1
|
Karkad AA, Pirković A, Milošević M, Stojadinović B, Šavikin K, Marinković A, Jovanović AA. Silibinin-Loaded Liposomes: The Influence of Modifications on Physicochemical Characteristics, Stability, and Bioactivity Associated with Dermal Application. Pharmaceutics 2024; 16:1476. [PMID: 39598599 PMCID: PMC11597119 DOI: 10.3390/pharmaceutics16111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aims of the presented study were the development of four types of silibinin-loaded liposomes (multilamellar liposomes-MLVs, sonicated small unilamellar liposomes-SUVs, UV-irradiated liposomes, and lyophilized liposomes) and their physicochemical characterization and biological potential related to skin health benefits. METHODS The characterization was performed via the determination of the encapsulation efficiency (EE), particle size, polydispersity index, zeta potential, conductivity, mobility, storage stability, density, surface tension, viscosity, FT-IR, and Raman spectra. In addition, cytotoxicity on the keratinocytes and antioxidant and anti-inflammatory potential were also determined. RESULTS UV irradiation significantly changed the rheological and chemical properties of the liposomes and increased their cytotoxic effect. The lyophilization of the liposomes caused significant changes in their EE and physical characteristics, decreased their ABTS and DPPH radical scavenging potential, and increased their potential to reduce the expression of interleukin 1 beta (IL-1β) in cells treated with bacterial lipopolysaccharide. Sonication significantly changed the EE and physical and rheological properties of the liposomes, and slightly increased their cytotoxicity and reduction effect on IL-1β, while the anti-ABTS and anti-DPPH capacity of the liposomes significantly increased. All developed liposomes showed an increasing trend in particle size and a decreasing trend in zeta potential (absolute values) during storage. CONCLUSIONS Silibinin-loaded liposomes (MLVs and lyophilized) showed promising antioxidant activity (toward reactive oxygen species generated in cells) and anti-inflammatory effects (reducing macrophage inhibitory factor expression) on keratinocytes and did not lead to a change in their viability. Future perspectives will focus on wound healing, anti-aging, and other potential of developed liposomes with silibinin in sophisticated cell-based models of skin diseases, wounds, and aging.
Collapse
Affiliation(s)
- Amjed Abdullah Karkad
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
- Faculty of Medical Technology, Elmergib University, Msallata 7310500, Libya
| | - Andrea Pirković
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Milena Milošević
- Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Bojan Stojadinović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr Josif Pančić”, 11000 Belgrade, Serbia;
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (A.M.); (A.A.K.)
| | - Aleksandra A. Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| |
Collapse
|
2
|
Vidal C, Lopez-Polo J, Osorio FA. Physical Properties of Cellulose Derivative-Based Edible Films Elaborated with Liposomes Encapsulating Grape Seed Tannins. Antioxidants (Basel) 2024; 13:989. [PMID: 39199233 PMCID: PMC11351243 DOI: 10.3390/antiox13080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Combined use of edible films (EF) with nanoencapsulation systems could be an effective alternative for improving the films' physical properties and maintaining bioactive compounds' stability. This research work focuses on the combined use of EF of cellulose-derived biopolymers enriched with liposomes that encapsulate grape seed tannins and on the subsequent evaluation of the physical properties and wettability. Tannin-containing liposomal suspensions (TLS) showed 570.8 ± 6.0 nm particle size and 99% encapsulation efficiency. In vitro studies showed that the release of tannins from liposomes was slower than that of free tannins, reaching a maximum release of catechin of 0.13 ± 0.01%, epicatechin of 0.57 ± 0.01%, and gallic acid of 3.90 ± 0.001% over a 144 h period. Adding liposomes to biopolymer matrices resulted in significant decrease (p < 0.05) of density, surface tension, tensile strength, elongation percentage, and elastic modulus in comparison to the control, obtaining films with greater flexibility and lower breaking strength. Incorporating TLS into EF formulations resulted in partially wetting the hydrophobic surface, reducing adhesion and cohesion compared to EF without liposomes. Results indicate that the presence of liposomes improves films' physical and wettability properties, causing them to extend and not contract when applied to hydrophobic food surfaces.
