1
|
Antioxidant activity of fruit jellies enriched with phytochemicals from Pinus sylvestris L. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
2
|
Borczak B, Sikora M, Kapusta-Duch J, Fołta M, Szewczyk A, Zięć G, Doskočil I, Leszczyńska T. Antioxidative Properties and Acrylamide Content of Functional Wheat-Flour Cookies Enriched with Wild-Grown Fruits. Molecules 2022; 27:molecules27175531. [PMID: 36080297 PMCID: PMC9458165 DOI: 10.3390/molecules27175531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to evaluate the impact of widely grown fruits (wild roses, elderberries, sea buckthorns, rowans, chokeberries, and hawthorns) as a functional ingredient in wheat-flour cookie formulation on antioxidative properties with a simultaneous reduction of the carcinogen-like compound acrylamide. The organoleptic features of the cookies were assessed by a panel of consumers. The following parameters were measured: chemical composition, total polyphenols, polyphenolic profile, antioxidant activity, and acrylamide content. The overall ratings of the tested cookies with the addition of chokeberries, hawthorns, sea buckthorns, and elderberries were more than satisfactory, while wild rose and rowan cookies were the most widely accepted and best rated by the panelists. The antioxidant activity of the tested cookies was 1.1−15.22 μmol trolox·g−1 dm and 2.46−26.12 μmol Fe (II)·g−1 dm as measured by the ABTS and FRAP methods, respectively. All the fruit-enriched cookies had significantly higher antioxidative properties (p < 0.05) in comparison to the control cookies, but among the fruit-enriched cookies, there were differences in the quality and quantity of particular polyphenols. The acrylamide content was significantly decreased by 59% (hawthorn), 71% (rowan), 87% (wild rose), 89% (sea buckthorn), 91% (elderberry), and 94% (chokeberry) compared with the control cookies (p < 0.05). Cookies enriched with wild-grown fruits could constitute a promising novel snack food.
Collapse
Affiliation(s)
- Barbara Borczak
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-149 Krakow, Poland
- Correspondence: ; Tel.: +48-12-662-48-17
| | - Marek Sikora
- Department of Carbohydrate Technology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Joanna Kapusta-Duch
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Maria Fołta
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Krakow, Poland
| | - Agnieszka Szewczyk
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688 Krakow, Poland
| | - Gabriela Zięć
- Department of Carbohydrate Technology, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-149 Krakow, Poland
| | - Ivo Doskočil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 30-149 Krakow, Poland
| |
Collapse
|
3
|
Salimi A, Baghal E, Ghobadi H, Hashemidanesh N, Khodaparast F, Seydi E. Mitochondrial, lysosomal and DNA damages induced by acrylamide attenuate by ellagic acid in human lymphocyte. PLoS One 2021; 16:e0247776. [PMID: 33635915 PMCID: PMC7909646 DOI: 10.1371/journal.pone.0247776] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/14/2021] [Indexed: 01/10/2023] Open
Abstract
Acrylamide (AA), is an important contaminant formed during food processing under high temperature. Due to its potential neurotoxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity effects, this food contaminant has been recognized as a human health concern. Previous studies showed that acrylamide-induced toxicity is associated with active metabolite of acrylamide by cytochrome P450 enzyme, oxidative stress, mitochondrial dysfunction and DNA damage. In the current study, we investigated the role of oxidative stress in acrylamide's genotoxicity and therapeutic potential role of ellagic acid (EA) in human lymphocytes. Human lymphocytes were simultaneously treated with different concentrations of EA (10, 25 and 50 μM) and acrylamide (50 μM) for 4 h at 37°C. After 4 hours of incubation, the toxicity parameters such cytotoxicity, ROS formation, oxidized/reduced glutathione (GSH/GSSG) content, malondialdehyde (MDA) level, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed using biochemical and flow cytometry evaluations. It has been found that acrylamide (50 μM) significantly increased cytotoxicity, ROS formation, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage in human lymphocytes. On the other hand, cotreatment with EA (25 and 50 μM) inhibited AA-induced oxidative stress which subsequently led to decreasing of the cytotoxicity, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage. Together, these results suggest that probably the co-exposure of EA with foods containing acrylamide could decrease mitochondrial, lysosomal and DNA damages, and oxidative stress induced by acrylamide in human body.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- * E-mail: , (AS); (ES)
| | - Elahe Baghal
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Faculty of Medicine, Internal Medicine Department (Pulmonary Division), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Niloufar Hashemidanesh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- * E-mail: , (AS); (ES)
| |
Collapse
|
4
|
Oliveira G, Radovanovic N, Nunes MCDN, Fristedt R, Alminger M, Andlid T. Extracts of Digested Berries Increase the Survival of Saccharomyces cerevisiae during H 2O 2 Induced Oxidative Stress. Molecules 2021; 26:molecules26041057. [PMID: 33670455 PMCID: PMC7922075 DOI: 10.3390/molecules26041057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Many studies suggest anthocyanins may prevent the development of several diseases. However, anthocyanin bioactivity against cellular stress is not fully understood. This study aimed to evaluate the protective effect of berry anthocyanins on stressed cells using Saccharomyces cerevisiae. The impact of in vitro gastrointestinal digestion on anthocyanin profiles was also assessed. Bilberry and blackcurrant had higher anthocyanin levels than raspberry and strawberry, but digestion reduced the detected anthocyanins by approximately 90%. Yeast cells with and without digested or nondigested anthocyanin extracts were exposed to H2O2 and examined for survival. In the presence of anthocyanins, particularly from digested strawberry, a significant increase in cell survival was observed, suggesting that the type and levels of anthocyanins are important factors, but they also need to undergo gastrointestinal (GI) structural modifications to induce cell defence. Results also showed that cells need to be exposed to anthocyanins before the stress was applied, suggesting induction of a cellular defence system by anthocyanins or their derivatives rather than by a direct antioxidative effect on H2O2. Overall, data showed that exposure of severely stressed yeast cells to digested berry extracts improved cell survival. The findings also showed the importance of considering gastrointestinal digestion when evaluating anthocyanins’ biological activity.
