogenetic relationships within family Enterocytozoonidae. The phylogenetic and morphological features of this species support the redescription of Enterocytozoon to include Enterospora as a junior synonym. Furthermore, the discovery of this novel parasite may have important implications for conservation, as it could be a sentinel of immune suppression, disease, and prespawning mortality in threatened populations of salmonids. IMPORTANCE In this work, we describe a new microsporidian species that infects the enterocytes of Chinook salmon. This novel pathogen is closely related to Enterocytozoon bieneusi, an opportunistic pathogen commonly found in AIDS patients and other severely immunocompromised humans. The discovery of this novel pathogen is of interest because it has only been found in sexually mature Chinook salmon, which have compromised immune systems due to the stresses of migration and maturation and which share similar pathological features with immunocompromised and senescent humans. The discovery of this novel pathogen could lead to new insights regarding how microsporidiosis relates to immunosuppression across animal hosts.
Collapse
|
9
|
Alshwairikh YA, Kroeze SL, Olsson J, Stephens‐Cardenas SA, Swain WL, Waits LP, Horn RL, Narum SR, Seaborn T. Influence of environmental conditions at spawning sites and migration routes on adaptive variation and population connectivity in Chinook salmon. Ecol Evol 2021; 11:16890-16908. [PMID: 34938480 PMCID: PMC8668735 DOI: 10.1002/ece3.8324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Many species that undergo long breeding migrations, such as anadromous fishes, face highly heterogeneous environments along their migration corridors and at their spawning sites. These environmental challenges encountered at different life stages may act as strong selective pressures and drive local adaptation. However, the relative influence of environmental conditions along the migration corridor compared with the conditions at spawning sites on driving selection is still unknown. In this study, we performed genome-environment associations (GEA) to understand the relationship between landscape and environmental conditions driving selection in seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)-a species of important economic, social, cultural, and ecological value-in the Columbia River basin. We extracted environmental variables for the shared migration corridors and at distinct spawning sites for each population, and used a Pool-seq approach to perform whole genome resequencing. Bayesian and univariate GEA tests with migration-specific and spawning site-specific environmental variables indicated many more candidate SNPs associated with environmental conditions at the migration corridor compared with spawning sites. Specifically, temperature, precipitation, terrain roughness, and elevation variables of the migration corridor were the most significant drivers of environmental selection. Additional analyses of neutral loci revealed two distinct clusters representing populations from different geographic regions of the drainage that also exhibit differences in adult migration timing (summer vs. fall). Tests for genomic regions under selection revealed a strong peak on chromosome 28, corresponding to the GREB1L/ROCK1 region that has been identified previously in salmonids as a region associated with adult migration timing. Our results show that environmental variation experienced throughout migration corridors imposed a greater selective pressure on Chinook salmon than environmental conditions at spawning sites.
Collapse
Affiliation(s)
| | | | - Jenny Olsson
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - William L. Swain
- Wildlife Genomics and Disease LaboratoryProgram in EcologyDepartment of Veterinary SciencesUniversity of WyomingLaramieWyomingUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| | | | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - Travis Seaborn
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIdahoUSA
| |
Collapse
|
10
|
Araújo BC, Symonds JE, Walker SP, Miller MR. Effects of fasting and temperature on the biological parameters, proximal composition, and fatty acid profile of Chinook salmon (Oncorhynchus tshawytscha) at different life stages. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111113. [PMID: 34752894 DOI: 10.1016/j.cbpa.2021.111113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
We investigated the effects of temperature and fasting on chinook salmon (Oncorhynchus tshawytscha) at different life stages. In the first stage, fish were reared at 13 °C (198.5 ± 34.6 g) or 17 °C (218.3 ± 47.6 g) and fasted for 27 and 26 days, respectively. In the second stage, fish reared at 13 °C (481.8 ± 54.3 g) and 17 °C (597.3 ± 64.3 g) were fasted for 42 and 41 days respectively. At the third stage, fish were reared only at 17 °C (1065.7 ± 190.9 g) and fasted for 42 days. At the end of each fasting period performance, fillet and whole-body proximal composition, and whole-body fatty acid profile were compared among fish before and after fasting. Additionally, fillet fatty acid daily loss was compared in fasted fish from different treatments. The results showed that body weight was not significantly impacted by fasting. However, at 17 °C fasting at all three stages had a negative impact on fillet weight and total fatty acid daily loss. With few exceptions, saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids from n-6 series (n-6 PUFA) were preserved in fillet of fish at 17 °C, while higher daily losses of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and consequently polyunsaturated from n-3 series (n-3 PUFA) were observed in these same fish and in smaller fish at 13 °C. The results presented in this study provide important information regarding the influence of fasting and temperature on chinook salmon performance and metabolism, providing basis for future nutritional and compositional studies for this important commercial species.
