1
|
Torge D, Bernardi S, Ciciarelli G, Macchiarelli G, Bianchi S. Dedicated Protocol for Ultrastructural Analysis of Farmed Rainbow Trout ( Oncorhynchus mykiss) Tissues with Red Mark Syndrome: The Skin-Part One. Methods Protoc 2024; 7:37. [PMID: 38804331 PMCID: PMC11130968 DOI: 10.3390/mps7030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
The present study aims to provide a specific protocol for transmission electron microscopy of a sample of skin of rainbow trout affected by red mark syndrome (RMS). The red mark syndrome is a skin disease that affects the rainbow trout (Oncorhynchus mykiss). The disease, probably due to the Midichloria-like organism infection, is not lethal, but morbidity can reach up to 60%, leading to significant economic impact associated with the downgrading of the commercial product, increased labor, and susceptibility to secondary infections. The ultrastructure analyses allowed an earlier study to identify the presence of scattered microorganisms characterized by an oval shape, mainly in the cytoplasm of the cells. The protocol developed in this study will be instrumental in visualizing the ultrastructure of the microorganism, which is probably responsible for red mark syndrome infection.
Collapse
Affiliation(s)
- Diana Torge
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (G.M.); (S.B.)
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (G.M.); (S.B.)
| | | | | | | |
Collapse
|
2
|
Pardo A, Villasante A, Romero J. Skin Microbial Community Associated to Strawberry Disease in Farmed Rainbow Trout ( Oncorhynchus mykiss Walbaum, 1792). Microorganisms 2024; 12:217. [PMID: 38276202 PMCID: PMC10818565 DOI: 10.3390/microorganisms12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Aquaculture plays a crucial role in addressing the growing global demand for food. However, diseases associated with intensive aquaculture practices, especially those affecting the skin, can present significant challenges to both fish health and the industry as a whole. Strawberry disease (SD), also known as red-mark syndrome, is a persistent and non-lethal skin condition observed in Rainbow Trout (Oncorhynchus mykiss) in the United States and various European countries. SD is a nonlethal skin condition of an unclear etiology that affects rainbow trout reared in freshwater close to the harvest period. We used a RNA-based approach to examine active microbiota in the SD skin lesions and compared to non-injured skin. Our results, based on using 16S rRNA gene next-generation sequencing, showed that the skin microbiota was dominated by the phyla Firmicutes, Proteobacteria, and Actinobacteria. The comparisons of the skin microbiota between injured and non-injured samples showed differences in the alpha diversity (Fisher index) and beta diversity metrics (ANOSIM). At the genus level, both Pseudomonas and Candidatus Midichloria were highlighted as the most abundant taxa detected in samples obtained from fish affected with strawberry diseases. In contrast, the most abundant taxa in non-injured skin were Escherichia-Shigella, Streptococcus, and Pseudoalteromonas. In conclusion, our study on SD revealed distinct differences in the microbiota composition between skin lesions and non-injured skin. This is the first description of microbiota associated with SD-injured skin samples using an RNA approach.
Collapse
Affiliation(s)
- Alda Pardo
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
- Cooperative Program for Aquaculture (Ph.D.), Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Alejandro Villasante
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500000, Chile
| | - Jaime Romero
- Laboratorio de Biotecnología de Alimentos, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830489, Chile; (A.P.); (A.V.)
