1
|
Farrel Côrtes M, Marli Bes T, Ribeiro Deo B, Barbosa dos Anjos B, Jimenez Galisteo A, Cerdeira Sabino E, Santos C, Figueiredo Costa S. Selection and Identification of a DNA Aptamer for Multidrug-Resistant Acinetobacter baumannii Using an In-House Cell-SELEX Methodology. Front Cell Infect Microbiol 2022; 12:818737. [PMID: 35846753 PMCID: PMC9280162 DOI: 10.3389/fcimb.2022.818737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
Infections caused by multidrug-resistant A. baumannii are a worldwide health concern with high mortality rates. Rapid identification of this infectious agent is critical as it can easily spread with difficult or no options for treatment. In this context, the development of reliable and economically viable detection and therapeutic methodologies are still challenging. One of the promising solutions is the development of nucleic acid aptamers capable of interacting with bacteria. These aptamers can be used for specific recognition of infectious agents as well as for blocking their functions. Cell-SELEX technology currently allows the selection and identification of aptamers and is flexible enough to target molecules present in an entire bacterial cell without their prior knowledge. However, the aptamer technology is still facing many challenges, such as the complexity of the screening process. Here, we describe the selection and identification of a new aptamer A01, using an in-house whole-cell SELEX-based methodology, against multi-resistant Acinetobacter baumannii, with rapid execution and low cost. In addition, this protocol allowed the identification of the aptamer A01 with the whole A. baumannii cell as a target. The aptamer A01 demonstrated a binding preference to A. baumannii when compared to K. pneumoniae, C. albicans, and S. aureus in fluorescence assays. Although the time-kill assay did not show an effect on bacterial growth, the potential bactericidal or bacteriostatic cannot be totally discarded. The new categorized aptamer (A01) displayed a significant binding affinity to MDR A. baumannii.
Collapse
Affiliation(s)
- Marina Farrel Côrtes
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Taniela Marli Bes
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz Ribeiro Deo
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz Barbosa dos Anjos
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andrés Jimenez Galisteo
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Santos
- Biologia Molecular, Clinimol Diag Molecular, Sao Paulo, Brazil
| | - Silvia Figueiredo Costa
- Instituto de Medicina Tropical e Departamento de Moléstias Infecciosas e Parasitarias da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Silvia Figueiredo Costa,
| |
Collapse
|
2
|
A Novel Sandwich ELASA Based on Aptamer for Detection of Largemouth Bass Virus (LMBV). Viruses 2022; 14:v14050945. [PMID: 35632687 PMCID: PMC9145880 DOI: 10.3390/v14050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Largemouth bass virus (LMBV) is a major viral pathogen in largemouth bass culture, usually causing high mortality and heavy economic losses. Accurate and early detection of LMBV is crucial for diagnosis and control of the diseases caused by LMBV. Previously, we selected the specific aptamers, LA38 and LA13, targeting LMBV by systematic evolution of ligands by exponential enrichment (SELEX). In this study, we further generated truncated LA38 and LA13 (named as LA38s and LA13s) with high specificity and affinities and developed an aptamer-based sandwich enzyme-linked apta-sorbent assay (ELASA) for LMBV diagnosis. The sandwich ELASA showed high specificity and sensitivity for the LMBV detection, without cross reaction with other viruses. The detection limit of the ELASA was as low as 1.25 × 102 LMBV-infected cells, and the incubation time of the lysate and biotin labeled aptamer was as short as 10 min. The ELASA could still detect LMBV infection in spleen lysates at dilutions of 1/25, with good consistency of qRT-PCR. For the fish samples collected from the field, the sensitivity of ELASA was 13.3% less than PCR, but the ELASA was much more convenient and less time consuming. The procedure of ELASA mainly requires washing and incubation, with completion in approximately 4 h. The sandwich ELASA offers a useful tool to rapidly detect LMBV rapidly, contributing to control and prevention of LMBV infection.