Collapse
|
11
|
Getting ready for a long bath: skin permeability decreases prior to aquatic breeding in male toads. Naturwissenschaften 2021; 108:48. [PMID: 34601651 DOI: 10.1007/s00114-021-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Vertebrate skin regulates exchanges between the organism and its environment and notably plays a fundamental role in regulating water fluxes. Dynamic changes of skin resistance to water fluxes are expected to occur in species that regularly shift between habitat types especially if these habitats differ in their hydric properties (e.g., terrestrial versus aquatic). We investigated changes of skin permeability using a study system (terrestrial toads) where reproduction induces a transition from terrestrial to freshwater habitats and a prolonged immersion that can last several weeks in males. In this system, the simultaneity between skin shedding and the onset of breeding suggests that the production of new integument layers prior to immersion for reproduction may regulate water influxes. We found that the skin permeability of male toads decreases significantly prior to breeding, suggesting that skin shedding at the onset of breeding regulates water fluxes to alleviate osmotic costs of immersion during reproduction. The continued decrease of skin permeability detected during breeding suggests that additional mechanisms interact with skin structure to further decrease permeability to water during a prolonged immersion. Future studies are required to assess whether changes in skin permeability to water tradeoffs with other skin characteristics (gas exchanges) relevant to aquatic breeding amphibians.
Collapse
|
12
|
Keefer ML, Jepson MA, Clabough TS, Caudill CC. Technical fishway passage structures provide high passage efficiency and effective passage for adult Pacific salmonids at eight large dams. PLoS One 2021; 16:e0256805. [PMID: 34473741 PMCID: PMC8412358 DOI: 10.1371/journal.pone.0256805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
Fishways have been widely used for upstream passage around human-built structures, but 'success' has varied dramatically. Evaluation of fishway success has typically been conducted at local scales using metrics such as fish passage efficiency and passage time, but evaluations are increasingly used in broader assessments of whether passage facilities meet population-specific conservation and management objectives. Over 15 years, we monitored passage effectiveness at eight dams on the Columbia and Snake rivers for 26,886 radio-tagged spring-summer and fall Chinook Salmon O. tshwaytscha, Sockeye Salmon O. nerka, and summer steelhead O. mykiss during their migrations to spawning sites. Almost all fish that entered dam tailraces eventually approached and entered fishways. Tailrace-to-forebay passage efficiency estimates at individual dams were consistently high, averaging 0.966 (SD = 0.035) across 245 run×year×dam combinations. These estimates are among the highest recorded for any migratory species, which we attribute to the scale of evaluation, salmonid life history traits (e.g., philopatry), and a sustained adaptive management approach to fishway design, maintenance, and improvement. Full-dam fish passage times were considerably more variable, with run×year×dam medians ranging from 5-65 h. Evaluation at larger scales provided evidence that fishways were biologically effective, e.g., we observed rapid migration rates (medians = 28-40 km/d) through river reaches with multiple dams and estimated fisheries-adjusted upstream migration survival of 67-69%. However, there were substantive uncertainties regarding effectiveness. Uncertainty about natal origins confounded estimation of population-specific survival and interpretation of apparent dam passage 'failure', while lack of post-migration reproductive data precluded analyses of delayed or cumulative effects of passing the impounded system on fish fitness. Although the technical fishways are effective for salmonids in the Columbia-Snake River system, other co-migrating species have lower passage rates, highlighting the need for species-specific design and evaluation wherever passage facilities impact fish management and conservation goals.
