1
|
Mohan Prakash RL, Ravi DA, Hwang DH, Kang C, Kim E. Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish. Toxins (Basel) 2024; 16:410. [PMID: 39330868 PMCID: PMC11435582 DOI: 10.3390/toxins16090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.
Collapse
Affiliation(s)
| | - Deva Asirvatham Ravi
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Bravo FI, Calvo E, López-Villalba RA, Torres-Fuentes C, Muguerza B, García-Ruiz A, Morales D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023; 15:457. [PMID: 36678328 PMCID: PMC9864718 DOI: 10.3390/nu15020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Hypertension (HTN) is the leading cause of premature deaths worldwide and the main preventable risk factor for cardiovascular diseases. Therefore, there is a current need for new therapeutics to manage this condition. In this regard, protein hydrolysates containing antihypertensive bioactive peptides are of increasing interest. Thus, agri-food industry byproducts have emerged as a valuable source to obtain these hydrolysates as they are rich in proteins and inexpensive. Among these, byproducts from animal origin stand out as they are abundantly generated worldwide. Hence, this review is focused on evaluating the potential role of chicken slaughterhouse byproducts as a source of peptides for managing HTN. Several of these byproducts such as blood, bones, skins, and especially, chicken feet have been used to obtain protein hydrolysates with angiotensin-converting enzyme (ACE)-inhibitory activity and blood pressure-lowering effects. An increase in levels of endogenous antioxidant compounds, a reduction in ACE activity, and an improvement of HTN-associated endothelial dysfunction were the mechanisms underlying their effects. However, most of these studies were carried out in animal models, and further clinical studies are needed in order to confirm these antihypertensive properties. This would increase the value of these byproducts, contributing to the circular economy model of slaughterhouses.
Collapse
Affiliation(s)
| | | | | | | | | | - Almudena García-Ruiz
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | | |
Collapse
|
3
|
Romero-Garay MG, Montalvo-González E, Hernández-González C, Soto-Domínguez A, Becerra-Verdín EM, De Lourdes García-Magaña M. Bioactivity of peptides obtained from poultry by-products: A review. Food Chem X 2022; 13:100181. [PMID: 35498958 PMCID: PMC9039914 DOI: 10.1016/j.fochx.2021.100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 10/26/2022] Open
Abstract
The production and consumption of poultry products (chicken, duck, and turkey) are continually growing throughout the world, leading to the generation of thousands of tons of organic by-products, which may be important sources of bioactive peptides. The bioactive peptides isolated from poultry by-products have biological properties that can be useful in the prevention of different metabolic diseases and hence, their consumption could be beneficial for human health. Such peptides can be used as nutraceuticals, and their inclusion as active components of functional food products is increasingly gaining attention. The aim of this review was to present the investigations of the biological effect of the peptides obtained from different poultry by-products and the possible mechanisms of action underlying these effects.
Collapse
Affiliation(s)
- Martha Guillermina Romero-Garay
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| | - Crisantema Hernández-González
- Centro de Investigación en Alimentación y Desarrollo, A. C., Unidad Mazatlán, Av. Sábalo Cerritos s/n. Mazatlán, Sinaloa 89010, Mexico
| | - Adolfo Soto-Domínguez
- Histology Department, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero y E. Aguirre Pequeño SN, C.P. 64460. Monterrey, Nuevo León, Mexico
| | - Eduardo Mendeleev Becerra-Verdín
- Clinical Research and Histology Laboratory, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo S/N, 63155 Tepic, Nayarit, Mexico
| | - María De Lourdes García-Magaña
- Integral Research Laboratory Food, Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Col. Lagos del Country 63175, Tepic, Nayarit, Mexico
| |
Collapse
|
4
|
Feng L, Chen J, Yan W, Ye Z, Yu J, Yao G, Wu Y, Zhang J, Yang D. Preparation of Active Peptides from Camellia vietnamensis and Their Metabolic Effects in Alcohol-Induced Liver Injury Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061790. [PMID: 35335153 PMCID: PMC8951368 DOI: 10.3390/molecules27061790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Liver damage seriously affects human health. Over 35% of cases of acute liver damage are caused by alcohol damage. Thus, finding drugs that can inhibit and effectively treat this disease is necessary. This article mainly focuses on the effect of the metabolome physical activity of active peptides in Camellia vietnamensis active peptide (CMAP) and improving liver protection. DEAE Sepharose FF ion-exchange column chromatography was used in separating and purifying crude peptides from Camellia vietnamensis Two components, A1 and A2, were obtained, and the most active A1 was selected. Sephadex G-100 gel column chromatography was used in A1 separation and purification. Three components, Al-1, Al-2, and Al-3, were obtained. Through antioxidant activity in vitro as an index of inspection, the relatively active component A1-2 was removed. Reverse-phase high-performance liquid chromatography showed that the purity of component A1-2 was 93.45%. The extracted CMAPs acted on alcoholic liver injury cells. Metabolomics studies revealed that the up-regulated metabolites were ribothymidine and xanthine; the down-regulated metabolites were hydroxyphenyllactic acid, creatinine, stearoylcarnitine, and inosine. This study provides an effective theoretical support for subsequent research.
