1
|
Nie X, Wang M, Yang S, Mu G, Ye Z, Zhou M, Chen W. Longitudinal joint effects of polycyclic aromatic hydrocarbons exposure and genetic susceptibility on fasting plasma glucose: a prospective cohort study of general Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125151. [PMID: 39437876 DOI: 10.1016/j.envpol.2024.125151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The effects of environmental polycyclic aromatic hydrocarbons (PAHs) exposure on glycemic regulation and the underlying genetic mechanism were still unclear. This study aimed to analyze the longitudinal joint effects of PAHs exposure and genetic susceptibility on fasting plasma glucose (FPG) through a longitudinal study. We included 4104 observations (2383 baseline participants and 1721 6-year follow-up participants) from Wuhan-Zhuhai cohort. Ten urinary PAHs metabolites and FPG were measured at both baseline and follow-up. We constructed the polygenic risk scores (PRS) of FPG from the corresponding genome-wide association studies. Linear mixed models were used to explore the associations of urinary PAHs metabolites or FPG-PRS on FPG levels in the repeated-measure analysis. Besides, the longitudinal relationships of urinary PAHs metabolites, FPG-PRS, and their joint effects on FPG change over 6 years were evaluated by linear regression models. Compared with participants with persistent low levels of urinary total PAHs metabolites, hydroxynaphthalene, and hydroxyphenanthrene, participants with persistent high levels had average decreases of 0.180, 0.200, and 0.261 mmol/L for FPG change over 6 years, respectively. Each 1-unit increase of FPG-PRS was associated with a 0.521 mmol/L for FPG change over 6 years. Besides, compared with participants with high FPG-PRS and persistent low levels of urinary total hydroxynaphthalene, hydroxyfluorene, and hydroxyphenanthrene, participants with low FPG-PRS and persistent high levels had average decreases of 0.330, 0.557, and 0.421 mmol/L for FPG change over 6 years. Our findings demonstrated that high-level PAHs exposure was longitudinally associated with an average decrease of FPG over 6 years, and low FPG genetic risk can enhance the above associations. Our findings emphasized the hypoglycemic effect of PAHs exposure, shed new light on the complex effects between PAHs exposure and genetic factors in the prevention of high FPG, and might provide some clues for the development of potential hypoglycemic agents.
Collapse
Affiliation(s)
- Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, 410078, China
| | - Mengyi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Liu K, Gu Y, Pan X, Chen S, Cheng J, Zhang L, Cao M. Behenic acid alleviates inflammation and insulin resistance in gestational diabetes mellitus by regulating TLR4/NF-κB signaling pathway. iScience 2024; 27:111019. [PMID: 39429784 PMCID: PMC11490720 DOI: 10.1016/j.isci.2024.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/13/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a distinct form of diabetes that poses a significant threat to the health of both pregnant women and fetuses. The objective of this study was to investigate the impact of behenic acid (BA) on glucose metabolism, inflammation, and insulin resistance in GDM mice, and to elucidate the underlying molecular mechanism. Here, we demonstrated that daily administration of 10 mg/mL BA during pregnancy effectively ameliorated abnormal glucose metabolism in GDM mice and their offspring and improved birth outcomes in the offspring. Moreover, BA promoted the proliferation of islet β cells, restored their normal function, and augmented glucose uptake by skeletal muscle cells. Mechanistically, BA mitigated inflammation and insulin resistance in GDM mice by inhibiting activation of the TLR4/NF-κB signaling pathway. Our study provides compelling evidence supporting the efficacy of BA in improving GDM, suggesting its potential use as a dietary supplement for preventing and treating GDM.