Collapse
Affiliation(s)
- Matthew L. Keefer
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| | - Michael A. Jepson
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America
| | - Tami S. Clabough
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher C. Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
13
|
Egg retention of high-latitude sockeye salmon (Oncorhynchus nerka) in the Pilgrim River, Alaska, during the Pacific marine heatwave of 2014–2016. Polar Biol 2021. [DOI: 10.1007/s00300-021-02902-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Twardek WM, Ekström A, Eliason EJ, Lennox RJ, Tuononen E, Abrams AEI, Jeanson AL, Cooke SJ. Field assessments of heart rate dynamics during spawning migration of wild and hatchery-reared Chinook salmon. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200214. [PMID: 34121459 DOI: 10.1098/rstb.2020.0214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During spawning, adult Pacific salmonids (Oncorhynchus spp.) complete challenging upriver migrations during which energy and oxygen delivery must be partitioned into activities such as locomotion, maturation and spawning behaviours under the constraints of an individual's cardiac capacity. To advance our understanding of cardiac function in free-swimming fishes, we implanted migrating adult Chinook salmon (Oncorhynchus tshawytscha) collected near the mouth of the Sydenham River, Ontario, with heart rate (fH) biologgers that recorded fH every 3 min until these semelparous fish expired on spawning grounds several days later. Fundamental aspects of cardiac function were quantified, including resting, routine and maximum fH, as well as scope for fH (maximum-resting fH). Predictors of fH were explored using generalized least-squares regression, including water temperature, discharge, fish size and fish origin (wild versus hatchery). Heart rate was positively correlated with water temperature, which aligned closely with daily and seasonal shifts. Wild fish had slower resting heart rates than hatchery fish, which led to significantly higher scope for fH. Our findings suggest that wild salmon may have better cardiac capacity during migration than hatchery fish, potentially promoting migration success in wild fish. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- W M Twardek
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - A Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - E J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - R J Lennox
- Norwegian Research Centre (NORCE), Laboratory for Freshwater Ecology and Inland Fisheries (LFI), Nygårdsgaten 112, 5008 Bergen, Norway
| | - E Tuononen
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - A E I Abrams
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - A L Jeanson
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - S J Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
15
|
Environmentally triggered shifts in steelhead migration behavior and consequences for survival in the mid-Columbia River. PLoS One 2021; 16:e0250831. [PMID: 33970924 PMCID: PMC8109777 DOI: 10.1371/journal.pone.0250831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
The majority of Columbia River summer-run steelhead encounter high river temperatures (near or > 20°C) during their spawning migration. While some steelhead pass through the mid-Columbia River in a matter of days, others use tributary habitats as temperature refuges for periods that can last months. Using PIT tag detection data from adult return years 2004-2016, we fit 3-component mixture models to differentiate between "fast", "slow", and "overwintering" migration behaviors in five aggregated population groups. Fast fish migrated straight through the reach on average in ~7-9 days while slow fish delayed their migration for weeks to months, and overwintering fish generally took ~150-250 days. We then fit covariate models to examine what factors contributed to the probability of migration delay during summer months (slow or overwintering behaviors), and to explore how migration delay related to mortality. Finally, to account for the impact of extended residence times in the reach for fish that delayed, we compared patterns in estimated average daily rates of mortality between migration behaviors and across population groups. Results suggest that migration delay was primarily triggered by high river temperatures but temperature thresholds for delay were lowest just before the seasonal peak in river temperatures. While all populations groups demonstrated these general patterns, we documented substantial variability in temperature thresholds and length of average delays across population groups. Although migration delay was related to higher reach mortality, it was also related to lower average daily mortality rates due to the proportional increase in reach passage duration being larger than the associated increase in mortality. Lower daily mortality rates suggest that migration delay could help mitigate the impacts of harsh migration conditions, presumably through the use of thermal refuges, despite prolonged exposure to local fisheries. Future studies tracking individual populations from their migration through reproduction could help illuminate the full extent of the tradeoffs between different migration behaviors.