Collapse
|
3
|
de Jesus Santos AP, Oliveira-Giacomelli Á, de Sá VK, do Nascimento IC, de Simone Molina E, Ulrich H. Selection and Application of Aptamer Affinity for Protein Purification. Methods Mol Biol 2022; 2466:187-203. [PMID: 35585319 DOI: 10.1007/978-1-0716-2176-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aptamers are affinity-based oligonucleotide ligands raised against a target molecule, which might be of proteic or other nature. Aptamers are developed by using a reiterative in vitro selection procedure, named SELEX, in which the target is exposed to a combinatorial oligonucleotide combinatorial library. Target bound oligonucleotides are eluted, and PCR amplified followed by the next SELEX round. The process is repeated until no further increase in target binding affinity and specificity is achieved. Selected aptamers are identified and immobilized for protein purification. In view of their stability against denaturation and capability of renaturation, low costs of production, easiness of modification and stabilization, oligonucleotide aptamers are excellent tools as high-affinity ligands for applications of protein purification.
Collapse
Affiliation(s)
| | | | - Vanessa Karen de Sá
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Erika de Simone Molina
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Yu Q, Liu M, Wu S, Xiao H, Qin X, Li P. Generation and characterization of aptamers against grass carp reovirus infection for the development of rapid detection assay. JOURNAL OF FISH DISEASES 2021; 44:33-44. [PMID: 32959408 DOI: 10.1111/jfd.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Grass carp reovirus (GCRV) causes devastating viral haemorrhagic disease in farmed grass carp (Ctenopharyngon idellus). As novel molecular probes, aptamers have been widely applied in rapid diagnosis and efficient therapies against virus or diseases. In this study, three single-stranded DNA (ssDNA) aptamers were selected against GCRV-infected CIK cells via SELEX (systematic evolution of ligands by exponential enrichment technology). Secondary structures predicted by MFOLD indicated that aptamers formed stem-loop structures, and GVI-11 had the lowest ΔG value of -30.84 KJ/mol. Three aptamers could specifically recognize GCRV-infected CIK cells, with calculated dissociation constants (Kd) of 220.86, 176.63 and 278.66 nM for aptamers GVI-1, GVI-7 and GVI-11, respectively, which indicated that they could serve as specific delivery system for antiviral therapies. The targets of aptamers GVI-1, GVI-7 and GVI-11 on the surface of GCRV-infected cells could be membrane proteins, which were trypsin-sensitive. Furthermore, FAM-labelled aptamer GVI-7 could be applied to detect GCRV infection in vivo. It is the first time to generate and characterize aptamers against GCRV-infected cells. These aptamers have great potentials in development of rapid diagnosis technology and antiviral agents against GCRV infection in aquaculture.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Siting Wu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Xinling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Advanced Technology R & D Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| |
Collapse
|
5
|
Iqbal MJ, Li Z, Khan MA, Zhu Y, Hussain W, Su H, Qiu QM, Shoukat R, Li H. Studies on the structure and chirality of A-motif in adenosine monophosphate nucleotide metal coordination complexes. CrystEngComm 2021. [DOI: 10.1039/d1ce00276g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure and chirality of A-motif.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Wajid Hussain
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hao Su
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Qi-Ming Qiu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Rizwan Shoukat
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| |
Collapse
|
6
|
