1
|
Saarinen U, Sundell E, Sneddon L, Gräns A. Novel euthanasia technique for zebrafish using electric shock in standard group housing aquaria. Sci Rep 2025; 15:3011. [PMID: 39849120 PMCID: PMC11758068 DOI: 10.1038/s41598-025-87540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025] Open
Abstract
Zebrafish are widely used in research, accounting for approximately 50% of all laboratory fish across Europe. Due to their rapid reproduction and aging, effective and practical euthanasia methods are necessary for managing large stocks. This study investigated whether adult zebrafish can be euthanised by delivering an electrical current directly via the water in their housing aquaria. For this, portable plate electrodes were developed for 3.5 and 8.0 L Tecniplast™ housing aquaria. Our results show that adult zebrafish can be euthanised in groups (5 fish per litre) with electrical fields and current densities of at least 6 or 7 VRMS cm-1, and 0.7 or 0.8 ARMS dm-2 in 3.5-8 L aquaria, respectively, when delivered for 30 s in water at 28 °C with a conductivity of 800 µS cm-1 at 50 Hz. If widely implemented, this technique could improve the welfare of the vast number of zebrafish used across the world.
Collapse
Affiliation(s)
- Ulla Saarinen
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Gothenburg, Sweden.
| | - Erika Sundell
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Gothenburg, Sweden
| | - Lynne Sneddon
- Department of Biological & Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Albin Gräns
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Gothenburg, Sweden
| |
Collapse
|
2
|
Cambray-Young J. Infectious diseases of zebrafish. Zebrafish 2024:124-158. [DOI: 10.1079/9781800629431.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Schuster CJ, Murray KN, Sanders JL, Couch CE, Kent ML. Review of Pseudoloma neurophilia (Microsporidia): A common neural parasite of laboratory zebrafish (Danio rerio). J Eukaryot Microbiol 2024; 71:e13040. [PMID: 38961716 PMCID: PMC11846143 DOI: 10.1111/jeu.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Zebrafish (Danio rerio) is now the second most used animal model in biomedical research. As with other vertebrate models, underlying diseases and infections often impact research. Beyond mortality and morbidity, these conditions can compromise research end points by producing nonprotocol induced variation within experiments. Pseudoloma neurophilia, a microsporidium that targets the central nervous system, is the most frequently diagnosed pathogen in zebrafish facilities. The parasite undergoes direct, horizontal transmission within populations, and is also maternally transmitted with spores in ovarian fluid and occasionally within eggs. This transmission explains the wide distribution among research laboratories as new lines are generally introduced as embryos. The infection is chronic, and fish apparently never recover following the initial infection. However, most fish do not exhibit outward clinical signs. Histologically, the parasite occurs as aggregates of spores throughout the midbrain and spinal cord and extends to nerve roots. It often elicits meninxitis, myositis, and myodegeneration when it infects the muscle. There are currently no described therapies for the parasite, thus the infection is best avoided by screening with PCR-based tests and removal of infected fish from a facility. Examples of research impacts include reduced fecundity, behavioral changes, transcriptome alterations, and autofluorescent lesions.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington, USA
| | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Claire E Couch
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Schuster CJ, Marancik DP, Couch CE, Leong C, Edwards JJ, Kaplan RM, Kent ML. A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies. DISEASES OF AQUATIC ORGANISMS 2024; 158:133-141. [PMID: 38813854 DOI: 10.3354/dao03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.
Collapse
Affiliation(s)
- C J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington 98948, USA
| | - D P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - C E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - C Leong
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - J J Edwards
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - R M Kaplan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - M L Kent
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97333, USA
| |
Collapse
|
5
|
Rice MC, Janik AJ, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. PLoS Biol 2024; 22:e3002606. [PMID: 38814944 PMCID: PMC11139271 DOI: 10.1371/journal.pbio.3002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew J. Janik
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Sharpton TJ, Lu Y, Kent ML, Watts SA, Varga ZM. Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development. Zebrafish 2023; 20:243-249. [PMID: 38117219 PMCID: PMC10733753 DOI: 10.1089/zeb.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Progress in biomedical research requires rigorous studies and reproducible outcomes. However, despite recent achievements, standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, we presented findings from a 7-month diet test study, tightly coordinated and conducted across three aquatic research facilities: Zebrafish International Resource Center (ZIRC), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (XGSC, Texas State University). We compared the impact of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and Medaka), and three zebrafish wild-type strains. We reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Species-specific reference diets are essential for model organism health and consistent research outcomes.