Collapse
Affiliation(s)
- Kerong Liu
- Department of Endocrinology, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| | - Xingnan Pan
- Department of Pediatric, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Sha Chen
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| | - Jie Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Le Zhang
- Department of Neonatology, Affiliated Children’s Hospital of Jiangnan University (Wuxi Children’s Hospital), Wuxi 214023, Jiangsu, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women’s Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi 214002, Jiangsu, China
| |
Collapse
|
3
|
Hui B, Zhang X, Dong D, Shu Y, Li R, Yang Z. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis 2024; 12:e1271. [PMID: 38888355 PMCID: PMC11184649 DOI: 10.1002/iid3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaogang Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Dinghui Dong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yantao Shu
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhengan Yang
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
4
|
Liu Y, Chen H, Wu Y, Ai F, Li W, Peng H, Gui F, Yu B, Chen Z. Sinomenine attenuates bleomycin-induced pulmonary fibrosis, inflammation, and oxidative stress by inhibiting TLR4/NLRP3/TGFβ signaling. Inhal Toxicol 2024; 36:217-227. [PMID: 38713814 DOI: 10.1080/08958378.2024.2335193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE The present work concentrated on validating whether sinomenine alleviates bleomycin (BLM)-induced pulmonary fibrosis, inflammation, and oxidative stress. METHODS A rat model of pulmonary fibrosis was constructed through intratracheal injection with 5 mg/kg BLM, and the effects of 30 mg/kg sinomenine on pulmonary inflammation, fibrosis, apoptosis, and 4-hydroxynonenal density were evaluated by hematoxylin and eosin staining, Masson's trichrome staining, TUNEL staining, and immunohistochemistry. Hydroxyproline content and concentrations of inflammatory cytokines and oxidative stress markers were detected using corresponding kits. MRC-5 cells were treated with 10 ng/ml PDGF, and the effects of 1 mM sinomenine on cell proliferation were assessed by EdU assays. The mRNA expression of inflammatory cytokines and the protein levels of collagens, fibrosis markers, and key markers involved in the TLR4/NLRP3/TGFβ signaling were tested with RT-qPCR and immunoblotting analysis. RESULTS Sinomenine attenuated pulmonary fibrosis and inflammation while reducing hydroxyproline content and the protein expression of collagens and fibrosis markers in BLM-induced pulmonary fibrosis rats. Sinomenine reduced apoptosis in lung samples of BLM-challenged rats by increasing Bcl-2 and reducing Bax and cleaved caspase-3 protein expression. In addition, sinomenine alleviated inflammatory response and oxidative stress in rats with pulmonary fibrosis induced by BLM. Moreover, sinomenine inhibited the TLR4/NLRP3/TGFβ signaling pathway in lung tissues of BLM-stimulated rats. Furthermore, TLR4 inhibitor, TAK-242, attenuated PDGF-induced fibroblast proliferation and collagen synthesis in MRC-5 cells. CONCLUSION Sinomenine attenuates BLM-caused pulmonary fibrosis, inflammation, and oxidative stress by inhibiting the TLR4/NLRP3/TGFβ signaling, indicating that sinomenine might become a therapeutic candidate to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Hong Chen
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Yan Wu
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
5
|
Gao Z, Yang C, Zeng G, Lin M, Li W, Sun M, Zhang Y, Fan B, Kumar Y, Yan K. Sinomenine protects against atherosclerosis in apolipoprotein E-knockout mice by inhibiting of inflammatory pathway. Inflammopharmacology 2024; 32:1387-1400. [PMID: 38430414 DOI: 10.1007/s10787-024-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Atherosclerosis, a multifaceted and persistent inflammatory condition, significantly contributes to the progression of cardiocerebrovascular disorders, such as myocardial infarctions and cerebrovascular accidents. It involves the accumulation of cholesterol, fatty deposits, calcium and cellular debris in the walls of arteries, leading to the formation of plaques. Our aim is to investigate the potential of sinomenine to counteract atherosclerosis in mice lacking Apolipoprotein E (ApoE-/-) Mice. We employed the high-fat diet-induced method to induce atherosclerosis in ApoE-/- mice, and the mice were treated with sinomenine (5, 10, and 15 mg/kg) and simvastatin (0.5 mg/kg) for 12 weeks. Body weight, water intake, and food intake were assessed. Lipid parameters, oxidative stress, inflammatory cytokines, and mRNA levels were estimated. Sinomenine treatment remarkably (P < 0.001) suppressed body weight, along with food and water intake. Sinomenine altered the levels of total cholesterol (TC), high-density lipoprotein (HDL), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), which were modulated in the atherosclerosis group. Sinomenine treatment also altered the levels of oxidative stress parameters such as glutathione peroxidase (GPx), catalase (CAT), malonaldehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). In addition, it modulated cardiac parameters like C-reactive protein (CRP), endothelin-1 (ET-1), thromboxane B2 (TXB2), nitric oxide (NO), cardiac troponin I (cTnI), lactate dehydrogenase (LDH), and creatinine kinase isoenzymes (CK-MB). Inflammatory cytokines interleukin (IL)-1α, IL-1β, TNF-α, IL-6, and IL-10 were also affected. Sinomenine further suppressed the mRNA expression of IL-6, IL-17, IL-10, tumor necrosis factor-α (TNF-α), Il-1β, monocyte chemoattractant protein-1 (MCP-1), MCP-2, MCP-3, transforming Growth Factor-1β (TGF-1β), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). The results suggest that sinomenine remarkably suppressed the development of atherosclerosis in the early stage.