Yu Q, Liu M, Wu S, Wei X, Xiao H, Yi Y, Cheng H, Wang S, Zhang Q, Qin Q, Li P. Specific Aptamer-Based Probe for Analyzing Biomarker MCP Entry Into Singapore Grouper Iridovirus-Infected Host Cells via Clathrin-Mediated Endocytosis. Front Microbiol 2020; 11:1206. [PMID: 32636813 PMCID: PMC7318552 DOI: 10.3389/fmicb.2020.01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biomarkers have important roles in various physiological functions and disease pathogenesis. As a nucleocytoplasmic DNA virus, Singapore grouper iridovirus (SGIV) causes high economic losses in the mariculture industry. Aptamer-Q5-complexed major capsid protein (MCP) in the membrane of SGIV-infected cells can be used as a specific molecular probe to investigate the crucial events of MCP endocytosis into SGIV-infected host cells during viral infection. Chlorpromazine blocks clathrin-mediated endocytosis, and MCP endocytosis into SGIV-infected cells decreased significantly when the cells were pretreated with chlorpromazine. The disruption of cellular cholesterol by methyl-β-cyclodextrin also significantly reduced MCP endocytosis. In contrast, inhibitors of key regulators of caveolae/raft-dependent endocytosis and macropinocytosis, including genistein, Na+/H+ exchanger, p21-activated kinase 1 (PAK1), myosin II, Rac1 GTPase, and protein kinase C (PKC), had no effect on MCP endocytosis. The endocytosis of the biomarker MCP is dependent on low pH and cytoskeletal actin filaments, as shown with various inhibitors (chloroquine, ammonia chloride, cytochalasin D). Therefore, MCP enters SGIV-infected host cells via clathrin-mediated endocytosis, which is dependent on dynamin, cholesterol, low pH, and cytoskeletal actin filaments. This is the first report of a specific aptamer-based probe used to analyze MCP endocytosis into SGIV-infected host cells during viral infection. This method provides a convenient strategy for exploring viral pathogenesis and facilitates the development of diagnostic tools for and therapeutic approaches to viral infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siting Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China.,Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Academy of Fishery Sciences, Nanning, China
| | - Hehe Xiao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Shaowen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Qin Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Science, South China Agricultural University, Guangzhou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
7
|
Liu J, Qin Q, Zhang X, Li C, Yu Y, Huang X, Mukama O, Zeng L, Wang S. Development of a Novel Lateral Flow Biosensor Combined With Aptamer-Based Isolation: Application for Rapid Detection of Grouper Nervous Necrosis Virus. Front Microbiol 2020; 11:886. [PMID: 32508768 PMCID: PMC7249735 DOI: 10.3389/fmicb.2020.00886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/16/2020] [Indexed: 01/07/2023] Open
Abstract
Nervous necrosis virus (NNV) has infected more than 50 fish species worldwide, and has caused serious economic losses in the aquaculture industries. However, there is no effective antiviral therapy. The development of a rapid and accurate point-of-care diagnostic method for the prevention and control of NNV infection is urgently required. Commonly used methods for NNV detection include the cell culture-based assay, antibody-based assay and polymerase chain reaction (PCR)-based assay. However, these methods have disadvantages as they are time-consuming and complex. In the present study, we developed a simple and sensitive aptamer-based lateral flow biosensor (LFB) method for the rapid detection of red-spotted grouper nervous necrosis virus (RGNNV). An aptamer is a single-stranded nucleotide, which can specifically bind to the target and has many advantages. Based on a previously selected aptamer, which specifically bound to the coat protein of RGNNV (RGNNV-CP), two modified aptamers were used in this study. One aptamer was used for magnetic bead enrichment and the other was used for isothermal strand displacement amplification (SDA). After amplification, the product was further tested by the LFB, and the detection results were observed by the naked eye within 5 min with high specificity and sensitivity. The LFB method could detect RGNNV-CP protein as low as 5 ng/mL or 5 × 103 RGNNV-infected GB (grouper brain) cells. Overall, it is the first application of a LFB combined with aptamer in the rapid diagnosis of virus from aquatic animals, which provides a new option for virus detection in aquaculture.
