1
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2024. [DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Xu Y, Du H, Chen Y, Ma C, Zhang Q, Li H, Xie Z, Hong Y. Targeting the gut microbiota to alleviate chemotherapy-induced toxicity in cancer. Crit Rev Microbiol 2024; 50:564-580. [PMID: 37439132 DOI: 10.1080/1040841x.2023.2233605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
Despite ongoing breakthroughs in novel anticancer therapies, chemotherapy remains a mainstream therapeutic modality in different types of cancer. Unfortunately, chemotherapy-related toxicity (CRT) often leads to dose limitation, and even results in treatment termination. Over the past few years, accumulating evidence has indicated that the gut microbiota is extensively engaged in various toxicities initiated by chemotherapeutic drugs, either directly or indirectly. The gut microbiota can now be targeted to reduce the toxicity of chemotherapy. In the current review, we summarized the clinical relationship between the gut microbiota and CRT, as well as the critical role of the gut microbiota in the occurrence and development of CRT. We then summarized the key mechanisms by which the gut microbiota modulates CRT. Furthermore, currently available strategies to mitigate CRT by targeting the gut microbiota were summarized and discussed. This review offers a novel perspective for the mitigation of diverse chemotherapy-associated toxic reactions in cancer patients and the future development of innovative drugs or functional supplements to alleviate CRT via targeting the gut microbiota.
Collapse
Affiliation(s)
- Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Suparan K, Sriwichaiin S, Thonusin C, Sripetchwandee J, Khuanjing T, Maneechote C, Nawara W, Arunsak B, Chattipakorn N, Chattipakorn SC. Donepezil ameliorates gut barrier disruption in doxorubicin-treated rats. Food Chem Toxicol 2024; 189:114741. [PMID: 38759714 DOI: 10.1016/j.fct.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
An impact of donepezil against doxorubicin-induced gut barrier disruption and gut dysbiosis has never been investigated. Twenty-four male Wistar rats were divided into three groups. Each group was treated with either vehicle as a control, doxorubicin, or doxorubicin-cotreated with donepezil. Heart rate variability was assessed to reflect the impact of doxorubicin and donepezil. Then, animals were euthanized, and the ileum and its contents were collected in each case to investigate the gut barrier and gut microbiota, respectively. The microbiota-derived endotoxin, trimethylamine N-oxide (TMAO), and short-chain fatty acids (SCFAs) in the serum were determined. An increase in the sympathetic tone, endotoxins, and TMAO levels with disruption of the gut barrier and a decrease in SCFAs levels were observed in doxorubicin-treated rats. Gut microbiota of doxorubicin-treated rats was significantly different from that of the control group. Donepezil treatment significantly decreased the sympathetic tone, restored the gut barrier, and reduced endotoxin and TMAO levels in doxorubicin-treated rats. Nonetheless, donepezil administration did not alter the gut microbiota profile and levels of SCFAs in doxorubicin-treated rats. Doxorubicin impaired the autonomic balance and the gut barrier, and induced gut dysbiosis, resulting in gut toxicity. Donepezil partially improved the doxorubicin-induced gut toxicity through balancing the autonomic disturbance.
Collapse
Affiliation(s)
- Kanokphong Suparan
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thawatchai Khuanjing
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
6
|
Meng C, Wang X, Fan L, Fan Y, Yan Z, Wang Y, Li Y, Zhang J, Lv S. A new perspective in the prevention and treatment of antitumor therapy-related cardiotoxicity: Intestinal microecology. Biomed Pharmacother 2024; 170:115588. [PMID: 38039758 DOI: 10.1016/j.biopha.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 12/03/2023] Open
Abstract
The continuous development of antitumor therapy has significantly reduced the mortality of patients with malignancies. However, the antitumor-related cardiotoxicity has become the leading cause of long-term mortality in patients with malignancies. Besides, the pathogenesis of antitumor-related cardiotoxicity is still unclear, and practical means of prevention and treatment are lacking in clinical practice. Therefore, the major challenge is how to combat the cardiotoxicity of antitumor therapy effectively. More and more studies have shown that antitumor therapy kills tumor cells while causing damage to sensitive tissues such as the intestinal mucosa, leading to the increased permeability of the intestine and the dysbiosis of intestinal microecology. In addition, the dysbiosis of intestinal microecology contributes to the development and progression of cardiovascular diseases through multiple pathways. Thus, the dysbiosis of intestinal microecology may be a potential mechanism and target for antitumor-related cardiotoxicity. We summarized the characteristics of intestinal microecology disorders induced by antitumor therapy and the association between intestinal microecological dysbiosis and CVD. And on this basis, we hypothesized the potential mechanisms of intestinal microecology mediating the occurrence of antitumor-related cardiotoxicity. Then we reviewed the previous studies targeting intestinal microecology against antitumor-associated cardiotoxicity, aiming to provide a reference for future studies on the occurrence and prevention of antitumor-related cardiotoxicity by intestinal microecology.