Collapse
Affiliation(s)
- Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Chao Yang
- Department of Nephrology, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, 710054, China
| | - Guangwei Zeng
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Ming Lin
- Akshita College of Pharmacy, Meerut, India
| | - Wei Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Mengna Sun
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Yantao Zhang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | - Beibei Fan
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, 710100, China
| | | | - Kun Yan
- Department of Outpatient, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force, Xi'an, 710054, China.
| |
Collapse
|
6
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
7
|
Jabbar AA, Abdul-Aziz Ahmed K, Abdulla MA, Abdullah FO, Salehen NA, Mothana RA, Houssaini J, Hassan RR, Hawwal MF, Fantoukh OI, Hasson S. Sinomenine accelerate wound healing in rats by augmentation of antioxidant, anti-inflammatory, immunuhistochemical pathways. Heliyon 2024; 10:e23581. [PMID: 38173533 PMCID: PMC10761791 DOI: 10.1016/j.heliyon.2023.e23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed A.j. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal Houssaini
- Department of Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 5UG, UK
| |
Collapse
|
8
|
Wang S, Ma L, Ji J, Huo R, Dong S, Bai Y, Hua L, Lei J, Tian S, Wang M, Yu Y. Protective effect of soy isolate protein against streptozotocin induced gestational diabetes mellitus via TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother 2023; 168:115688. [PMID: 37890205 DOI: 10.1016/j.biopha.2023.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that is characterized by high blood sugar levels that occur due to insulin resistance and dysfunction in glucose metabolism during pregnancy. It usually develops in the second or third trimester of pregnancy and affects about 7 % of all pregnancies worldwide. In this experimental study, we scrutinized the GDM protective effect of soy isolate protein against streptozotocin (STZ) induced GDM in rats and explore the underlying mechanism. MATERIAL AND METHODS Sprague-Dawley (SD) rats were used in this experimental study. A 55 mg/kg intraperitoneal injection of streptozotocin (STZ) was administered to induce diabetes in female rats, followed by oral administration of soy isolate protein for 18 days. Body weight, glucose levels, and insulin were measured at different time intervals (0, 9, and 18 days). Lipid profiles, antioxidant levels, inflammatory cytokines, apoptosis parameters, and mRNA expression were also assessed. Pancreatic and liver tissues were collected for histopathological examination during the experimental study. RESULTS Soy isolate protein significantly (P < 0.001) reduced the glucose level and enhanced the insulin level and body weight. Soy isolate protein remarkably decreased the placental weight and increased the fetal weight. Soy isolate protein significantly (P < 0.001) decreased the HbA1c, hepatic glycogen, serum C-peptide and increased the level of free fatty acid. Soy isolate protein significantly (P < 0.001) altered the level of lipid, antioxidant and inflammatory cytokines. Soy isolate protein significantly (P < 0.001) improved the level of adiponectin, visfatin and suppressed the level of leptin and ICAM-1. Soy isolate protein significantly (P < 0.001) altered the mRNA expression and also restored the alteration of histopathology. CONCLUSION Based on the result, soy isolate protein exhibited the GDM protective effect against the STZ induced GDM in rats via alteration of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shuijing Wang