Collapse
Affiliation(s)
- Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Omar Mukama
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
YU Q, LIU MZ, XIAO HH, YI Y, CHENG H, Putra DF, LI SQ, LI PF. Selection and Characterization of Aptamers for Specific Detection of Iridovirus Disease in Cultured Hybrid Grouper (Epinephelus Fuscoguttatus♀ × E. Lanceolatus♂). CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60021-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Zhou L, Wang S, Yu Q, Wei S, Liu M, Wei J, Huang Y, Huang X, Li P, Qin Q. Characterization of Novel Aptamers Specifically Directed to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV)-Infected Cells for Mediating Targeted siRNA Delivery. Front Microbiol 2020; 11:660. [PMID: 32425897 PMCID: PMC7203557 DOI: 10.3389/fmicb.2020.00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Nervous necrosis virus (NNV) causes viral nervous necrosis, the most devastating disease in more than 50 fish species worldwide, with massive mortality rates up to 100%, resulting in great economic losses to mariculture. However, few methods are available for the efficient diagnosis and treatment of viral nervous necrosis. Aptamers are molecular recognition ligands characterized by their remarkably high specificity and affinity, great stability, and ease of synthesis, and have been widely studied in application of disease diagnosis and therapies. In this study, we generated three aptamers against red-spotted grouper nervous necrosis virus (RGNNV)-infected grouper brain (GB) cells using the Cell-SELEX (cell based-systematic evolution of ligands by exponential enrichment) technology. The selected aptamers formed stable stem-loop structures, and could specifically recognize RGNNV-infected GB cells, with calculated dissociation constants (Kd) of 27.96, 29.3, and 59.5 nM for aptamers GBN2, GBN10, and GBN34, respectively. They also recognized RGNNV-infected brain tissues. The three aptamers were non-toxic and showed antiviral activities both in vitro and in vivo. Fluorescence microscopy and flow cytometry also demonstrated that aptamer GBN34 could be efficiently and specifically internalized into RGNNV-infected GB cells. The targeted cellular delivery of aptamer-small interfering RNA (siRNA) conjugates remarkably inhibited RGNNV infection in GB cells. The efficiency of the aptamer-based targeted delivery system was about 75% reduction in infection after 48 h, which was similar to that of transfection. These aptamers have great potential utility in the rapid diagnosis and inhibition of RGNNV infection in mariculture.
Collapse
Affiliation(s)
- Lingli Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaowen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shina Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Jingguang Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
11
|
Xiao H, Liu M, Li S, Shi D, Zhu D, Ke K, Xu Y, Dong D, Zhu L, Yu Q, Li P. Isolation and Characterization of a Ranavirus Associated with Disease Outbreaks in Cultured Hybrid Grouper (♀ Tiger Grouper Epinephelus fuscoguttatus × ♂ Giant Grouper E. lanceolatus) in Guangxi, China. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:364-370. [PMID: 31519049 DOI: 10.1002/aah.10090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
An outbreak of suspected iridovirus disease in cultured hybrid grouper (♀Tiger Grouper Epinephelus fuscoguttatus × ♂ Giant Grouper Epinephelus lanceolatus) occurred in the Guangxi Province in July, 2018. In this study, grouper iridovirus Guangxi (SGIV-Gx) was isolated from diseased hybrid grouper that were collected from Guangxi. Cytopathic effects were observed and identified in grouper spleen cells that were incubated with diseased tissue homogenates after 24 h, and the effects increased at 48 h postinfection. The transmission electron microscopy results showed that viral particles that were about 200 nm in diameter with hexagonal profiles were present in the cell cytoplasm of suspected virus-infected cells. The presence of SGIV-Gx (accession number: MK107821) was identified by polymerase chain reaction (PCR) and amplicon sequencing, which showed that this strain was most closely related to Singapore grouper iridovirus (AY521625.1). The detection of SGIV-Gx infection was further supported by novel aptamer (Q2c)-based detection technology. The effects of temperature and pH on viral infectivity were analyzed by using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and cell culture. The results indicated that SGIV-Gx was resistant to exposure to pH levels 5, 7, and 7.5 for 1 h, but its infectivity was remarkably lower at pH levels 3 and 10 after 1 h. The analyses showed that SGIV-Gx was stable for 1 h at 4°C and 25°C but was inactivated after 1 h at 40, 50, and 60°C.
