1
|
Shakoor M, Tareen F, Rehman Z, Saghir K, Ashraf W, Anjum S, Ahmad T, Alqahtani F, Imran I. Probiotics by Modulating Gut-Brain Axis Together With Brivaracetam Mitigate Seizure Progression, Behavioral Incongruities, and Prevented Neurodegeneration in Pentylenetetrazole-Kindled Mice. CNS Neurosci Ther 2024; 30:e70078. [PMID: 39470120 PMCID: PMC11520030 DOI: 10.1111/cns.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The microbiota-gut-brain axis (MGBA) is a central nexus that integrates higher cognitive and emotional centers of the central nervous system (CNS) within the intricate functioning of the intestine. Accumulating evidence suggests that dysbiosis in the taxonomic diversity of gut flora plays a salient role in the progression of epilepsy and comorbid secondary complications. METHODS In the current study, we investigated the impact of long-term oral bacteriotherapy (probiotics; 10 mL/kg; 109 colony-forming unit/ml) as an adjunctive treatment intervention with brivaracetam (BRV; 10 mg/kg) over 21 days on pentylenetetrazole (PTZ) induced augmented epileptic response and associated electrographical and behavioral perturbations in mice. Moreover, we also unveiled antioxidant capacity and histopathologic changes in treated versus non-treated animals. RESULTS Results revealed combination increases seizure threshold and prevented high ictal spiking. Additionally, it alleviated PTZ-induced neuropsychiatric disturbances such as anxiety and depressive-like phenotype along with cognitive deficits. Furthermore, dual therapy prompted physiological oxidant/antioxidant balance as evidenced by increased activity of antioxidant enzymes (SOD and catalase) and reduced levels of oxidative stressor (MDA). This therapeutic intervention with commensal species suppressed network-driven neuroinflammation and preserved normal cytoarchitecture with intact morphology in the pyramidal layers of cornu ammonis (CA1 and CA3). CONCLUSION Our study provides supporting evidence for the use of probiotics as adjunctive therapy with anti-seizure medications to modulate epileptogenic processes and related multimorbidities, particularly in individuals with drug-resistant seizures.
Collapse
Affiliation(s)
- Muhammad Usman Shakoor
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Fashwa Khan Tareen
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Zohabia Rehman
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Khaled Ahmed Saghir
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| | | | - Tanveer Ahmad
- Institut Pour l'Avancée Des Biosciences, Centre de Recherche UGA/INSERM U1209/CNRS 5309Université Grenoble AlpesGrenobleFrance
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of PharmacyBahauddin Zakariya UniversityMultanPakistan
| |
Collapse
|
2
|
Banerjee A, Chatterji U. Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice. CHEMOSPHERE 2024; 364:143293. [PMID: 39245217 DOI: 10.1016/j.chemosphere.2024.143293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Severe toxic effects of arsenic on human physiology have been of immense concern worldwide. Arsenic causes irrevocable structural and functional disruption of tissues, leading to major diseases in chronically exposed individuals. However, it is yet to be resolved whether the effects result from direct deposition and persistence of arsenic in tissues, or via activation of indirect signaling components. Emerging evidences suggest that gut inhabitants play an active role in orchestrating various aspects of brain physiology, as the gut-brain axis maintains cognitive health, emotions, learning and memory skills. Arsenic-induced dysbiosis may consequentially evoke neurotoxicity, eventually leading to anxiety and depression. To delineate the mechanism of action, mice were exposed to different concentrations of arsenic. Enrichment of Gram-negative bacteria and compromised barrier integrity of the gut enhanced lipopolysaccharide (LPS) level in the bloodstream, which in turn elicited systemic inflammation. Subsequent alterations in neurotransmitter levels, microglial activation and histoarchitectural disruption in brain triggered onset of anxiety- and depression-like behaviour in a dose-dependent manner. Finally, to confirm whether the neurotoxic effects are specifically a consequence of modulation of gut microbiota (GM) by arsenic and not arsenic accumulation in the brain, fecal microbiota transplantations (FMT) were performed from arsenic-exposed mice to healthy recipients. 16S rRNA gene sequencing indicated major alterations in GM population in FMT mice, leading to severe structural, functional and behavioural alterations. Moreover, suppression of Toll-like receptor 4 (TLR4) using vivo-morpholino oligomers (VMO) indicated restoration of the altered parameters towards normalcy in FMT mice, confirming direct involvement of the GM in inducing neurotoxicity through the arsenic-gut-brain axis. This study accentuates the potential role of the gut microbiota in promoting neurotoxicity in arsenic-exposed mice, and has immense relevance in predicting neurotoxicity under altered conditions of the gut for designing therapeutic interventions that will target gut dysbiosis to attenuate arsenic-mediated neurotoxicity.