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, PUMC Hospital, CAMS and PUMC, Beijing100730, China
| | - Jing Ji
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi 710061, China
| | - Ruichao Huo
- Pingyao Agriculture and Rural Bureau, Pingyao, Shanxi 031100, China
| | - Shan Dong
- Nutritional Department, Maternal and Child Health Care Hospital of HaiDian District, Beijing 100000, China
| | - Yunfeng Bai
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Jingba road, Jinshui district, Zhengzhou 450014, China
| | - Jiao Lei
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Sasa Tian
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Manning Wang
- Shaanxi SANZ Pharmaceutical Co., Ltd, Xi'an, Shaanxi 710086, China
| | - Yan Yu
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
9
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
10
|
Liu Y, Li H, Zhao X. Sinomenine attenuates lipopolysaccharide-induced inflammation and apoptosis of WI-38 cells by reducing glutathione S-transferase M1 expression. Chem Biol Drug Des 2023; 102:434-443. [PMID: 36303295 DOI: 10.1111/cbdd.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 12/01/2022]
Abstract
Pediatric pneumonia is an infectious lung disease with high morbidity and mortality. Sinomenine, an alkaloid extracted from Caulis Sinomenii, exerts anti-inflammatory and anti-apoptotic activities. Lipopolysaccharide (LPS) is widely used for the establishment of an inflammatory model. This research aimed to explore the influences of sinomenine on LPS-caused inflammatory injuries in fetal lung WI-38 cells. WI-38 cells were treated with LPS to establish a cellular model of pediatric pneumonia. Cell viability was evaluated using CCK-8 assay. Apoptosis was evaluated using TUNEL staining and caspase-3 activity assays. Inflammatory cytokines and NF-κB p65 phosphorylation levels were measured by Enzyme-Linked Immunosorbent Assay. Glutathione S-transferase M1 (GSTM1) expression was detected by western blotting. Results showed that LPS reduced WI-38 cell viability, and sinomenine protected cells against LPS-induced viability reduction. Sinomenine concentration-dependently attenuated LPS-induced inflammation by reducing TNF-α, IL-1β and MCP-1, and increasing IL-10 levels. Sinomenine mitigated LPS-induced apoptosis. GSTM1 was screened by matching the targets of sinomenine and pediatric pneumonia. GSTM1 was upregulated in LPS-treated WI-38 cells, and this effect was attenuated after sinomenine treatment. GSTM1 was upstream of NF-κB pathway. Overexpression of GSTM1 reversed the suppressive functions of sinomenine on LPS-stimulated inflammation and apoptosis. Overall, sinomenine attenuates inflammation and apoptosis in WI-38 cells stimulated by LPS via inhibiting GSTM1 expression, indicating the therapeutic potential of sinomenine in pediatric pneumonia.