Collapse
Affiliation(s)
- Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Siqiao Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Donglin Zhu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, China
| | - Dexin Dong
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Libo Zhu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Qing Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
12
|
Yu Q, Liu M, Wei S, Xiao H, Wu S, Ke K, Huang X, Qin Q, Li P. Identification of Major Capsid Protein as a Potential Biomarker of Grouper Iridovirus-Infected Cells Using Aptamers Selected by SELEX. Front Microbiol 2019; 10:2684. [PMID: 31849862 PMCID: PMC6901930 DOI: 10.3389/fmicb.2019.02684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 01/31/2023] Open
Abstract
Biomarkers have important roles in disease pathogenesis, and serve as important disease indicators for developing novel diagnostic and therapeutic approaches. Grouper iridovirus is a nucleocytoplasmic DNA virus, which not only causes great economic losses in mariculture but also seriously threatens the global biodiversity. However, a lack of biomarkers has limited the progress in clarifying iridovirus pathogenesis. Here, we report novel molecular probes, aptamers, for specific identification of biomarkers in grouper iridovirus-infected cells. Aptamers are selected by SELEX, which is a completely different approach from conventional antibody-based methods for biomarkers discovery. Aptamer-based technology is the unique efficient selection for cell-specific target molecules, and helps find out new biomarkers without the knowledge of characteristics of proteins expressed on virus-infected cell surface. With the implementation of a two-step strategy (aptamer selection and biomarker discovery), combined with mass spectrometry, grouper iridovirus major capsid protein was ultimately identified as a potential biomarker of aptamer Q5 for grouper iridovirus infection. The specific interactions of aptamer Q5 and MCP were experimentally validated by several assays, including EMSA, co-localization of fluorescence by LSCM, binding competition tests, and siRNA silencing tests by flow cytometry. This aptamer-based method for biomarkers discovery developed with grouper iridovirus-infected cells could be applicable to other types of virus infection, markedly improve our studies of biomarker discovery and virus pathogenesis, and further facilitate the development of diagnostic tools and therapeutic approaches to treat virus infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Siting Wu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Xiaohong Huang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Qiwei Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China.,College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Yu Q, Liu M, Xiao H, Wu S, Qin X, Ke K, Li S, Mi H, Shi D, Li P. Development of novel aptamer-based enzyme-linked apta-sorbent assay (ELASA) for rapid detection of mariculture pathogen Vibrio alginolyticus. JOURNAL OF FISH DISEASES 2019; 42:1523-1529. [PMID: 31448425 DOI: 10.1111/jfd.13066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
As the major opportunistic pathogen to both marine animals and humans, Vibrio alginolyticus (V. alginolyticus) has caused heavy economic losses to mariculture. ssDNA aptamer VA2 targeting live V. alginolyticus was generated by systematic evolution of ligands by exponential enrichment (SELEX) technology in our previous study. In this study, we first developed aptamer (VA2)-based enzyme-linked apta-sorbent assay (VA2-ELASA) for rapid detection of mariculture pathogen V. alginolyticus. The VA2-ELASA could achieve the rapid detection for V. alginolyticus infection with high specificity and sensitivity. The VA2-ELASA could specifically identify V. alginolyticus, but not other non-target bacterial strains. VA2-ELASA could detect V. alginolyticus at the concentration of 5 × 104 /ml, the incubation time short to 1 min and the incubation temperature as high as 45°C, which proved sensitivity and stability of the novel VA2-ELASA in this study. It took less than one hour to accomplish the detection process by VA2-ELASA. The characteristics of specificity, sensitivity and easy operation make VA2-ELASA a novel useful technology for the rapid diagnosis of pathogen V. alginolyticus in mariculture.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
| | - Siting Wu
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xianling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory of Marine Environmental Science, Nanning, China
| | - Siqiao Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Huizhi Mi
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
- Guangxi Key Lab for Marine Biotechnology, Beihai, China
| |
Collapse
|
14
|