| |
Collapse
|
3
|
Galeotti M, Orioles M, Saccà E, Byadgi O, Pesaro S, Di Cerbo A, Magi GE. Understanding the Pathogenesis of Red Mark Syndrome in Rainbow Trout ( Oncorhynchus mykiss) through an Integrated Morphological and Molecular Approach. Animals (Basel) 2023; 13:ani13061103. [PMID: 36978643 PMCID: PMC10044500 DOI: 10.3390/ani13061103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Red mark syndrome (RMS) is a widespread skin disorder of rainbow trout in freshwater aquaculture, believed to be caused by a Midichloria-like organism (MLO). Here, we aimed to study the pathologic mechanisms at the origin of RMS by analyzing field samples from a recent outbreak through gene expression, MLO PCR, quantitative PCR, and a histopathological scoring system proposed for RMS lesions. Statistical analyses included a One-Way Analysis of Variance (ANOVA) with a Dunnett's multiple comparisons test to assess differences among gene expression groups and a nonparametric Spearman correlation between various categories of skin lesions and PCR results. In short, the results confirmed the presence of a high quantity of 16S gene copy numbers of Midichloria-like organisms in diseased skin tissues. However, the number of Midichloria-like organisms detected was not correlated to the degree of severity of skin disease. Midichloria-like organism DNA was found in the spleen and head kidney. The spleen showed pathologic changes mainly of hyperplastic type, reflecting its direct involvement during infection. The most severe skin lesions were characterized by a high level of inflammatory cytokines sustaining and modulating the severe inflammatory process. IL-1 β, IL-6, IL-10, MHC-II, and TCR were upregulated in severe skin lesions, while IL-10 was highly expressed in moderate to severe ones. In the moderate form, the response was driven to produce immunoglobulins, which appeared crucial in controlling the skin disease's severity. Altogether our results illustrated a complex immune interaction between the host and Midichloria-like organism.
Collapse
Affiliation(s)
- Marco Galeotti
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Massimo Orioles
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Elena Saccà
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Omkar Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| | - Stefano Pesaro
- Department of Agricultural, Food, Environmental and Animal Sciences, DI4A, University of Udine, 33100 Udine, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| |
Collapse
|
4
|
Orioles M, Saccà E, Metselaar M, Bulfoni M, Cesselli D, Galeotti M. Observations on Red Mark Syndrome in juvenile rainbow trout farmed in RAS system. JOURNAL OF FISH DISEASES 2022; 45:1889-1892. [PMID: 35964248 PMCID: PMC9804602 DOI: 10.1111/jfd.13707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Massimo Orioles
- Department of Agricultural, Food, Environmental and Animal Sciences, Veterinary Pathology UnitUniversity of UdineUdineItaly
| | - Elena Saccà
- Department of Agricultural, Food, Environmental and Animal Sciences, Veterinary Pathology UnitUniversity of UdineUdineItaly
| | | | | | - Daniela Cesselli
- Aquatic Vets Ltd.StirlingScotland
- Department of MedicineUniversity of Udine, Italy Institute of Clinical Pathology, ASUFCUdineItaly
| | - Marco Galeotti
- Department of Agricultural, Food, Environmental and Animal Sciences, Veterinary Pathology UnitUniversity of UdineUdineItaly
| |
Collapse
|
5
|
Farag MR, Alagawany M, Khalil SR, El-Hady EW, Elhady WM, Ismail TA, Marini C, Di Cerbo A, Abdel-Latif HMR. Immunosuppressive Effects of Thallium Toxicity in Nile Tilapia Fingerlings: Elucidating the Rescue Role of Astragalus membranaceus Polysaccharides. Front Vet Sci 2022; 9:843031. [PMID: 35754552 PMCID: PMC9218348 DOI: 10.3389/fvets.2022.843031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the immunotoxic effects of thallium (Tl) in Nile tilapia fingerlings and the recovery role of dietary Astragalus membranaceus polysaccharides (ASs). An 8-week experiment was designed where 180 fishes were randomly and equally assigned in triplicates into the six groups: the control group (CNT) was reared in unpolluted water and fed a commercial diet, two groups were fed a well-balanced commercial diet plus 1.5 and 3.0 g AS/kg diet (AS0.15 and AS0.30), respectively, the fourth group was exposed to a sublethal dose of Tl (41.9 μg l-1) [equal to 1/10 of 96-h lethal concentration 50 (LC50)], and the last two groups were fed 0.15 and 0.3% AS, respectively, and concurrently exposed to Tl (41.9 μg l-1) (AS0.15+Tl and AS0.30+Tl). Fish hematobiochemical parameters, serum immunity [nitric oxide, total immunoglobulin M (IgM) levels, and lysozyme