Collapse
Affiliation(s)
- Yan Liu
- Department of Paediatrics, The First Hospital of Yulin, Yulin, China
| | - Huilin Li
- Department of Nuclear Medicine, The First Hospital of Yulin, Yulin, China
| | - Xiao Zhao
- Outpatient Department of Pediatrics, Qingdao Municipal Hospital (Group), Qingdao, China
| |
Collapse
|
11
|
Chen J, Guo P, Han M, Chen K, Qin J, Yang F. Cognitive protection of sinomenine in type 2 diabetes mellitus through regulating the EGF/Nrf2/HO-1 signaling, the microbiota-gut-brain axis, and hippocampal neuron ferroptosis. Phytother Res 2023; 37:3323-3341. [PMID: 37036428 DOI: 10.1002/ptr.7807] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 04/11/2023]
Abstract
Recent years have witnessed a growing research interest in traditional Chinese medicine as a neuroprotective nutrient in the management of diabetic cognitive dysfunction. However, the underlying molecular mechanisms of sinomenine in mediating ferroptosis of hippocampal neurons have been poorly understood. This study sought to decipher the potential effect and molecular mechanism of sinomenine in the cognitive dysfunction following type 2 diabetes mellitus (T2DM). Multi-omics analysis was conducted to identify the microbiota-gut-brain axis in T2DM patient samples obtained from the publicly available database. In HT-22 cells, erastin was utilized to create a ferroptosis model, and streptozotocin was injected intraperitoneally to create a rat model of DM. It was noted that intestinal flora imbalance occurred in patients with T2DM-associated cognitive dysfunction. Sinomenine could reduce Erastin-induced hippocampus neuronal ferroptosis by increasing EGF expression. EGF protected hippocampal neurons against ferroptosis by activating the Nrf2/HO-1 signaling pathway. Furthermore, in vivo results confirmed that sinomenine blocked ferroptosis of hippocampal neurons and alleviated cognitive dysfunction in T2DM rats. Collectively, these results suggest that sinomenine confers neuroprotective effects by curtailing hippocampal neuron ferroptosis via the EGF/Nrf2/HO-1 signaling and microbiota-gut-brain axis. It may be a candidate for the treatment of diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Ji Chen
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua, P.R. China
| | - Peng Guo
- Department of Anesthesiology, The First People's Hospital of Huaihua, Huaihua, P.R. China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China|, Hefei, P.R. China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First People's Hospital of Huaihua, Huaihua, P.R. China
- Department of Anesthesiology, The First Affiliated Hospital, University of South China, Hengyang, P.R. China
| |
Collapse
|
12
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
13
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
14
|
Shi L, Hu Q, Li L, Yang R, Xu X, Du J, Zou L, Li G, Liu S, Li G, Liang S. Beneficial Effects of lncRNA-UC.360+ shRNA on Diabetic Cardiac Sympathetic Damage via NLRP3 Inflammasome-Induced Pyroptosis in Stellate Ganglion. ACS OMEGA 2022; 7:27714-27721. [PMID: 35967043 PMCID: PMC9366958 DOI: 10.1021/acsomega.2c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hyperglycemia is one of the common symptoms of diabetes, and it produces excessive reactive oxygen species (ROS). This study investigated whether the long noncoding RNA (lncRNA) UC.360+ is involved in diabetic cardiac autonomic neuropathy (DCAN) mediated by NLRP3 inflammasome-induced pyroptosis in the stellate ganglion (SG). Using a rat type 2 diabetes model, we found that lncRNA UC.360+ short hairpin RNA (shRNA) ameliorated the dyslipidaemia of type 2 diabetic rats and reduced serum adrenaline and ROS production in SG under hyperglycemia. In addition, UC.360+ shRNA also reduced the expression of nuclear factor kappa-B (NF-κB), NLRP3, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18 in the SG of diabetic rats and inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, lncRNA-UC.360+ shRNA may modulate the NLRP3 inflammasome/inflammatory pathway in the SG, which in turn alleviates diabetic heart sympathetic nerve damage.