Collapse
Affiliation(s)
- Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Michael L. Kent
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A. Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zoltan M. Varga
- Institute of Neuroscience, Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
7
|
Ma KG, Lieggi C, Lertpiriyapong K, Afolalu AA, Riedel ER, Lipman NS. Successful Rearing of Nutritionally Supplemented Rotifers ( Brachionus plicatilis) at Reduced Salinity for Zebrafish ( Danio rerio) Polyculture. Zebrafish 2023; 20:250-259. [PMID: 38117218 PMCID: PMC10733754 DOI: 10.1089/zeb.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Rotifers, Brachionus plicatilis, are a valuable first exogenous feed for zebrafish because they can provide continuous nutrition for growing zebrafish larvae when used in a rotifer-zebrafish polyculture. Typically cultured at high salinities (>10 ppt), B. plicatilis are temporarily immobilized when moved to lower salinities (5 ppt) used for polycultures, decreasing their accessibility and attractiveness to the larvae. The nutritional value of rotifers varies based on their diet, typically live algae, which has limited nutritional value and may pose biosecurity risks. After confirming that rotifers consume and can reproduce when fed an irradiated, processed larval fish diet (PD), they were reared at 5 or 15 ppt, and fed various combinations of an algae mix and/or PD. Population densities and percentages of egg-bearing rotifers were quantified daily until the population density plateaued, and then their nutritional value was assessed. Results indicated that rotifers thrived at both salinities. Those fed PD were successfully maintained at >500 rotifers per mL and contained a greater ω-6/ω-3 fatty acid ratio. Our findings indicate that enriching rotifers with PD raised at 5 ppt can potentially eliminate rotifer immobilization in polyculture, while providing a nutritious, attractive diet for zebrafish larvae and decreasing biosecurity risks.
Collapse
Affiliation(s)
- Kathleen G.L. Ma
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Christine Lieggi
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Adedeji A. Afolalu
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Elyn R. Riedel
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Neil S. Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, New York, USA
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
8
|
Camson CT, Palillo JA, Fehrenbach LA, Malbrue RA. Evaluation of Disinfection Methods for Artificial Plants in Zebrafish ( Danio rerio) Recirculating Water Systems. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:512-517. [PMID: 37852747 PMCID: PMC10772917 DOI: 10.30802/aalas-jaalas-23-000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 10/20/2023]
Abstract
The use of artificial plants as environmental enrichment for zebrafish (Danio rerio) in biomedical research facilities has been shown to provide benefits in animal welfare and care. Despite the benefits of artificial plants to zebrafish welfare, some research facilities are hesitant to incorporate them into their routine husbandry practices due to concerns about disease transmission and a lack of guidance on effective disinfection practices between tanks. Limited published information is available on how to adequately disinfect artificial plants, which creates concerns regarding their reuse between tanks in recirculating water systems. Proper sanitation and disinfection of these items is crucial to preventing the spread of disease in the system. We evaluated 2 disinfection methods- a commercial-grade laboratory glassware dishwasher and an ethylene oxide (ETO) sterilizer-by using ATP detection and bacterial culture of the artificial plants before and after the disinfection process. Plants were placed in the dirty sump of 2 separate recirculating systems (2,500 to 3,000 fish per system) for 2 wk before the start of the study. High ATP levels and various bacterial organisms were detected prior to disinfection. The commercial-grade labo- ratory glassware dishwasher and ETO sterilizer both significantly reduced ATP levels and resulted in complete eradication of live bacteria that were present before treatment. This study demonstrates 2 effective methods for disinfecting artificial plants in zebrafish facilities.