activity], transcription of hepatic interferon-γ (IFN-γ), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), and resistance to Aeromonas hydrophila (A. hydrophila) were assessed. Hematobiochemical parameters and serum immune indices were significantly decreased in the fish group exposed to sublethal Tl concentration compared to the CNT group. Furthermore, Tl exposure significantly induced overexpression of IL-1β, TNF-α, and IFN-γ genes (4.22-, 5.45-, and 4.57-fold higher, respectively) compared to CNT values. Tl exposure also increased the cumulative mortality (%) in Nile tilapia challenged with A. hydrophila. Remarkably, the groups fed AS0.15+Tl and AS0.30+Tl significantly ameliorated all the aforementioned parameters, but did not reach CNT values. Our findings suggest the possible immunomodulating roles of dietary AS in recovering the immunotoxic effects of Tl in Nile tilapia. We can conclude that dietary AS would be useful for maintaining the immunity of Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Eman W El-Hady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa M Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Galeotti M, Sarli G, Sirri R, Mandrioli L, Beraldo P, Bronzatti P, Giavenni R, Orioles M, Magi G, Volpatti D. Red mark syndrome of trout (Oncorhynchus mykiss; Walbaum, 1792): Histopathological scoring and correlation with gross lesions. JOURNAL OF FISH DISEASES 2021; 44:1325-1336. [PMID: 33971691 PMCID: PMC8453541 DOI: 10.1111/jfd.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Red mark syndrome (RMS) is a skin disorder affecting rainbow trout (Oncorhynchus mykiss). The present work aimed to correlate the gross skin lesions affecting 46 fish sampled from farms surveyed for RMS with their microscopic features, identifying histological parameters that may be suggestive of disease progression. Skin lesions were grossly included in one of three categories (types I, II and III) according to the progressive degree of severity. Histological parameters and anti-proliferating cell nuclear antigen (PCNA) tissue immunoreactivity were semi-quantitatively assessed. In the dermis, PCNA-positive lymphocytes, fibroblasts and endothelial cells were indicative of active phlogosis. A significant increase in PCNA-immunoreactive lymphocytes, from gross type I to type III cases, was found only in the hypodermis. The histological parameters significantly associated with the gross lesion severity were progressive loss of the epithelium and scales, recruitment of inflammatory cells in the stratum compactum, loss of architecture of the stratum compactum, perivascular and perineural granulomatous inflammation and increase in lymphocyte infiltration of the muscular layer. In the type II and type III categories, inflammation in the hypodermis and muscle displayed a granulomatous pattern, reinforcing the hypothesis of an immunopathological mechanism. The morphological diagnosis of "deep chronic dermatitis associated to panniculitis and myositis, characterised by lympho-histiocytic and granulomatous reaction" is suggested.
Collapse
Affiliation(s)
- M. Galeotti
- Veterinary Pathology UnitDI4AUniversity of UdineUdineItaly
| | - G. Sarli
- Department of Veterinary Medical SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - R. Sirri
- Department of Veterinary Medical SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - L. Mandrioli
- Department of Veterinary Medical SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - P. Beraldo
- Veterinary Pathology UnitDI4AUniversity of UdineUdineItaly
| | | | | | - M. Orioles
- Veterinary Pathology UnitDI4AUniversity of UdineUdineItaly
| | - G.E. Magi
- School of Biosciences and Veterinary MedicineUniversity of CamerinoMatelicaItaly
| | - D. Volpatti
- Veterinary Pathology UnitDI4AUniversity of UdineUdineItaly
| |
Collapse
|
7
|
Galeotti M, Volpatti D, Byadgi O, Beraldo P, Orioles M, Sarti M, Ciulli S, Magi GE. Red mark syndrome (RMS) in farmed rainbow trout: First report of outbreaks in Bosnia and Herzegovina. JOURNAL OF FISH DISEASES 2021; 44:627-631. [PMID: 33476400 DOI: 10.1111/jfd.13336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Red mark syndrome (RMS) is a non-lethal inflammatory skin disorder spreading in farmed adult rainbow trout (Oncorhynchus mykiss) and reported worldwide. The aetiology is still uncertain, but positive correlation was found between Midichloria-like organism and RMS-affected fish. Here, we describe the first cases of RMS in Bosnia and Herzegovina. The outbreaks under study occurred in two intensive farms during the late winter and spring of 2020. Affected fish showed signs of disease ascribable to RMS, confirmed by pathological and molecular examination.