Collapse
|
16
|
Chaparro‐Pedraza PC, de Roos AM. Individual energy dynamics reveal nonlinear interaction of stressors threatening migratory fish populations. Funct Ecol 2021; 35:727-738. [PMID: 33776184 PMCID: PMC7986916 DOI: 10.1111/1365-2435.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022]
Abstract
Migratory fish populations, like salmon, have dramatically declined for decades. Because of their extensive and energetically costly breeding migration, anadromous fish are sensitive to a variety of environmental stressors, in particular infrastructure building in freshwater streams that increases the energetic requirements of the breeding migration and food declines in the ocean.While the effects of these stressors separately are well documented, the cumulative and interactive impacts of them are poorly understood.Here, we use a bioenergetics model recently developed for fish life history to investigate the individual life history and population responses to these stressors combined.We find that food decline in the ocean can mitigate rather than exacerbate the negative effect of elevated migration costs imposed by infrastructure building in streams. This counterintuitive effect results from the highly nonlinear manner in which these stressors interact and affect the individual energetics. In particular, this effect arises from the fact that individuals growing in the ocean under higher food conditions reach larger sizes with concomitant larger migration costs but are leaner. As a consequence of their lower energy densities, they spend most of their energy reserves to transport their body upstream when migration costs are high, and little is left for reproduction, resulting in lower individual fitness.Our results highlight the need of a mechanistic understanding integrating individual energetics, life history and population dynamics to accurately assess biological consequences of environmental change. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Perla Catalina Chaparro‐Pedraza
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Eawag—Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - André M. de Roos
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- The Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
17
|
Snyder MN, Schumaker NH, Dunham JB, Keefer ML, Leinenbach P, Brookes A, Palmer J, Wu J, Keenan D, Ebersole JL. Assessing contributions of cold-water refuges to reproductive migration corridor conditions for adult Chinook Salmon and steelhead trout in the Columbia River, USA. ACTA ACUST UNITED AC 2020; 1:1-13. [PMID: 33898904 DOI: 10.1080/24705357.2020.1855086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (Oncorhynchus tshawytscha) and summer-run steelhead trout (O. mykiss) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.
Collapse
Affiliation(s)
- Marcía N Snyder
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR
| | - Nathan H Schumaker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR
| | - Jason B Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR
| | - Matthew L Keefer
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID
| | | | - Allen Brookes
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR
| | - John Palmer
- U.S. Environmental Protection Agency, Region 10, Seattle, WA
| | - Jennifer Wu
- U.S. Environmental Protection Agency, Region 10, Seattle, WA
| | | | - Joseph L Ebersole
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR
| |
Collapse
|
18
|
Abstract
Shifts between habitats during reproduction can induce costs that are independent of the reproductive effort and that often apply to both sexes. Such shifts can also illustrate physiological costs complementary to those involving energetic currencies. In this study, we investigated osmotic consequences of reproduction in a context where reproduction induces a shift from terrestrial habitats to freshwater environments. During reproduction, toads migrate to breeding ponds where males remain for several weeks, while females leave shortly after egg-laying. We assessed plasma osmolality of male spined toads during the whole reproductive period (approx. 30 days) in conjunction with markers of individual condition. We found that osmolality decreases during the protracted period of immersion in freshwater during reproduction, presumably through water influx as indicated by body mass changes. Hormonal markers of metabolism and sexual activity were positively correlated with osmolality. Recent research has highlighted hydric 'costs' of reproduction when access to water is limited. Our study adds to this growing field of investigation, yet with an opposite perspective, where water availability linked to reproduction provokes hyperhydration rather than dehydration.
Collapse
Affiliation(s)
- François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| | - Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372 CNRS-La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
19
|
Chaparro‐Pedraza PC, de Roos AM. Environmental change effects on life-history traits and population dynamics of anadromous fishes. J Anim Ecol 2019; 88:1178-1190. [PMID: 31081118 PMCID: PMC6771977 DOI: 10.1111/1365-2656.13010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2019] [Indexed: 12/02/2022]
Abstract
Migration, the recurring movement of individuals between a breeding and a non-breeding habitat, is a widespread phenomenon in the animal kingdom. Since the life cycle of migratory species involves two habitats, they are particularly vulnerable to environmental change, which may affect either of these habitats as well as the travel between them. In this study, we aim to reveal the consequences of environmental change affecting older life-history stages for the population dynamics and the individual life history of a migratory population. We formulate a population model based on the individual energetics and life history to study how increased energetic cost of the breeding travel and reduced survival and food availability in the non-breeding habitat affect an anadromous fish population. These unfavourable conditions have impacts at the individual and the population level. First, when conditions deteriorate individuals in the breeding habitat have a higher body growth rate as a consequence of reductions in spawning that reduce competition. Second, population abundance decreases, and its dynamics change from a regular annual cycle to oscillations with a period of four years. The oscillations are caused by the density-dependent feedback between individuals within a cohort through the food abundance in the breeding habitat, which results in alternation of a strong and a weak cohort. Our results explain how environmental change, by affecting older life-history stages, has multiple consequences for other life stages and for the entire population. We discuss these results in the context of empirical data and highlight the need for mechanistic understanding of the interactions between life-history and population dynamics in response to environmental change.