Collapse
Affiliation(s)
- Christina T Camson
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| | - Jack A Palillo
- Neurologic Clinical Research Institute, Massachusetts General Hospital, Boston, Massachusetts
| | - Logan A Fehrenbach
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Raphael A Malbrue
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
9
|
Grabner D, Rothe LE, Sures B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1946-1959. [PMID: 37283208 DOI: 10.1002/etc.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Rice MC, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555169. [PMID: 37693489 PMCID: PMC10491165 DOI: 10.1101/2023.08.28.555169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current Address: Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
11
|
A/P Chowmasundaram Y, Tan TL, Nulit R, Jusoh M, Rashid SA. Recent developments, applications and challenges for carbon quantum dots as a photosynthesis enhancer in agriculture. RSC Adv 2023; 13:25093-25117. [PMID: 37622012 PMCID: PMC10445218 DOI: 10.1039/d3ra01217d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Since the world's population is expanding, mankind may be faced with a huge dilemma in the future, which is food scarcity. The situation can be mitigated by employing sustainable cutting-edge agricultural methods to maintain the food supply chain. In recent years, carbon quantum dots (CQD), a member of the well-known carbon-based nanomaterials family, have given rise to a new generation of technologies that have the potential to revolutionise horticulture and agriculture research. CQD has drawn much attention from the research community in agriculture owing to their remarkable properties such as good photoluminescence behaviour, high biocompatibility, photo-induced electron transfer, low cost, and low toxicity. These unique properties have led CQD to become a promising material to increase plant growth and yield in the agriculture field. This review paper highlights the recent advances of CQD application in plant growth and photosynthesis rate at different concentrations, with a focus on CQD uptake and translocation, as well as electron transfer mechanism. The toxicity and biocompatibility studies of CQD, as well as industrial scale applications of CQD for agriculture are discussed. Finally, the current challenges of the present and future perspectives in this agriculture research are presented.
Collapse
Affiliation(s)
- Yamuna A/P Chowmasundaram
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Tong Ling Tan
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Rosimah Nulit
- Department of Biology, Faculty Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Mashitah Jusoh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia 43400 Selangor Malaysia
| | - Suraya Abdul Rashid
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
12
|
Sieler MJ, Al-Samarrie CE, Kasschau KD, Varga ZM, Kent ML, Sharpton TJ. Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection. Anim Microbiome 2023; 5:38. [PMID: 37563644 PMCID: PMC10413624 DOI: 10.1186/s42523-023-00254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. RESULTS Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. CONCLUSIONS Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
Collapse
Affiliation(s)
- Michael J Sieler
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | | | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | - Zoltan M Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97330, USA
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, 97330, USA.
| |
Collapse
|
13
|
Schuster CJ, Murray KN, Sanders JL, Kent ML. Application of an eDNA assay for the detection of Pseudoloma neurophilia (Microsporidia) in zebrafish ( Danio rerio) facilities. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2023; 564:739044. [PMID: 38562455 PMCID: PMC10983818 DOI: 10.1016/j.aquaculture.2022.739044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Environmental DNA (eDNA) water assays are beginning to be implemented for many important pathogens in confined aquaculture systems. Recirculating systems are rapidly being developed for fin fish aquaculture. Zebrafish (Danio rerio) are reared in these systems, and Pseudoloma neurophilia (Microsporidia) represents a serious challenge for zebrafish research facilities. Diagnosis of the pathogen has traditionally used histology or PCR of tissues with lethal sampling. However, with the development of a nonlethal assay to detect P. neurophilia in tank water, facilities will be able to integrate the assay into routine surveillance efforts to couple with their established protocols. Here, we first describe a modified protocol to extract and quantify parasite DNA from the environment for nonlethal detection of P. neurophilia in adult zebrafish populations. Using this modified assay, we then evaluated water samples from a longitudinal experimental infection study, targeting timepoints during initial infection. The parasite was detectable in the water immediately after initial exposure until week 4 post exposure (pe), when the parasite was undetectable until 7 weeks pe. After that time, the parasite was sporadically detected in the water for the 10-month study, likely correlating with the lifecycle of the parasite. Using water samples from the Zebrafish International Resource Center, we also validated the clinical relevance of the assay in a large zebrafish facility. The integration of this assay at ZIRC will significantly compliment surveillance and control efforts for the microsporidian parasite.
Collapse
Affiliation(s)
- Corbin J. Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - Katrina N. Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - Justin L. Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
14
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Good practices in the rearing and maintenance of zebrafish (Danio rerio) in Brazilian laboratories. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Abstract Good Laboratory Practice (GLP) is a management quality control system that encompasses the organizational process and conditions under which non-clinical health and environmental studies are carried out. According to the World Health Organization, GLP must contain five topics: resources, characterization, rules, results, and quality control. This work aims to address a review according to WHO standards of implementing Good Laboratory Practices in zebrafish (Danio rerio) vivariums. Considering that the promotion of one health (animal, human, and environmental) associated with an education plan, protocols, and records are fundamental to guarantee the safety and integrity of employees, animals, and the environment as well as reliability in the results generated. In a way, Brazil still needs improvements related to the well-being of aquatic organisms (national laws, international agreements, corporate programs, and others), especially concerning its use in research and technological development. In this way, the implementation of GLPs provides valuable guidance for improving animal welfare and worker safety, facilitating the standardization of research.