Collapse
Affiliation(s)
- Marco Galeotti
- Veterinary Pathology Unit, University of Udine, Udine, Italy
| | | | - Omkar Byadgi
- Veterinary Pathology Unit, University of Udine, Udine, Italy
| | - Paola Beraldo
- Veterinary Pathology Unit, University of Udine, Udine, Italy
| | - Massimo Orioles
- Veterinary Pathology Unit, University of Udine, Udine, Italy
| | | | - Sara Ciulli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum, University of Bologna, Cesenatico, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
8
|
Cranial Mandibular Fibrosis Syndrome in Adult Farmed Rainbow Trout Oncorhynchus mykiss. Pathogens 2021; 10:pathogens10050542. [PMID: 33946332 PMCID: PMC8145062 DOI: 10.3390/pathogens10050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
An unusual condition affecting market size rainbow trout was investigated. This condition was prevalent for several years at low levels but affected a large proportion of stock during 2018 and 2019. Chronic fibrosis affecting cranial tissues and the jaw was observed in samples collected in 2018. A larger sampling was then conducted in 2019 to investigate the presence of an infectious agent(s). An extensive inflammatory response in the mandibular region was the main finding, however infectious agents in the lesions were not identified through classical virology and bacteriology analysis. Tetracapsuloides bryosalmonae infection, calcinosis, and a Gram-positive bacterial infection of a single fish cardiac tissue was observed, however, a correlation of these pathologies and the cranial mandibular fibrosis (CMF) syndrome was not established. The gene expression of a panel of 16 immune-related genes was studied. Among these, tgf-b, sIgM, il11, hspa, and the antimicrobial peptides lys and cath1 were up-regulated in jaw sections of CMF-affected fish, showing a strong positive correlation with the severity of the lesions. Idiopathic chronic fibrosis with the activation of the Tfg-B pathway and local hyper-immunoglobulaemia was therefore diagnosed. Initiating factors and causative agent(s) (biotic or abiotic) of CMF remain, at present, unclear.
Collapse
|
9
|
Vercauteren M, Decostere A, Chiers K. First report of lesions resembling red mark syndrome observed in wild-caught common dab (Limanda limanda). JOURNAL OF FISH DISEASES 2020; 43:147-151. [PMID: 31724198 DOI: 10.1111/jfd.13104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Maaike Vercauteren
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annemie Decostere
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
10
|
Emergence of Rickettsial Infection in Rainbow Trout ( Oncorhynchus mykiss) Fry Displaying the Appearance of Red Mark Syndrome in Korea. Microorganisms 2019; 7:microorganisms7090302. [PMID: 31470673 PMCID: PMC6780055 DOI: 10.3390/microorganisms7090302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/01/2022] Open
Abstract
Red mark syndrome (RMS) is a fish disease caused by the infection of Rickettsial agents, especially affecting rainbow trout (Oncorhynchus mykiss). The disease is prevalent in many countries in Europe (France, Switzerland, Italy, and Slovenia), South America (Chile), North America (USA), and even Asia (Japan). However, it has not been reported in Korean aquaculture. In February 2019, rainbow trout presenting red spot lesions with swollen features on the lateral side of their body were observed at a hatchery in Korea. Fishes showing those clinical signs were fry weighing 25 ± 5 g. Moreover, the fish showing the red spot lesions were found dead, which suggests an outbreak of a mortality-causing disease. The symptoms were similar to those of RMS, and we identified the presence of Rickettsia-like organisms associated with this disease using polymerase chain reaction (PCR), sequencing, histopathologic examination, and transmission electron microscopy. The distinct features of this infection, compared to that in previous reports, were that RMS occurred in small-sized fish and accompanied mortality. Additionally, the presence of the Rickettsia agent was accompanied with outbreak of the disease. Therefore, this is the first report of RMS outbreak in rainbow trout fisheries in Korea.
Collapse
|