Collapse
Affiliation(s)
- Gabriel Oliveira
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden; (G.O.); (N.R.); (R.F.); (M.A.)
| | - Nataša Radovanovic
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden; (G.O.); (N.R.); (R.F.); (M.A.)
| | - Maria Cecilia do Nascimento Nunes
- Food Quality Laboratory, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA;
| | - Rikard Fristedt
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden; (G.O.); (N.R.); (R.F.); (M.A.)
| | - Marie Alminger
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden; (G.O.); (N.R.); (R.F.); (M.A.)
| | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden; (G.O.); (N.R.); (R.F.); (M.A.)
- Correspondence:
| |
Collapse
|
5
|
Rifai L, Saleh FA. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int J Toxicol 2020; 39:93-102. [PMID: 32013673 DOI: 10.1177/1091581820902405] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Acrylamide (AA) is a food contaminant present in a wide range of frequently consumed foods, which makes human exposure to this toxicant unfortunately unavoidable. However, efforts to reduce the formation of AA in food have resulted in some success. This review aims to summarize the occurrence of AA and the potential mitigation strategies of its formation in foods. Formation of AA in foods is mainly linked to Maillard reaction, which is the first feasible route that can be manipulated to reduce AA formation. Furthermore, manipulating processing conditions such as time and temperature of the heating process, and including certain preheating treatments such as soaking and blanching, can further reduce AA formation. Due to the high exposure to AA, recognition of its toxic effect is necessary, especially in developing countries where awareness about AA health risks is still very low. Therefore, this review also focuses on the different toxic effects of AA exposure, including neurotoxicity, genotoxicity, carcinogenicity, reproductive toxicity, hepatotoxicity, and immunotoxicity.
Collapse
Affiliation(s)
- Lubna Rifai
- Department of Nutrition & Dietetics, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Fatima A Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
6
|
Uysal S, Ugurlu A, Zengin G, Baloglu MC, Altunoglu YC, Mollica A, Custodio L, Neng NR, Nogueira JMF, Mahomoodally MF. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem Toxicol 2017; 111:525-536. [PMID: 29217268 DOI: 10.1016/j.fct.2017.11.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Abstract
Bidens tripartita L. is a traditional phyto-remedy used in several countries, yet there is still a paucity of data on its biological potential. We aimed to provide new insights on the pharmacological potential of extracts prepared from B. tripartita via highlighting its antioxidant, key enzymes inhibitory potency, and DNA protecting effects. Phytochemical profile was established using High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) and bioactive compound(s) docked against target enzymes using in silico methods. Cytotoxicity against three cancer cell lines was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) cell viability test. The main compounds were luteolin-7-glucoside (cynaroside), chlorogenic acid, and epicatechin in the extracts. The methanol extract exhibited the highest radical scavenging activity. Ethyl acetate extract showed strongest α-amylase inhibitory activity, while the best α-glucosidase inhibitory effect recorded for the methanol extract. Molecular docking showed that cynaroside strongly interact to α-glucosidase cavity by establishing six hydrogen bonds. B. tripartita extracts were found to protect supercoiled form of pUC19 plasmid (>70%) and also showed anti-proliferative properties. Results amassed in the present study add on to a growing body of literature on the multi-pharmacological potency of B. tripartita which can be applied to bio-products development geared towards management of common diseases.
Collapse
Affiliation(s)
- Sengul Uysal
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey.
| | - Asli Ugurlu
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey.
| | - Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Campus, 42250, Konya, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Adriano Mollica
- Department of Pharmacy University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy
| | - Luisa Custodio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Nuno R Neng
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - José M F Nogueira
- Faculty of Sciences of the University of Lisbon, Centre of Chemistry and Biochemistry/Department of Chemistry and Biochemistry, Building C8, Floor 5, Campo Grande, 1749-016 Lisbon, Portugal
| | - M Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| |
Collapse
|