Collapse
|
15
|
Kütter MT, Barcellos LJG, Boyle RT, Marins LF, Silveira T. Boas práticas na criação e manutenção de zebrafish (Danio rerio) em laboratório no Brasil. CIÊNCIA ANIMAL BRASILEIRA 2023. [DOI: 10.1590/1809-6891v24e-74134p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Resumo As Boas Práticas de Laboratório (BPL) são um sistema de controle de qualidade gerencial que abrange o processo organizacional e as condições sob as quais os estudos não clínicos de saúde e meio ambiente são desenvolvidos. Conforme a Organização Mundial da Saúde (OMS) as BPL devem conter cinco tópicos: recursos, caracterização, regras, resultados e controle de qualidade. O objetivo deste trabalho foi apresentar uma revisão conforme o padrão da OMS para a implementação das BPL em biotério de zebrafish. Considerando que a promoção da saúde única (animal, humana e ambiental) associada a um plano de educação, protocolos e registros são fundamentais para garantir a segurança e a integridade dos trabalhadores/pesquisadores, animais e meio ambiente assim como confiabilidade nos resultados gerados. De certa forma o Brasil ainda necessita de melhorias relacionadas ao bem-estar de organismos aquáticos (leis nacionais, acordos internacionais, programas corporativos e outros); especialmente em relação à utilização deste na pesquisa e desenvolvimento tecnológico. Desta forma, a implementação de BPL fornece uma orientação valiosa para a melhoria do bem-estar animal, e segurança do trabalhador vindo a facilitar a padronização da pesquisa.
Collapse
|
16
|
Adatto I, Lawrence C, Krug L, Zon LI. The effects of intensive feeding on reproductive performance in laboratory zebrafish (Danio rerio). PLoS One 2022; 17:e0278302. [PMID: 36445925 PMCID: PMC9707780 DOI: 10.1371/journal.pone.0278302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
The zebrafish (Danio rerio) is among the most widely used model animals in scientific research. Historically, these fish have been reared in the laboratory using simple methods developed by home aquarists. For laboratories with high demand for breeding and generation turn-over, however, there has been a shift away from this approach towards one that leverages techniques, tools, and feeds from commercial aquaculture to help accelerate growth rates and decrease generation times. While these advances have improved efficiency, the effects of feeding zebrafish diets that are designed to grow disparately related cold-water fish species to market size quickly are not well-understood. To explore the impacts that intensive feeding protocols may have on this species, groups of zebrafish larvae from two different wild-type lines were stocked into treatment tanks at a standard density of 10 fish per liter and were administered either a "high" or "low" food diet for a maximum of 63 days. During their growth phase, the "high" food diet group received at least 8x more rotifers and at least 2x more Artemia than the "low" food diet group. Growth, survival, and reproductive performance (fecundity and viability) were measured in these fish and in their offspring. We found that fish that were fed more grew more rapidly and were able to reproduce earlier than fish that were fed less, but they were also more likely to produce higher proportions of non-viable embryos.