Collapse
Affiliation(s)
- Lu Feng
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou 570228, China; (L.F.); (J.C.)
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Guanglong Yao
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
- Correspondence: (G.Y.); (Y.W.); Tel./Fax: +86-153-4886-9654 (G.Y.); +86-136-3769-0969 (Y.W.)
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou 570228, China; (W.Y.); (Z.Y.); (J.Y.); (J.Z.); (D.Y.)
| |
Collapse
|
5
|
Su Y, Chen S, Cai S, Liu S, Pan N, Su J, Qiao K, Xu M, Chen B, Yang S, Liu Z. A Novel Angiotensin-I-Converting Enzyme (ACE) Inhibitory Peptide from Takifugu flavidus. Mar Drugs 2021; 19:651. [PMID: 34940650 PMCID: PMC8705986 DOI: 10.3390/md19120651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Alcalase, neutral protease, and pepsin were used to hydrolyze the skin of Takifugu flavidus. The T. flavidus hydrolysates (TFHs) with the maximum degree of hydrolysis (DH) and angiotensin-I-converting enzyme (ACE)-inhibitory activity were selected and then ultra-filtered to obtain fractions with components of different molecular weights (MWs) (<1, 1-3, 3-10, 10-50, and >50 kDa). The components with MWs < 1 kDa showed the strongest ACE-inhibitory activity with a half-maximal inhibitory concentration (IC50) of 0.58 mg/mL. Purification and identification using semi-preparative liquid chromatography, Sephadex G-15 gel chromatography, RP-HPLC, and LC-MS/MS yielded one new potential ACE-inhibitory peptide, PPLLFAAL (non-competitive suppression mode; IC50 of 28 μmmol·L-1). Molecular docking and molecular dynamics simulations indicated that the peptides should bind well to ACE and interact with amino acid residues and the zinc ion at the ACE active site. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that PPLLFAAL could significantly decrease the systolic blood pressure (SBP) and diastolic blood pressure (DBP) of SHRs after intravenous administration. These results suggested that PPLLFAAL may have potential applications in functional foods or pharmaceuticals as an antihypertensive agent.
Collapse
Affiliation(s)
- Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Shicheng Chen
- Department of Clinical and Diagnostic Sciences, School of Health Sciences, Oakland University, 433 Meadowbrook Road, Rochester, MI 48309, USA;
| | - Shuilin Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Jie Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| | - Suping Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (Y.S.); (S.C.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (S.L.); (N.P.); (J.S.); (K.Q.); (M.X.); (B.C.)
| |
Collapse
|
6
|
Chen J, Yu X, Chen Q, Wu Q, He Q. Screening and mechanisms of novel angiotensin-I-converting enzyme inhibitory peptides from rabbit meat proteins: A combined in silico and in vitro study. Food Chem 2021; 370:131070. [PMID: 34537424 DOI: 10.1016/j.foodchem.2021.131070] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Bioactive peptides derived from food proteins have various physiological roles and have attracted increasing attention in recent years. In this study, two novel ACE inhibitory peptides (EACF and CDF), screened from rabbit meat proteins using in silico methods, exhibited strong inhibitory effects in vitro. EACF and CDF were competitive and non-competitive inhibitors with half-maximal inhibitory concentrations of 41.06 ± 0.82 µM and 192.17 ± 2.46 µM, respectively. Molecular docking experiments revealed that EACF established eight H-bond interactions in the S1 and S2 pockets, and a metal-acceptor interaction with Zn 701. CDF shared four H-bond interactions in the S1 pocket of ACE. The results suggested that rabbit meat proteins could be a suitable material for the preparation of ACE inhibitory peptides, and that virtual screening is an effective, accurate and promising method for the discovery of novel active peptides.