Collapse
Affiliation(s)
- Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yajie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yanyang Li
- Department of integrated Chinese and Western medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China.
| |
Collapse
|
7
|
Mao J, Wang Y, Duan T, Yin N, Dong C, Ren X, Liu N, An X, Qi J. Effect of fermented dandelion on productive performance, meat quality, immune function, and intestinal microbiota of broiler chickens. BMC Vet Res 2023; 19:178. [PMID: 37773158 PMCID: PMC10540353 DOI: 10.1186/s12917-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Dandelion has a great potential to be used as feed additive. Using microbial fermentation technology to degrade cell walls is conducive to enable better release of bioactive compounds of dandelion. This study intended to explore the effect of fermented dandelion (FD) on production performance, meat quality, immune function, and intestinal microbiota of broiler chickens. One-hundred and twenty 1-day-old male Arbor Acres broiler chickens were randomly allotted into three treatments: CON (basal diet, control), LFD and HFD (basal diet with 500 and 1000 mg/kg FD, respectively), with five replicates of eight birds each. The experiment lasted for 42 days. RESULTS The results showed that birds in HFD group had increased ADG during 1-21 days (P < 0.05). On day 21, the bursa of Fabricius index of birds in LFD group was higher (P < 0.05), while the serum contents of IFN-γ and TNF-ɑ were lower in HFD group (P < 0.05). FD supplementation decreased the observed_species, shannon, chao1 and ace indexes (P < 0.05) as well as the abundance of Bacteroidota, Bacteroides, and Alistipes (P < 0.05). Birds in HFD group had higher abundance of Firmicutes and lower abundance of Verrucomicrobiota (P < 0.05). LFD group had lower abundance of unidentified_bacteria (P < 0.05). On day 42, the abdominal fat yield of HFD group was decreased (P < 0.05). Birds in LFD group had lower L* and b* values of breast muscle (P < 0.05), while higher spleen index. The CAT activities of breast muscle of FD groups were higher (P < 0.05). CONCLUSION In summary, dietary FD supplementation at 1000 mg/kg improved production performance and immune function and modulated microbiota composition in ileum of broiler chickens. FD can be supplemented in the diet to enhance performance and health of broiler chickens, of which 1000 mg/kg FD is more effective.
Collapse
Affiliation(s)
- Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China.
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China.
| | - Ting Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Chenlin Dong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xuerong Ren
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, 010018, China
| |
Collapse
|
8
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Yu W, Jiang Y, Xu H, Zhou Y. The Interaction of Gut Microbiota and Heart Failure with Preserved Ejection Fraction: From Mechanism to Potential Therapies. Biomedicines 2023; 11:biomedicines11020442. [PMID: 36830978 PMCID: PMC9953339 DOI: 10.3390/biomedicines11020442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a disease for which there is no definite and effective treatment, and the number of patients is more than 50% of heart failure (HF) patients. Gut microbiota (GMB) is a general term for a group of microbiota living in humans' intestinal tracts, which has been proved to be related to cardiovascular diseases, including HFpEF. In HFpEF patients, the composition of GMB is significantly changed, and there has been a tendency toward dysbacteriosis. Metabolites of GMB, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs) mediate various pathophysiological mechanisms of HFpEF. GMB is a crucial influential factor in inflammation, which is considered to be one of the main causes of HFpEF. The role of GMB in its important comorbidity-metabolic syndrome-also mediates HFpEF. Moreover, HF would aggravate intestinal barrier impairment and microbial translocation, further promoting the disease progression. In view of these mechanisms, drugs targeting GMB may be one of the effective ways to treat HFpEF. This review focuses on the interaction of GMB and HFpEF and analyzes potential therapies.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Hui Xu
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