Collapse
Affiliation(s)
| | - André M. de Roos
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
20
|
Snyder MN, Schumaker NH, Ebersole JL, Dunham J, Comeleo R, Keefer M, Leinenbach P, Brookes A, Cope B, Wu J, Palmer J, Keenan D. Individual Based Modelling of Fish Migration in a 2-D River System: Model Description and Case Study. LANDSCAPE ECOLOGY 2019; 34:737-754. [PMID: 33424124 PMCID: PMC7788051 DOI: 10.1007/s10980-019-00804-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 06/02/2023]
Abstract
CONTEXT Diadromous fish populations in the Pacific Northwest face challenges along their migratory routes from declining habitat quality, harvest, and barriers to longitudinal connectivity. These stressors complicate the prioritization of proposed management actions intended to improve conditions for migratory fishes including anadromous salmon and trout. OBJECTIVES We describe a multi-scale hybrid mechanistic-probabilistic simulation model linking migration corridor conditions to fish fitness outcomes. We demonstrate the model's utility using a case study of salmon and steelhead adults in the Columbia River migration corridor exposed to spatially- and temporally-varying stressors. METHODS The migration corridor simulation model is based on a behavioral decision tree that governs individual interactions with the environment, and an energetic submodel that estimates the hourly costs of migration. Emergent properties of the migration corridor simulation model include passage time, energy use, and survival. RESULTS We observed that the simulated fishes' initial energy density, the migration corridor temperatures they experienced, and their history of behavioral thermoregulation were the primary determinants of their fitness outcomes. Insights gained from use of the model might be exploited to identify management interventions that increase successful migration outcomes. CONCLUSIONS This paper describes new methods that extend the suite of tools available to aquatic biologists and conservation practitioners. We have developed a 2-dimensional spatially-explicit behavioral and physiological model and illustrated how it can be used to simulate fish migration within a river system. Our model can be used to evaluate trade-offs between behavioral thermoregulation and fish fitness at population scales.
Collapse
Affiliation(s)
- Marcía N. Snyder
- US Environmental Protection Agency, Western Ecology Division, 200 35 St., Corvallis, OR 97333
| | - Nathan H. Schumaker
- US Environmental Protection Agency, Western Ecology Division, 200 35 St., Corvallis, OR 97333
| | - Joseph L. Ebersole
- US Environmental Protection Agency, Western Ecology Division, 200 35 St., Corvallis, OR 97333
| | - Jason Dunham
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331
| | - Randy Comeleo
- US Environmental Protection Agency, Western Ecology Division, 200 35 St., Corvallis, OR 97333
| | - Matthew Keefer
- University of Idaho, Department of Fish and Wildlife Sciences, College of Natural Resources, 975 W. Sixth Street, Moscow, Idaho 83844
| | - Peter Leinenbach
- US Environmental Protection Agency, Region 10, 1200 6 Ave., Suite 155, Seattle, WA 98101
| | - Allen Brookes
- US Environmental Protection Agency, Western Ecology Division, 200 35 St., Corvallis, OR 97333
| | - Ben Cope
- US Environmental Protection Agency, Region 10, 1200 6 Ave., Suite 155, Seattle, WA 98101
| | - Jennifer Wu
- US Environmental Protection Agency, Region 10, 1200 6 Ave., Suite 155, Seattle, WA 98101
| | - John Palmer
- US Environmental Protection Agency, Region 10, 1200 6 Ave., Suite 155, Seattle, WA 98101
| | - Druscilla Keenan
- US Environmental Protection Agency, Region 10, 1200 6 Ave., Suite 155, Seattle, WA 98101
| |
Collapse
|
21
|
Keefer ML, Clabough TS, Jepson MA, Bowerman T, Caudill CC. Temperature and depth profiles of Chinook salmon and the energetic costs of their long-distance homing migrations. J Therm Biol 2018; 79:155-165. [PMID: 30612677 DOI: 10.1016/j.jtherbio.2018.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/23/2022]
Abstract
River warming poses an existential threat to many Pacific salmon (Oncorhynchus spp) populations. However, temperature-mediated risks to salmon are often complex and addressing them requires species- and population-specific data collected over large spatial and temporal scales. In this study, we combined radiotelemetry with archival depth and temperature sensors to collect continuous thermal exposure histories of 21 adult spring- and summer-run Chinook salmon (O. tshawytscha) as they migrated hundreds of kilometers upstream in the Columbia River basin. Salmon thermal histories in impounded reaches of the Columbia and Snake rivers were characterized by low daily temperature variation but frequent and extensive vertical movements. Dives were associated with slightly cooler salmon body temperatures (~ 0.01 to 0.02 °C/m), but there was no evidence for use of cool-water thermal refuges deep in reservoirs or at tributary confluences along the migration route. In tributaries, salmon were constrained to relatively shallow water, and they experienced ~ 2-5 °C diel temperature fluctuations. Differences in migration timing and among route-specific thermal regimes resulted in substantial among-individual variation in migration temperature exposure. Bioenergetics models using the collected thermal histories and swim speeds ranging from 1.0 to 1.5 body-lengths/s predicted median energetic costs of ~ 24-40% (spring-run) and ~ 37-60% (summer-run) of initial reserves. Median declines in total mass were ~ 16-24% for spring-run salmon and ~ 19-29% for summer-run salmon. A simulated + 2 °C increase in water temperatures resulted in 4.0% (spring-run) and 6.3% (summer-run) more energy used per fish, on average. The biotelemetry data provided remarkable spatial and temporal resolution on thermal exposure. Nonetheless, substantial information gaps remain for the development of robust bioenergetics and climate effects models for adult Chinook salmon.