Collapse
Affiliation(s)
- Isaac Adatto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States of America
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana Farber Cancer Institute, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | | | - Lauren Krug
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States of America
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana Farber Cancer Institute, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States of America
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana Farber Cancer Institute, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
17
|
Schuster CJ, Kent ML, Peterson JT, Sanders JL. MULTI-STATE OCCUPANCY MODEL ESTIMATES PROBABILITY OF DETECTION OF AN AQUATIC PARASITE USING ENVIRONMENTAL DNA: PSEUDOLOMA NEUROPHILIA IN ZEBRAFISH AQUARIA. J Parasitol 2022; 108:527-538. [PMID: 36326809 PMCID: PMC9811945 DOI: 10.1645/22-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Detecting the presence of important parasites within a host and its environment is critical to understanding the dynamics that influence a pathogen's ability to persist, while accurate detection is also essential for the implementation of effective control strategies. Pseudoloma neurophilia is the most common pathogen reported in zebrafish (Danio rerio) research facilities. The only assays currently available for P. neurophilia are through lethal sampling, often requiring euthanasia of the entire population for accurate estimates of prevalence in small populations. We present a non-lethal screening method to detect P. neurophilia in tank water based on the detection of environmental DNA (eDNA) from this microsporidium, using a previously developed qPCR assay that was adapted to the digital PCR (dPCR) platform to complement current surveillance protocols. Using the generated dPCR data, a multi-state occupancy model was also implemented to predict the probability of detecting the microsporidium in tank water under different flow regimes and pathogen prevalence. The occupancy model revealed that samples collected in static conditions were more informative than samples collected from flow-through conditions, with a probability of detection at 80% and 47%, respectively. There was also a positive correlation between the frequency of detection in water and prevalence in fish based on qPCR.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
- Zebrafish International Resource Center, University of Oregon, 1100 Johnson Lane, Eugene, Oregon 97403
| | - Michael L Kent
- Department of Microbiology, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, 700 SW 30th St., Corvallis, Oregon 97331
| | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 2820 SW Campus Way, Corvallis, Oregon 97331
| | - Justin L Sanders
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, 700 SW 30th St., Corvallis, Oregon 97331
| |
Collapse
|
18
|
Schuster CJ, Kreul TG, Al-Samarrie CE, Peterson JT, Sanders JL, Kent ML. Progression of infection and detection of Pseudoloma neurophilia in zebrafish Danio rerio Hamilton by PCR and histology. JOURNAL OF FISH DISEASES 2022; 45:1463-1475. [PMID: 35749556 DOI: 10.1111/jfd.13675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Pseudoloma neurophilia is a critical threat to the zebrafish (Danio rerio) model, as it is the most common infectious agent found in research facilities. In this study, our objectives were two-fold: (1) compare the application of diagnostic tools for P. neurophilia and (2) track the progression of infection using PCR and histology. The first experiment showed that whole-body analysis by qPCR (WB-qPCR) can be a standardized process, providing a streamlined diagnostic protocol, without the need for extraction of specific tissues. Evaluating the course of infection in experimentally infected fish, we showed key dynamics in infection. Starting with a low dose exposure of 8000 spores/fish, the prevalence remained low until 92 days post-exposure (dpe), followed by a 30%-40% prevalence by histology or 40%-90% by PCR until the end of the experiment at 334 dpe. WB-qPCR positively detected infection in more fish than histology throughout the study, as WB-qPCR detected the parasite as early as 4 dpe, whereas it was undetected by histology until 92 dpe. We also added a second slide for histologic analyses, showing an increase in detection rate from 24% to 26% when we combined all data from our experiments, but this increase was not statistically significant.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Taylor G Kreul
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | - James T Peterson
- U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Unit, Department of Fish and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
19
|
Mocho JP, von Krogh K. A FELASA Working Group Survey on Fish Species Used for Research, Methods of Euthanasia, Health Monitoring, and Biosecurity in Europe, North America, and Oceania. BIOLOGY 2022; 11:biology11091259. [PMID: 36138738 PMCID: PMC9495953 DOI: 10.3390/biology11091259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Over 80 different species were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. Anesthetic overdose was the preferred method for euthanasia for adults, fry, and larvae not capable of independent feeding. For all developmental stages, the most popular anesthetic compound was tricaine. Around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. Only a small fraction reported quarantine routines to ensure reliable biological barriers. There was little consensus amongst facilities in how to perform biosecurity measures. Abstract An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Collectively, over 80 different species (or groups of species) were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. About half of the participating laboratories used multiple species. Anesthetic overdose was the preferred method for euthanasia for adult, fry (capable of independent feeding), and larval (not capable of independent feeding) fish. For all developmental stages, the most popular anesthetic compound was tricaine (MS-222), a substance associated with distress and aversion in several species. Moreover, around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. While most respondents had some form of quarantine process for imported fish, only a small fraction reported quarantine routines that ensure reliable biological barriers. Furthermore, less than one in five screened fish for pathogens while in quarantine. In sum, there was little consensus amongst facilities in how to perform biosecurity measures. Regarding euthanasia, health monitoring, and biosecurity processes, there is a need for updated and universal guidelines and for many laboratories to adjust their practices.