Collapse
Affiliation(s)
- Liran Shi
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- The
people’s hospital of Jiawang of Xuzhou, Xuzhou 221011, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Qixing Hu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Runan Yang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiumei Xu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Junpei Du
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lifang Zou
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Department
of Haematology, The First Affiliated Hospital
of Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
15
|
Yu Z, Feng Z, Fu L, Wang J, Li C, Zhu H, Xie T, Zhou J, Zhou L, Zhou X. Qingluotongbi formula regulates the LXRα-ERS-SREBP-1c pathway in hepatocytes to alleviate the liver injury caused by Tripterygium wilfordii Hook. f. JOURNAL OF ETHNOPHARMACOLOGY 2022; 287:114952. [PMID: 34968661 DOI: 10.1016/j.jep.2021.114952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook. f. (TW) is widely used to treat autoimmune and inflammatory diseases; however, its development and application is limited by its significant association with liver injury. The compound formula Qingluotongbi (QLT) employs TW as its main component and is used to treat rheumatoid arthritis with no adverse reactions, suggesting that QLT may reduce the liver toxicity of TW. AIM OF THE STUDY We examined whether TW interferes with lipid metabolism to induce liver injury, and evaluated the protective effect of QLT in in vivo and in vitro experiments. MATERIALS AND METHODS After administration of QLT and its ingredients, HepaRG cells and SD rats were tested for biochemical indicators, hepatocytes lipid changes, and rat liver pathological changes, and then we analyzed for the gene expression of liver X receptor α (LXRα), endoplasmic reticulum stress (ERS) key proteins, sterol regulatory element binding protein-1c (SREBP-1c), and lipid-synthesizing enzymes. In HepaRG cells, the protein expression of glucose-regulated protein 78 kDa (GRP78) and LXRα was detected after addition of an LXRα inhibitor, LXRα agonist, and ERS inhibitor. RESULTS TW caused significant elevation of biochemical indicators and lipid droplet deposition in hepatocytes, as well as upregulated the gene expression of LXRα, ERS key proteins, SREBP-1c, and lipid-synthesizing enzymes in both in vitro and in vivo settings, and caused liver injury in rats. QLT can alleviate the lipotoxic liver injury caused by TW. LXRα agonist further activated ERS induced by TW, whereas LXRα inhibitor significantly reduced ERS and lipotoxic injury induced by TW in HepaRG cells. CONCLUSIONS TW upregulated LXRα to activate ERS and increased the gene expression of SREBP-1c and lipid-synthesizing enzymes, leading to increased lipid synthesis in hepatocytes to result in liver injury. QLT inhibited the LXRα-ERS-SREBP-1c pathway and reduced abnormal lipid synthesis in hepatocytes and the hepatotoxicity of TW.
Collapse
Affiliation(s)
- Zhichao Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Zhe Feng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Ling Fu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jing Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Changqing Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Botanical Medicine Refinement Engineering Research Center, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jie Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xueping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
16
|
Lu C, Guo X, He X, Chang Y, Zheng F, Xu C, Zhang S, Zhou Y, Li J. Cardioprotective effects of Sinomenine in myocardial ischemia/reperfusion injury in a rat model. Saudi Pharm J 2022; 30:669-678. [PMID: 35812144 PMCID: PMC9257858 DOI: 10.1016/j.jsps.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ischemia reperfusion (I/R) play an imperative role in the expansion of cardiovascular disease. Sinomenine (SM) has been exhibited to possess antioxidant, anticancer, anti-inflammatory, antiviral and anticarcinogenic properties. The aim of the study was scrutinized the cardioprotective effect of SM against I/R injury in rat. Methods Rat were randomly divided into normal control (NC), I/R control and I/R + SM (5, 10 and 20 mg/kg), respectively. Ventricular arrhythmias, body weight and heart weight were estimated. Antioxidant, inflammatory cytokines, inflammatory mediators and plasmin system indicator were accessed. Results Pre-treated SM group rats exhibited the reduction in the duration and incidence of ventricular fibrillation, ventricular ectopic beat (VEB) and ventricular tachycardia along with suppression of arrhythmia score during the ischemia (30 and 120 min). SM treated rats significantly (P < 0.001) altered the level of antioxidant parameters. SM treatment significantly (P < 0.001) repressed the level of creatine kinase MB (CK-MB), creatine kinase (CK) and troponin I (Tnl). SM treated rats significantly (P < 0.001) repressed the tissue factor (TF), thromboxane B2 (TXB2), plasminogen activator inhibitor 1 (PAI-1) and plasma fibrinogen (Fbg) and inflammatory cytokines and inflammatory mediators. Conclusion Our result clearly indicated that SM plays anti-arrhythmia effect in I/R injury in the rats via alteration of oxidative stress and inflammatory reaction.
Collapse
|