Collapse
Affiliation(s)
- Constanza Vidal
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Johana Lopez-Polo
- Laboratorio de Biotecnología de los Alimentos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, El Líbano 5524, Macul, Santiago 783090, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago-Chile—USACH, Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
3
|
Nemati M, Shahosseini SR, Ariaii P. Review of fish protein hydrolysates: production methods, antioxidant and antimicrobial activity and nanoencapsulation. Food Sci Biotechnol 2024; 33:1789-1803. [PMID: 38752116 PMCID: PMC11091024 DOI: 10.1007/s10068-024-01554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 05/18/2024] Open
Abstract
Marine products have gained popularity due to their valuable components, especially protein, despite generating significant waste. Protein hydrolysates are widely recognized as the most effective method for transforming these low-value raw materials into high-value products. Fish protein hydrolysate (FPH), sourced from various aquatic wastes such as bones, scales, skin, and others, is rich in protein for value-added products. However, the hydrophobic peptides have limitations like an unpleasant taste and high solubility. Microencapsulation techniques provide a scientific approach to address these limitations and safeguard bioactive peptides. This review examines current research on FPH production methods and their antioxidant and antibacterial activities. Enzymatic hydrolysis using commercial enzymes is identified as the optimal method, and the antioxidant and antibacterial properties of FPH are substantiated. Microencapsulation using nanoliposomes effectively extends the inhibitory activity and enhances antioxidant and antibacterial capacities. Nevertheless, more research is needed to mitigate the bitter taste associated with FPH and enhance sensory attributes.
Collapse
Affiliation(s)
- Mahrokh Nemati
- Department of Fisheries Science, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- Research Consultant of Parmida Gelatin Company, Amol, Iran
| | | | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
- Managing Director of Parmida Gelatin Company, Amol, Iran
| |
Collapse
|
4
|
Sun L, Wang H, Du J, Wang T, Yu D. Ultrasonic-assisted extraction of grape seed procyanidins, preparation of liposomes, and evaluation of their antioxidant capacity. ULTRASONICS SONOCHEMISTRY 2024; 105:106856. [PMID: 38554530 PMCID: PMC10995857 DOI: 10.1016/j.ultsonch.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).
Collapse
Affiliation(s)
- Libin Sun
- School of Food Science, Northeast Agricultural University, Harbin 150030, China; School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Hong Wang
- School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Jing Du
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Cauduro VH, Cui J, Flores EMM, Ashokkumar M. Ultrasound-Assisted Encapsulation of Phytochemicals for Food Applications: A Review. Foods 2023; 12:3859. [PMID: 37893751 PMCID: PMC10606579 DOI: 10.3390/foods12203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
The use of phytochemicals as natural food additives is a topic of interest for both academic and food industry communities. However, many of these substances are sensitive to environmental conditions. For this reason, encapsulation is usually performed prior to incorporation into food products. In this sense, ultrasound-assisted encapsulation is an emerging technique that has been gaining attention in this field, bringing important advantages for the production of functional food products. This review article covered applications published in the last five years (from 2019 to 2023) on the use of ultrasound to encapsulate phytochemicals for further incorporation into food. The ultrasound mechanisms for encapsulation, its parameters, such as reactor configuration, frequency, and power, and the use of ultrasound technology, along with conventional encapsulation techniques, were all discussed. Additionally, the main challenges of existing methods and future possibilities were discussed. In general, ultrasound-assisted encapsulation has been considered a great tool for the production of smaller capsules with a lower polydispersity index. Encapsulated materials also present a higher bioavailability. However, there is still room for further developments regarding process scale-up for industrial applications. Future studies should also focus on incorporating produced capsules in model food products to further assess their stability and sensory properties.
Collapse
Affiliation(s)
- Vitoria Hagemann Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | - Jiwei Cui
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Erico Marlon Moraes Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (V.H.C.); (E.M.M.F.)
| | | |
Collapse
|
6
|
Effect of Liposomal Encapsulation and Ultrasonication on Debittering of Protein Hydrolysate and Plastein from Salmon Frame. Foods 2023; 12:foods12040761. [PMID: 36832836 PMCID: PMC9955801 DOI: 10.3390/foods12040761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The impacts of liposomal encapsulation on the bitterness of salmon frame protein hydrolysate (SFPH) and salmon frame protein plastein (SFPP) with the aid of ultrasound (20% amplitude, 750 W) for different time intervals (30, 60 and 120 s) were investigated. Liposomes loaded with 1% protein hydrolysate (L-PH1) and 1% plastein (L-PT1) showed the highest encapsulation efficiency and the least bitterness (p < 0.05). Ultrasonication for longer times reduced encapsulation efficiency (EE) and increased bitterness of both L-PH1 and L-PT1 along with a reduction in particle size. When comparing between L-PH1 and L-PT1, the latter showed less bitterness due to the lower bitterness in nature and higher entrapment of plastein in the liposomes. In vitro release studies also showed the delayed release of peptides from L-PT1 in comparison to the control plastein hydrolysate. Therefore, encapsulation of liposomes with 1% plastein could be an efficient delivery system for improving the sensory characteristics by lowering the bitterness of protein hydrolysates.