Collapse
Affiliation(s)
- Junbo Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyun Wu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Yao G, Tang X, Ye Z, Yan W, Yu J, Wu Y, Zhang J, Yang D. Protective effect of Camellia vietnamensis active peptide on alcohol-induced hepatocyte injury. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1959525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Guanglong Yao
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province; Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education; College of Food Science and Technology, Hainan University, Haikou, People’s Republic of China
| | - Xuemei Tang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province; Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education; College of Food Science and Technology, Hainan University, Haikou, People’s Republic of China
| | - Zhouchen Ye
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| | - Wuping Yan
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| | - Yougen Wu
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| | - Junfeng Zhang
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| | - Dongmei Yang
- College of Horticulture, Hainan University, Haikou, People’s Republic of China
| |
Collapse
|
8
|
Zóia Miltenburg T, Uana da Silva M, Bosch G, Vasconcellos RS. Effects of enzymatically hydrolysed poultry byproduct meal in extruded diets on serum angiotensin-converting enzyme activity and aldosterone in cats. Arch Anim Nutr 2020; 75:64-77. [PMID: 33307796 DOI: 10.1080/1745039x.2020.1849899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Several peptides found in hydrolysed poultry byproduct meal can inhibit angiotensin-converting enzyme (ACE) activity, a property that indicates potential antihypertensive and health-promoting effects. This study aimed to assess the effects of extruded diets containing enzymatically hydrolysed poultry byproduct meal (HPM) on cat serum ACE activity and aldosterone (ALD) concentration, nutrient digestibility, and faecal characteristics. On the basis of a preliminary in vitro ACE inhibitory activity assay, a commercial HPM and a commercial conventional poultry byproduct meal (CPM) were selected for further investigation. Two isoenergetic and isonitrogenous diets were formulated: CPM diet (25.7% CPM) and HPM diet (24.7% HPM). In trial 1, the effect of diet on serum ACE activity and ALD concentration was evaluated using 8 healthy cats (4 female and 4 male, 4.1 ± 0.38 kg BW) in a crossover design, with 5 d of adaptation and blood collection on d 6. In trial 2, apparent total tract digestibility and faecal characteristics were evaluated using 12 cats (6 female and 6 male, 4.0 ± 0.72 kg BW) in a completely randomised design. Serum ACE and ALD were analysed using a mixed model, with diet as the fixed effect and cat as the random effect. Data from trial 2 were subjected to analysis of variance, and means were compared by Tukey's test. In vitro ACE inhibitory activity of HPM (90.4%) was higher than that of CPM (52.0%). Cats fed the HPM diet tended to have lower serum ACE activity than those fed the CPM diet (126 versus 142 U/l, p = 0.09). Serum ALD was not influenced by diet. Diets had similar digestibility values, and faecal consistency scores tended to be higher (firmer faeces) in cats fed the CPM diet than in cats fed the HPM diet (4.6 versus 4.0, p = 0.09). Inclusion of HPM in extruded diets may reduce cat serum ACE activity and promote good faecal consistency without affecting digestibility. Further investigations are needed to explore the potential health benefits of HPM in hypertensive cats.
Collapse
Affiliation(s)
- Tânia Zóia Miltenburg
- Department of Animal Science, State University of Maringá , Maringá, Brazil.,Animal Nutrition Group, Wageningen University and Research , Wageningen, Netherlands
| | | | - Guido Bosch
- Animal Nutrition Group, Wageningen University and Research , Wageningen, Netherlands
| | | |
Collapse
|
9
|
Memarpoor-Yazdi M, Zare-Zardini H, Mogharrab N, Navapour L. Purification, Characterization and Mechanistic Evaluation of Angiotensin Converting Enzyme Inhibitory Peptides Derived from Zizyphus Jujuba Fruit. Sci Rep 2020; 10:3976. [PMID: 32132600 PMCID: PMC7055321 DOI: 10.1038/s41598-020-60972-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/18/2020] [Indexed: 12/02/2022] Open
Abstract
The synthetic Angiotensin Converting Enzyme (ACE) inhibitors have side effects and hence demands for natural ACE inhibitors have been rising. The aim of this study is to purify and introduce natural ACE inhibitors extracted from Zizyphus jujuba fruits. Proteins from Zizyphus jujuba were lysed by trypsin, papain and their combination. Acquired peptides were purified and evaluated for ACE inhibitory activity. Peptide fractions with inhibitory activity were sequenced using tandem mass spectrometry. To elucidate the mode of peptide binding to ACE, homology modeling, molecular docking and molecular dynamics simulation were performed. Amino acid sequence of F2 and F4 peptides, which were the most active hydrolysates, were determined to be IER and IGK with the IC50 values of 0.060 and 0.072 mg/ml, respectively. Results obtained by computational analysis revealed that similar to the common ACE competitive inhibitors such as captopril, IER tripeptide binds to the enzyme active site, in vicinity of the zinc binding site, and occupies the S1 and S2' subsites. Binding occurs through hydrogen bonding with Gln293, Lys522, His524, Tyr531 and also several hydrophobic interactions. Collectively, these findings indicate that IER tripeptide inhibits the rabbit ACE enzyme through a competitive mechanism of inhibition with IC50 values in the millimolar range.