- Institute for Hypertension, Soochow University, Suzhou 215000, China
- Correspondence: ; Tel./Fax: 86-512-65955057
| |
Collapse
|
10
|
Impact of Diet on Gut Microbiota Composition and Microbiota-Associated Functions in Heart Failure: A Systematic Review of In Vivo Animal Studies. Metabolites 2022; 12:metabo12121271. [PMID: 36557307 PMCID: PMC9787978 DOI: 10.3390/metabo12121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Heart failure (HF) represents a cardiovascular disease with high mortality and morbidity. The latest evidence shows that changes in the composition of the gut microbiota might play a pivotal role in the prevention and management of HF. This systematic review aims at assessing the potential associations between the diet, gut microbiota, and derived metabolites with the outcomes of HF. A systematic literature search was performed up to July 2022 on the PubMed, Web of Science, and Scopus databases. The PRISMA guidelines were followed when possible. The risk of bias was assessed with the SYRCLE and ARRIVE tools. A total of nine pre-clinical studies on animal models, with considerable heterogeneity in dietary interventions, were included. High-fiber/prebiotic diets (n = 4) and a diet rich in polyphenols (n = 1) modified the gut microbiota composition and increased microbial metabolites' activities, linked with an improvement in HF outcomes, such as a reduction in systolic blood pressure, cardiac hypertrophy, and left ventricular thickness. A high-fat diet (n = 2) or a diet rich in choline (n = 2) induced an increase in TMAO and indole derivative production associated with a decrease in cardiac function, systemic endotoxemia, and inflammation and an increase in cardiac fibrosis and cardiac remodeling. Although results are retrieved from animal studies, this systematic review shows the key role of the diet-especially a high-fiber and prebiotic diet-on gut microbial metabolites in improving HF outcomes. Further studies on human cohorts are needed to identify personalized therapeutic dietary interventions to improve cardiometabolic health.
Collapse
|
11
|
Liu T, Hu X, Chen P, Zhang R, Zhang S, Chang W, Wang J, Wang S. Effect of partially hydrolyzed guar gum on the composition and metabolic function of the intestinal flora of healthy mice. J Food Biochem 2022; 46:e14508. [PMID: 36332190 DOI: 10.1111/jfbc.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Partially hydrolyzed guar gum (PHGG), a water-soluble dietary fiber, has shown beneficial physiological effects in various disease models and is used as a prebiotic to regulate intestinal function. However, its role in healthy states remains unclear. The purpose of this study was to investigate the effects of PHGG on gut flora composition and predict metabolic function in healthy mice. Our study showed that PHGG supplementation had significant duration-dependent effects on the composition and function of the intestinal flora of healthy mice. In specific, although the long-term supplementation of PHGG may increase the abundance of some beneficial bacterial species and promote beneficial phenotypes, it may also cause increased body weight and decreased abundance and diversity of gut microorganisms. Therefore, the long-term use of PHGG as a nutritional product still requires further investigation. PRACTICAL APPLICATIONS: As the importance of the gut microbiota has become more widely recognized, interventions that modulate the microbiome and its interaction with the host have gained much attention. While the capability of some prebiotics has largely been shown to have many beneficial effects, the evidence leaves much desirable, and microbiota regulation is explored differently in healthy or diseased states. Currently, the scientific community and regulatory authorities are beginning to pay attention to these unregulated and over-the-counter products claiming to possess probiotic and prebiotic properties. Studies exploring the rationality of these prebiotics as nutraceuticals for use in health states are essential. This study focuses on the effects of PHGG, a prebiotic, on intestinal flora, metabolism, and function when used in a healthy state over a long period. It is helpful to have a clearer understanding of the effect of PHGG on intestinal flora and the possible mechanisms of action to exert effects, which are indicative for the future application of PHGG as a nutraceutical or therapeutic agent..