Collapse
Affiliation(s)
- Ananya Banerjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India; Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, India.
| |
Collapse
|
3
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
4
|
Gawas CG, Mathur S, Wani M, Tabassum H. Nigella sativa and its nano-mediated approach toward management of neurodegenerative disorders: A review. IBRAIN 2023; 9:111-123. [PMID: 37786518 PMCID: PMC10529340 DOI: 10.1002/ibra.12091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 10/04/2023]
Abstract
Nigella sativa L., also known as black seed or black cumin, is a plant that has been used for centuries. In the past, this flowering plant was used as a food preservative and medicinal herb. A vital component of Nigella sativa, thymoquinone (TQ), plays a significant therapeutic role in the management of most diseases, including cancer, diabetes mellitus, hypertension, inflammation, gastrointestinal disorders, and neurodegenerative disorders. Neurodegenerative disorders are primarily caused by neurotransmitter hypoactivity, particularly insufficient serotonin activity. It has been discovered that many medicinal herbs and their active compounds have therapeutic value. Black cumin seeds have been used to heal ailments and its history traces back to ancient times such as ancient Babylonia. They can be used applied to alleviate edema, hair loss, and bruising, and consumd to treat stomach issues. It is one of the most feasible and effective medicinal plants. The use of nanoformulations based on Nigella sativa and TQ to treat neurodegenerative diseases (NDs) has yielded promising outcomes. Customized administration of nanoparticle (NP) systems and nanomedicine are two of the many options for drug delivery to the central nervous system (CNS) that are attracting increasing interest. Delivering a therapeutic and diagnostic substance to a particular location is the core target of NPs. Because of their distinct cell uptake and trafficking mechanisms, NPs can reduce the amount that accumulates in undesirable organs. The focus of the current review is on recent studies on the various neuroprotective properties of Nigella sativa as well as nanoformulations for NDs and the brain's uptake of NPs. The review summarizes the In vivo, In vitro, and In silico studies on the protective effects of black cumin against neurodegenerative disorders.
Collapse
Affiliation(s)
- Chaitali G. Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
5
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
6
|
Khan H, Nazir S, Farooq RK, Khan IN, Javed A. Fabrication and Assessment of Diosgenin Encapsulated Stearic Acid Solid Lipid Nanoparticles for Its Anticancer and Antidepressant Effects Using in vitro and in vivo Models. Front Neurosci 2022; 15:806713. [PMID: 35221890 PMCID: PMC8866708 DOI: 10.3389/fnins.2021.806713] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cascade plays a pivotal role in the onset and progression of major depressive disorder (MDD) and glioblastoma multiforme (GBM). Therefore, questing natural compounds with anti-inflammatory activity such as diosgenin can act as a double-edged sword targeting cancer and cancer-induced inflammation simultaneously. The blood–brain barrier limits the therapeutic efficiency of the drugs against intracranial pathologies including depression and brain cancers. Encapsulating a drug molecule in lipid nanoparticles can overcome this obstacle. The current study has thus investigated the anticancer and antidepressant effect of Tween 80 (P80) coated stearic acid solid lipid nanoparticles (SLNPs) encapsulating the diosgenin. Physio-chemical characterizations of SLNPs were performed to assess their stability, monodispersity, and entrapment efficiency. In vitro cytotoxic analysis of naked and drug encapsulated SLNPs on U-87 cell line indicated diosgenin IC50 value to be 194.4 μM, while diosgenin encapsulation in nanoparticles slightly decreases the toxicity. Antidepressant effects of encapsulated and non-encapsulated diosgenin were comprehensively evaluated in the concanavalin-A–induced sickness behavior mouse model. Behavior test results indicate that diosgenin and diosgenin encapsulated nanoparticles significantly alleviated anxiety-like and depressive behavior. Diosgenin incorporated SLNPs also improved grooming behavior and social interaction as well as showed normal levels of neutrophils and leukocytes with no toxicity indication. In conclusion, diosgenin and diosgenin encapsulated solid lipid nanoparticles proved successful in decreasing in vitro cancer cell proliferation and improving sickness behavioral phenotype and thus merit further exploration.
Collapse
Affiliation(s)
- Hina Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Nazir
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ishaq N. Khan
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- *Correspondence: Aneela Javed,
| |
Collapse
|
7
|
Nazir S, Farooq RK, Nasir S, Hanif R, Javed A. Therapeutic effect of Thymoquinone on behavioural response to UCMS and neuroinflammation in hippocampus and amygdala in BALB/c mice model. Psychopharmacology (Berl) 2022; 239:47-58. [PMID: 35029704 DOI: 10.1007/s00213-021-06038-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Major depressive disorder is the leading cause of disability worldwide. The corticolimbic system plays a critical role in the emotional and cognitive aspects of major depressive disorder. Owing to the unsatisfactory efficacy of conventional antidepressants, there is a need to explore novel therapies. OBJECTIVES The current study aimed to explore the antidepressant potential of thymoquinone, a natural compound with anti-inflammatory activity, and propose its underlying mechanism of action in the unpredictable chronic mild stress (UCMS) mouse model. METHODS Coat state, forced swim test, elevated plus maze test, novelty suppressed feeding test and social interaction test were performed to quantify the behavioural shift induced by UCMS and the effect of thymoquinone and fluoxetine treatment. In addition, messenger RNA (mRNA) expression levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and BDNF and NeuN were analysed by a quantitative real-time polymerase chain reaction in the hippocampus and amygdala of experimental and control groups. RESULTS UCMS significantly deteriorated coat state. Thymoquinone reinstated the resignation behaviour and latency to feed affected by UCMS. UCMS induced an increase in inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the hippocampus and amygdala, which was decreased by thymoquinone. UCMS caused an increase in BDNF and NeuN mRNA levels in the amygdala while a decrease in the hippocampus. This opposite effect on BDNF was also compensated by thymoquinone; however, thymoquinone did not significantly change Ki67 and NeuN mRNA levels in the hippocampus. CONCLUSIONS Thymoquinone restored the behavioural changes induced by UCMS. In addition, the antidepressant effect of thymoquinone is in line with changes in inflammatory parameters and changes in BDNF in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Sadia Nazir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sadia Nasir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rumeza Hanif
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Aneela Javed
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.
| |
Collapse
|