Collapse
Affiliation(s)
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Navid Mogharrab
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
10
|
Noorani KPM, Nazeer RA. Enzymatic Production of Two Tri-peptides on ACE-I Inhibition and Antioxidant Activities. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10037-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Karami Z, Peighambardoust SH, Hesari J, Akbari-Adergani B, Andreu D. Identification and synthesis of multifunctional peptides from wheat germ hydrolysate fractions obtained by proteinase K digestion. J Food Biochem 2019; 43:e12800. [PMID: 31353589 DOI: 10.1111/jfbc.12800] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022]
Abstract
Wheat germ protein hydrolysate (WGPH) was obtained by proteinase K digestion, in order to produce bioactive antioxidant and antihypertensive peptides. Response surface methodology (RSM) was used to optimize hydrolysis conditions (enzyme-to-substrate ratio, time, and temperature) for antioxidant activity of hydrolysates. The crude WGPH produced in this way significantly inhibited angiotensin-I converting enzyme (ACE) in a concentration-dependent manner. It was next fractionated by reversed-phase semi-preparative High Performance Liquid Chromatography (HPLC) into 12 fractions that were examined for antioxidant and antihypertensive activities. Fractions with antioxidant and ACE-inhibitory activities were then submitted to further analysis by nano-LC-ESI-MS-MS. Among the various peptides identified, MDATALHYENQK (IC50 : 293.3 ± 6.5 µg/ml) and SGGSYADELVSTAK (IC50 : 265.5 ± 8.3 µg/ml) displayed antioxidant activity and VALTGDNGHSDHVVHF (IC50 : 189.3 ± 4.05 µg/ml), VDSLLTAAK (IC50 : 159.7 ± 0.33 µg/ml), MDATALHYENQK (IC50 : 303.6 ± 2.47 µg/ml), IGGIGTVPVGR (IC50 : 125.7 ± 2.3 µg/ml) and SGGSYADELVSTAK (IC50 : 128.2 ± 1.17 µg/ml) showed good ACE-inhibitory activity. PRACTICAL APPLICATIONS: Wheat milling industries produce massive amounts of wheat germ as by-product that can be converted into valuable compounds. The present research indicates that proteinase K is useful to hydrolyze wheat germ proteins in a search for bioactive peptides with antioxidant and ACE-inhibitory properties. The identified peptides can be regarded as functional food additives, or nutraceuticals to improve human health.
Collapse
Affiliation(s)
- Zohreh Karami
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | | | - Javad Hesari
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - David Andreu
- Proteomics Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona, Spain
| |
Collapse
|
12
|
|
13
|
Udenigwe CC, Girgih AT, Mohan A, Gong M, Malomo SA, Aluko RE. Antihypertensive and bovine plasma oxidation-inhibitory activities of spent hen meat protein hydrolysates. J Food Biochem 2017. [DOI: 10.1111/jfbc.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences; University of Ottawa; Ottawa Ontario K1N 5E3 Canada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia B2N 5E3 Canada
| | - Abraham T. Girgih
- Department of Human Nutritional Sciences, and the Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Manitoba R3T 2N2 Canada
| | - Aishwarya Mohan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia B2N 5E3 Canada
| | - Min Gong
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture; Dalhousie University; Truro Nova Scotia B2N 5E3 Canada
| | - Sunday A. Malomo
- Department of Human Nutritional Sciences, and the Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Manitoba R3T 2N2 Canada
| | - Rotimi E. Aluko
- Department of Human Nutritional Sciences, and the Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Manitoba R3T 2N2 Canada
| |
Collapse
|