Yu Q, Liu M, Su H, Xiao H, Wu S, Qin X, Li S, Mi H, Lu Z, Shi D, Li P. Selection and characterization of ssDNA aptamers specifically recognizing pathogenic Vibrio alginolyticus. JOURNAL OF FISH DISEASES 2019; 42:851-858. [PMID: 30859598 DOI: 10.1111/jfd.12985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Vibrio alginolyticus (V. alginolyticus) is a major opportunistic pathogen to both marine animals and humans, which has also caused heavy economic losses to mariculture. The aim of this study was to develop highly specific aptamers for V. alginolyticus. Single-stranded DNA (ssDNA) aptamers with high binding affinity to viable V. alginolyticus were generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and identified by flow cytometric analysis in this study. The selected aptamers showed high specificity for V. alginolyticus and low apparent binding for other bacteria. The aptamers formed distinct stem-loop structures, which could form the basis of aptamers' specific binding to the target V. alginolyticus. Aptamer VA2 and VA8 showed particularly high binding affinity constant (Kd) of 14.31 ± 4.26 and 90.00 ± 13.51 nM, respectively. The aptamers produced no cytotoxic effects in vitro and in vivo. ssDNA aptamers were successfully selected against the viable bacteria pathogen V. alginolyticus by SELEX. The aptamers selected in this study could be not only applied as specific chemical molecular probes for studying V. alginolyticus pathogenesis to Trachinotus ovatus, but also developing rapid convenient diagnosis assay for V. alginolyticus infection, even when applied to the complex sample matrix, such as food and environment samples.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Hongfei Su
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, College of Marine Sciences, Guangxi University, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Siting Wu
- Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Beihai, China
| | - Xianling Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Siqiao Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Huizhi Mi
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Zijun Lu
- College of Marine Sciences, Guangxi University for Nationalities, Nanning, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
15
|
Chong C, Low C. Synthetic antibody: Prospects in aquaculture biosecurity. FISH & SHELLFISH IMMUNOLOGY 2019; 86:361-367. [PMID: 30502461 DOI: 10.1016/j.fsi.2018.11.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The emerging technology of aptamers that is also known as synthetic antibodies is rivalling antibodies research in the recent years. The unique yet important features of aptamers are advancing antibodies in diverse applications, which include disease diagnosis, prophylactic and therapeutic. The versatility of aptamer has further extended its application to function as gene expression modulator, known as synthetic riboswitches. This report reviewed and discussed the applications of aptamers technology in the biosecurity of aquaculture, the promising developments in biosensor detection for disease diagnosis as well as prophylactic and therapeutic measurements. The application of aptamers technology in immunophenotyping study of aquatic animal is highlighted. Lastly, the future perspective of aptamers in the management of aquatic animal health is discussed, special emphasis on the potential application of aptamers as synthetic riboswitches to enhance host immunity, as well as the growth performance.
Collapse
Affiliation(s)
- ChouMin Chong
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - ChenFei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
Yu Q, Liu M, Wei S, Wu S, Xiao H, Qin X, Su H, Li P. Characterization of ssDNA aptamers specifically directed against Trachinotus ovatus NNV (GTONNV)-infected cells with antiviral activities. J Gen Virol 2019; 100:380-391. [PMID: 30698517 DOI: 10.1099/jgv.0.001226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nervous necrosis virus (NNV), is one of the most fatal viruses in marine fish aquaculture, and is capable of infecting over 50 different fish species. Trachinotus ovatus NNV (GTONNV) was isolated from diseased golden pompano. This T. ovatus strain was isolated from Guangxi, China. Single-stranded DNA (ssDNA) aptamers with high specificity for GTONNV-infected T. ovatus cerebellum cells (TOCC) were produced by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The characterization of these aptamers was performed using flow cytometry and laser scanning confocal microscopy. The selected aptamers showed significant specificity for GTONNV-infected cells. Based on MFOLD prediction, aptamers formed distinct stem-loop structures that could form the basis for the aptamers' specific binding to their cellular targets. Protease treatment results revealed that the target molecules for aptamers TNA1, TNA4 and TNA19 within GTONNV-infected cells may be membrane proteins that were trypsin-sensitive. Specific endocytosis of aptamer TNA1, TNA4 and TNA19 into GTONNV-infected cells was also shown. The selected aptamers demonstrated antiviral effects against GTONNV both in vitro and in vivo. This is the first time that aptamers targeting GTONNV-infected T. ovatus cells have been selected and characterized. These aptamers hold promise as rapid diagnostic reagents or targeted therapeutic drugs against GTONNV.