Collapse
Affiliation(s)
- Matthew L Keefer
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA.
| | - Tami S Clabough
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| | - Michael A Jepson
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| | - Tracy Bowerman
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive MS 1136, Moscow, ID 83844-1136, USA
| |
Collapse
|
22
|
Plumb JM. A bioenergetics evaluation of temperature-dependent selection for the spawning phenology by Snake River fall Chinook salmon. Ecol Evol 2018; 8:9633-9645. [PMID: 30386563 PMCID: PMC6202718 DOI: 10.1002/ece3.4353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 01/15/2023] Open
Abstract
High water temperatures can increase the energetic cost for salmon to migrate and spawn, which can be important for Snake River fall-run Chinook salmon because they migrate great distances (>500 km) at a time when river temperatures (18-24°C) can be above their optimum temperatures (16.5°C). Average river temperatures and random combinations of migration and spawning dates were used to simulate fish travel times and determine the energetic consequences of different thermal experiences during migration. An energy threshold criterion (4 kJ/g) was also imposed on survival and spawning success, which was used to determine how prevailing temperatures might select against certain migration dates and thermal experiences, and in turn, explain the selection for the current spawning phenology of the population. Scenarios of tributary use for thermal refugia under increasing water temperatures (1, 2, and 3°C) were also run to determine which combinations of migration dates, travel rates, and resulting thermal experiences might be most affected by energy exhaustion. As expected, when compared to observations, the model under existing conditions and energy use could explain the onset, but not the end of the observed spawning migration. Simulations of early migrants had greater energy loss than late migrants regardless of the river temperature scenario, but higher temperatures disproportionately selected against a larger fraction of early-migrating fish, although using cold-water tributaries during migration provided a buffer against higher energy use at higher temperatures. The fraction of simulated fish that exceeded the threshold for migration success increased from 58% to 72% as average seasonal river temperatures over baseline temperatures increased. The model supports the conclusion that increases in average seasonal river temperatures as little as 1°C could impose greater thermal constraints on the fish, select against early migrants, and in turn, truncate the onset of the current spawning migration.
Collapse
Affiliation(s)
- John M. Plumb
- Columbia River Research LaboratoryWestern Fisheries Research CenterU.S. Geological SurveyCookWashington
| |
Collapse
|
23
|
Crozier LG, Bowerman TE, Burke BJ, Keefer ML, Caudill CC. High‐stakes steeplechase: a behavior‐based model to predict individual travel times through diverse migration segments. Ecosphere 2017. [DOI: 10.1002/ecs2.1965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lisa G. Crozier
- Northwest Fisheries Science Center National Marine Fisheries Service 2725 Montlake Boulevard East Seattle Washington 98112 USA
| | - Tracy E. Bowerman
- Department of Fish and Wildlife Sciences College of Natural Resources University of Idaho 875 Perimeter Drive, MS 1136 Moscow Idaho 83844 USA
| | - Brian J. Burke
- Northwest Fisheries Science Center National Marine Fisheries Service 2725 Montlake Boulevard East Seattle Washington 98112 USA
| | - Matthew L. Keefer
- Department of Fish and Wildlife Sciences College of Natural Resources University of Idaho 875 Perimeter Drive, MS 1136 Moscow Idaho 83844 USA
| | - Christopher C. Caudill
- Department of Fish and Wildlife Sciences College of Natural Resources University of Idaho 875 Perimeter Drive, MS 1136 Moscow Idaho 83844 USA
| |
Collapse
|