Collapse
Affiliation(s)
- Tong Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuefei Hu
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Peng Chen
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Renlingzi Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenjun Chang
- Department of Environmental Health, Naval Medical University, Shanghai, People's Republic of China
| | - Junjie Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Niwano Y, Kohzaki H, Shirato M, Shishido S, Nakamura K. Putative Mechanisms Underlying the Beneficial Effects of Polyphenols in Murine Models of Metabolic Disorders in Relation to Gut Microbiota. Curr Issues Mol Biol 2022; 44:1353-1375. [PMID: 35723314 PMCID: PMC8947480 DOI: 10.3390/cimb44030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of polyphenols on metabolic disorders have been extensively reported. The interaction of these compounds with the gut microbiota has been the focus of recent studies. In this review, we explored the fundamental mechanisms underlying the beneficial effects of polyphenols in relation to the gut microbiota in murine models of metabolic disorders. We analyzed the effects of polyphenols on three murine models of metabolic disorders, namely, models of a high-fat diet (HFD)-induced metabolic disorder, dextran sulfate sodium (DSS)-induced colitis, and a metabolic disorder not associated with HFD or DSS. Regardless of the model, polyphenols ameliorated the effects of metabolic disorders by alleviating intestinal oxidative stress, improving inflammatory status, and improving intestinal barrier function, as well as by modulating gut microbiota, for example, by increasing the abundance of short-chain fatty acid-producing bacteria. Consequently, polyphenols reduce circulating lipopolysaccharide levels, thereby improving inflammatory status and alleviating oxidative imbalance at the lesion sites. In conclusion, polyphenols likely act by regulating intestinal functions, including the gut microbiota, and may be a safe and suitable therapeutic agent for various metabolic disorders.
Collapse
Affiliation(s)
- Yoshimi Niwano
- Faculty of Nursing, Shumei University, Yachiyo 276-0003, Japan;
- Correspondence: ; Tel.: +81-47-411-7862
| | | | - Midori Shirato
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Shunichi Shishido
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| | - Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (M.S.); (S.S.); (K.N.)
| |
Collapse
|
13
|
Huang J, Wei S, Jiang C, Xiao Z, Liu J, Peng W, Zhang B, Li W. Involvement of Abnormal Gut Microbiota Composition and Function in Doxorubicin-Induced Cardiotoxicity. Front Cell Infect Microbiol 2022; 12:808837. [PMID: 35281446 PMCID: PMC8913537 DOI: 10.3389/fcimb.2022.808837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives Doxorubicin (Dox), a chemotherapeutic anthracycline agent for the treatment of a variety of malignancies, has a limitation in clinical application for dose-dependent cardiotoxicity. The purpose of this study was to explore the relationship between the composition/function of the gut microbiota and Dox-induced cardiotoxicity (DIC). Methods C57BL/6J mice were injected intraperitoneally with 15 mg/kg of Dox, with or without antibiotics (Abs) administration. The M-mode echocardiograms were performed to assess cardiac function. The histopathological analysis was conducted by H&E staining and TUNEL kit assay. The serum levels of creatine kinase (CK), CK-MB (CK-MB), lactic dehydrogenase (LDH), and cardiac troponin T (cTnT) were analyzed by an automatic biochemical analyzer. 16S rRNA gene and metagenomic sequencing of fecal samples were used to explore the gut microbiota composition and function. Key Findings Dox caused left ventricular (LV) dilation and reduced LV contractility. The levels of cardiomyocyte apoptosis and myocardial enzymes were elevated in Dox-treated mice compared with the control (Con) group. 16S rRNA gene sequencing results revealed significant differences in microbial composition between the two groups. In the Dox group, the relative abundances of Allobaculum, Muribaculum, and Lachnoclostridium were significantly decreased, whereas Faecalibaculum, Dubosiella, and Lachnospiraceae were significantly increased compared with the Con group at the genus level. Functional enrichment with Cluster of orthologous groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the Dox mice displayed different clusters of cellular processes and metabolism from the Con mice. The different species and their functions between the two groups were associated with the clinical factors of cardiac enzymes. Moreover, depletion of the gut microbiota could alleviate Dox-induced myocardial injury and cardiomyocyte apoptosis. Conclusions The study here shows that composition imbalance and functional changes of the gut microbiota can be one of the etiological mechanisms underlying DIC. The gut microbiota may serve as new targets for the treatment of cardiotoxicity and cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bikui Zhang, ; Wenqun Li,
| |
Collapse
|
14
|
Chen FX, Wan Q, Li QL, Fang J, Peng L, Hu J. Substance P prevents doxorubicin‑induced cardiomyocyte injury by regulating apoptosis and autophagy: In vitro and in vivo evidence. Mol Med Rep 2021; 25:50. [PMID: 34913064 PMCID: PMC8711026 DOI: 10.3892/mmr.2021.12566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022] Open