Collapse
Affiliation(s)
- Qing Yu
- 1Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China
| | - Mingzhu Liu
- 1Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China
| | - Shina Wei
- 2College of Marine Sciences, South China Agricultural University, Guangzhou, PR China
| | - Siting Wu
- 1Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China.,3Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Beihai, PR China
| | - Hehe Xiao
- 4College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Xianling Qin
- 5Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, PR China
| | - Hongfei Su
- 6Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, College of Marine Sciences, Guangxi University, Nanning, PR China
| | - Pengfei Li
- 1Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynethesis Chemistry, Guangxi Academy of Sciences, Nanning, PR China
| |
Collapse
|
17
|
Cai S, Yan J, Xiong H, Liu Y, Peng D, Liu Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2019; 143:5317-5338. [PMID: 30357118 DOI: 10.1039/c8an01467a] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA of 20-100 nucleotides in length that have attracted substantial scientific interest due to their ability to specifically bind to target molecules via the formation of three-dimensional structures. Compared to traditional protein antibodies, aptamers have several advantages, such as their small size, high binding affinity, specificity, flexible structure, being chemical synthesizable and modifiable, good biocompatibility, high stability and low immunogenicity, which all contribute to their widely applications in the biomedical field. To date, much progress has been made in the study and applications of aptamers, however, detailed information on how aptamers bind to their targets is still scarce. Over the past few decades, many methods have been introduced to investigate the aptamer-target binding process, such as measuring the main kinetic or thermodynamic parameters, detecting the structural changes of the binding complexes, etc. Apart from traditional physicochemical methods, various types of molecular docking programs have been applied to simulate the aptamer-target interactions, while these simulations also have limitations. To facilitate the further research on the interactions, herein, we provide a brief review to illustrate the recent advances in the study of aptamer-target interactions. We summarize the binding targets of aptamers, such as small molecules, macromolecules, and even cells. Their binding constants (KD) are also summarized. Methods to probe the aptamer-target binding process, such as surface plasmon resonance (SPR), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), footprinting assay, truncation and mutation assay, nuclear magnetic resonance spectroscopy (NMR), X-ray crystallography and molecular docking simulation are indicated. The binding forces mediating the aptamer-target interactions, such as hydrogen bonding, electrostatic interaction, the hydrophobic effect, π-π stacking and van der Waals forces are summarized. The challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF. Molecular biology of Macrobrachium rosenbergii nodavirus infection in giant freshwater prawn. JOURNAL OF FISH DISEASES 2018; 41:1771-1781. [PMID: 30270534 DOI: 10.1111/jfd.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
Collapse
Affiliation(s)
- Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, Malaysia
| | | | | | | |
Collapse
|
19
|
Development and characterization of sandwich-type enzyme-linked aptamer assay for the detection of rongalite in food. Anal Biochem 2018; 563:25-34. [PMID: 30273557 DOI: 10.1016/j.ab.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
Rongalite is an essentially strong carcinogen, which due to its properties as a bleaching and brightening, is illegally added to the food processing. In this study, a sandwich-type enzyme-linked aptamer assay (ELAA) is developed by using a rongalite-specific aptamer G02 modified fluorescein amidite (FAM) as a capture probe and aptamer C01 modified biotin as a signal element. In the presence of rongalite, the aptamer G02-rongalite-aptamer C01 complex is produced, and the absorbance value can be subsequently measured. The sandwich-type ELAA was shown to detect rongalite with high specificity and affinity, with a KD value of 19.91 ± 1.321 nM. In addition, the standard curve was established, with the limit of quantification (LOQ) for rongalite at 10 ng mL-1. By calculating the slope of the standard curve and the standard deviation of the blank values, the method detection limit (MDL) was 0.572 ng mL-1. Additionally, the accuracy of the sandwich-type ELAA was demonstrated in real food samples. Compared with high-pressure liquid chromatography (HPLC) assay, the sandwich-type ELAA can detect rongalite directly, and it has great advantages in pre-treatment, operation technique and cost. In short, our data suggest that the sandwich-type ELAA may be applicable as a molecular detection technique for rongalite.
Collapse
|
20
|
Li P, Yu Q, Li F, Qin X, Dong D, Chen B, Qin Q. First identification of the nervous necrosis virus isolated from cultured golden pompano (Trachinotus ovatus) in Guangxi, China. JOURNAL OF FISH DISEASES 2018; 41:1177-1180. [PMID: 29790575 DOI: 10.1111/jfd.12805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Affiliation(s)
- P Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Q Yu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - F Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - X Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - D Dong
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - B Chen
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Q Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|