Collapse
|
7
|
Kuedo Z, Chotphruethipong L, Raju N, Reudhabibadh R, Benjakul S, Chonpathompikunlert P, Klaypradit W, Hutamekalin P. Oral Administration of Ethanolic Extract of Shrimp Shells-Loaded Liposome Protects against Aβ-Induced Memory Impairment in Rats. Foods 2022; 11:foods11172673. [PMID: 36076858 PMCID: PMC9455250 DOI: 10.3390/foods11172673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is characterized by a progressive loss of memory and cognition. Accumulation of amyloid-beta (Aβ) in the brain is a well-known pathological hallmark of the disease. In this study, the ethanolic extract of white shrimp (Litopenaous vannamei) shells and the ethanolic extract-loaded liposome were tested for the neuroprotective effects on Aβ1-42-induced memory impairment in rats. The commercial astaxanthin was used as a control. Treatment with the ethanolic extract of shrimp shells (EESS) at the dose of 100 mg/kg BW showed no protective effect in Aβ-treated rats. However, treatment with an EESS-loaded liposome at the dose of 100 mg/kg BW significantly improved memory ability in Morris water maze and object recognition tests. The beneficial effect of the EESS-loaded liposome was ensured by the increase of the memory-related proteins including BDNF/TrkB and pre- and post-synaptic protein markers GAP-43 and PSD-95 as well as pErk1/2/Erk1/2 in the cortex and hippocampus. These findings indicated the neuroprotective effects of the EESS-loaded liposome on Aβ-induced memory impairment in rats. It produced beneficial effects on learning behavior probably through the function of BDNF/TrkB/pErk1/2/Erk1/2 signaling pathway and subsequently the upregulation of synaptic proteins. The present study provided evidence that the neuroprotective property of the ESSE-loaded liposome could be a promising strategy for AD protection.
Collapse
Affiliation(s)
- Zulkiflee Kuedo
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Lalita Chotphruethipong
- Department of Food Science, Faculty of Science, Burapha University, Mueang Chonburi, Chonburi 20131, Thailand
| | - Navaneethan Raju
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pennapa Chonpathompikunlert
- Expert Center of Innovative Health Food and Biodiversity Research Centre, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanwimol Klaypradit
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: ; Tel.: +66-74-288-207
| |
Collapse
|
8
|
Lee JH, Park J, Shin DW. The Molecular Mechanism of Polyphenols with Anti-Aging Activity in Aged Human Dermal Fibroblasts. Molecules 2022; 27:molecules27144351. [PMID: 35889225 PMCID: PMC9322955 DOI: 10.3390/molecules27144351] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest organ in the body comprised of three different layers including the epidermis, dermis, and hypodermis. The dermis is mainly composed of dermal fibroblasts and extracellular matrix (ECM), such as collagen and elastin, which are strongly related to skin elasticity and firmness. Skin is continuously exposed to different kinds of environmental stimuli. For example, ultraviolet (UV) radiation, air pollutants, or smoking aggravates skin aging. These external stimuli accelerate the aging process by reactive oxygen species (ROS)-mediated signaling pathways and even cause aging-related diseases. Skin aging is characterized by elasticity loss, wrinkle formation, a reduced dermal-epidermal junction, and delayed wound healing. Thus, many studies have shown that natural polyphenol compounds can delay the aging process by regulating age-related signaling pathways in aged dermal fibroblasts. This review first highlights the relationship between aging and its related molecular mechanisms. Then, we discuss the function and underlying mechanism of various polyphenols for improving skin aging. This study may provide essential insights for developing functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Joo Hwa Lee
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
| | - Jooho Park
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea;
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea;
- Correspondence: ; Tel.: +82-43-840-3693
| |
Collapse
|