Abstract
The function of substance P (SP) in myocardial ischemia is well understood, but its effects on congestive heart failure are unclear. The present study aimed to use in vitro and in vivo approaches to investigate the effects of SP on doxorubicin‑induced cardiomyocyte injury. Pathological changes, apoptosis, cardiomyocyte ultrastructure and molecular mechanisms were evaluated in vitro and in vivo. The effects of SP on cell viability of H9c2 myocardial cells were evaluated using the Cell Counting Kit‑8 and flow cytometry. B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax), Beclin‑1 and microtubule‑associated protein 1A/1B‑light chain 3 (LC3) were detected by western blotting. Heart failure in rats was established by intraperitoneal injection of doxorubicin. The in vitro data demonstrated that SP at concentrations of 1 µg/ml inhibited doxorubicin‑induced apoptosis of H9c2 cells. Administration of doxorubicin reduced Bcl‑2, Beclin‑1 and LC3 expression levels in H9c2 cells, while having no effect on Bax levels. Administration of SP to these doxorubicin‑treated cells did not affect Bcl‑2 or Bax expression, but further reduced Beclin‑1 while inhibiting the reduction in LC3 expression. In vivo, food intake was significantly increased in rats in the SP group compared with the model group. Cardiomyocytes in the heart‑failure group underwent dysfunctional autophagy as ascertained by transmission electron microscopy. Compared with the heart‑failure group, these pathological changes, including loss of striations and vacuolation, were inhibited by SP treatment, which promoted Bax expression, reduced Beclin‑1 expression and inhibited the reduction in LC3 expression. Taken together, SP reduced cardiomyocyte apoptosis in doxorubicin‑induced cardiomyocyte injury, likely by promoting autophagy, which suggested that SP is a potential therapeutic target for doxorubicin‑induced heart failure.
Collapse
Affiliation(s)
- Fa-Xiu Chen
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qin Wan
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing-Ling Li
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Fang
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Le Peng
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Hu
- Department of Geriatrics and Gerontology, People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Zhou B, Wang L, Liang Y, Li J, Pan X. Arctiin suppresses H9N2 avian influenza virus-mediated inflammation via activation of Nrf2/HO-1 signaling. BMC Complement Med Ther 2021; 21:289. [PMID: 34836523 PMCID: PMC8620712 DOI: 10.1186/s12906-021-03462-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND H9N2 avian influenza viruses (AIVs) infect avian and mammalian hosts and provide internal genes for new emerging highly pathogenic avian viruses that cause severe pneumonia with high mortality, for which few medications are available. Arctiin, a bioactive lignan glycoside, has been reported to possess multiple pharmacological properties. However, the effect of arctiin on H9N2 virus infection is unclear. In the current study, we analyzed the effect of arctiin on H9N2 virus infection and the underlying molecular mechanism in vitro. METHODS The antiviral effect against H9N2 virus was determined by plaque reduction assay (PRA) and progeny virus reduction assay. We employed MTT assay, qRT-PCR, ELISA, immunofluorescence and Western blotting to better understand the anti-inflammatory effect and corresponding mechanism of arctiin on H9N2 virus-infected cells. RESULTS The results showed that arctiin had antiviral activity against H9N2 virus. Arctiin treatment reduced H9N2 virus-triggered proinflammatory cytokines, such as IL-6, and TNF-α. Moreover, arctiin significantly suppressed H9N2 virus-mediated expression of COX-2 and PGE2. Furthermore, we found that arctiin inhibited H9N2 virus-mediated activation of RIG-I/JNK MAPK signaling. Interestingly, arctiin treatment obviously reversed H9N2 virus-induced reduction of Nrf2, increased the nuclear translocation of Nrf2, and upregulated Nrf2 signaling target genes (HO-1 and SOD2). Zinc protoporphyrin (Znpp)-an HO-1 inhibitor-weakened the inhibitory effect of arctiin on H9N2 virus-induced RIG-I/JNK MAPK and proinflammatory mediators. CONCLUSION Taken together, these results suggested that the anti-inflammatory effects of arctiin on H9N2 virus infection may be due to the activation of Nrf2/HO-1 and blocked RIG-I/JNK MAPK signaling; thus, arctiin may be a promising agent for prevention and treatment of H9N2 virus infections.
Collapse
Affiliation(s)
- Beixian Zhou
- Center of stem cell and Regenerative Medicine, The People's Hospital of Gaozhou, Gaozhou, China
| | - Linxin Wang
- Guangzhou Laboratory, No. 9, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Yueyun Liang
- Department of Anesthesiology, The People's Hospital of Gaozhou, Gaozhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, NO. 195, Dongfengxi Road, Guangzhou, 510120, China. .,Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Xiping Pan
- Guangzhou Laboratory, No. 9, XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, China.
| |
Collapse
|