Collapse
|
20
|
Pal N, Joy PS, Sergi CM. Biliary Atresia Animal Models: Is the Needle in a Haystack? Int J Mol Sci 2022; 23:7838. [PMID: 35887185 PMCID: PMC9324346 DOI: 10.3390/ijms23147838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary atresia (BA) is a progressive fibro-obliterative process with a variable degree of inflammation involving the hepatobiliary system. Its consequences are incalculable for the patients, the affected families, relatives, and the healthcare system. Scientific communities have identified a rate of about 1 case per 10,000-20,000 live births, but the percentage may be higher, considering the late diagnoses. The etiology is heterogeneous. BA, which is considered in half of the causes leading to orthotopic liver transplantation, occurs in primates and non-primates. To consolidate any model, (1) more transport and cell membrane studies are needed to identify the exact mechanism of noxa-related hepatotoxicity; (2) an online platform may be key to share data from pilot projects and new techniques; and (3) the introduction of differentially expressed genes may be useful in investigating the liver metabolism to target the most intricate bilio-toxic effects of pharmaceutical drugs and toxins. As a challenge, such methodologies are still limited to very few centers, making the identification of highly functional animal models like finding a "needle in a haystack". This review compiles models from the haystack and hopes that a combinatorial search will eventually be the root for a successful pathway.
Collapse
Affiliation(s)
- Nutan Pal
- Jefferson Graduate School of Biomedical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Parijat S. Joy
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Consolato M. Sergi
- Anatomic Pathology Division, Department of Laboratory Medicine and Pathology, Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Lab. Medicine and Pathology, Stollery Children’s Hospital, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
21
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
22
|
Mocho JP, Collymore C, Farmer SC, Leguay E, Murray KN, Pereira N. FELASA-AALAS Recommendations for Biosecurity in an Aquatic Facility, Including Prevention of Zoonosis, Introduction of New Fish Colonies, and Quarantine. Comp Med 2022; 72:149-168. [PMID: 35688609 PMCID: PMC9334003 DOI: 10.30802/aalas-cm-22-000042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
FELASA and AALAS established a joint working group to advise on good practices for the exchange of fish for research. In a first manuscript, the working group made recommendations for health monitoring and reporting of monitoring results. The focus of this second related manuscript is biosecurity in fish facilities. First, we define the risk of contamination of personnel by zoonotic pathogens from fish or from system water, including human mycobacteriosis. Preventive measures are recommended, such as wearing task-specific personal protective equipment. Then we discuss biosecurity, highlighting the establishment of biosecurity barriers to preserve the health status of a facility. A functional biosecurity program relies on integration of the entire animal facility organization, including the flow of staff and animals, water treatments, and equipment sanitation. Finally, we propose 4 steps for introducing new fish colonies: consideration of international trade and national restrictions; assessing risk according to fish source and developmental stage; establishing quarantine barriers; and the triage, screening, and treatment of newly imported fish. We then provide 3 realistic sample scenarios to illustrate practical biosecurity risk assessments and mitigation measures based on considerations of health status and quarantine conditions.
Collapse
Affiliation(s)
| | - Chereen Collymore
- Veterinary Care and Services, Charles River Laboratories, Senneville, Quebec, Canada
| | - Susan C Farmer
- Zebrafish Research Facility, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Nuno Pereira
- Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon; Faculty of Veterinary Medicine, Lusophone University of Humanities and Technologies, Lisbon, Portugal; Gulbenkian Institute of Science, Oeiras, Portugal; ISPA - University Institute of Psychological, Social and Life Sciences, Lisbon, Portugal; Lisbon Oceanarium, Lisbon, Portugal
| |
Collapse
|
23
|
Draft Genome Sequence of Plesiomonas shigelloides Strain zfcc0051 (Phylum
Proteobacteria
). Microbiol Resour Announc 2022; 11:e0007422. [PMID: 35639031 PMCID: PMC9302144 DOI: 10.1128/mra.00074-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report a draft genome sequence of
Plesiomonas shigelloides
strain zfcc0051, an isolate derived from zebrafish (
Danio rerio
) feces. The genome consists of 115 contigs (>500 bp) and has a total assembly length of 4,041,537 bases.
Collapse
|
24
|
Ventura Fernandes BH, Caetano da Silva C, Bissegato D, Kent ML, Carvalho LR. Rederivation of a mutant line (prop 1) of zebrafish Danio rerio infected with Pseudoloma neurophilia using in vitro fertilization with eggs from pathogen-free wild-type (AB) females and sperm from prop 1 males. JOURNAL OF FISH DISEASES 2022; 45:35-39. [PMID: 34525219 DOI: 10.1111/jfd.13529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Along with the growing number of laboratories that work with zebrafish (Danio rerio), it is necessary to have animals with good sanitary quality. Specific pathogens can interfere with the experimental results and in the life quality of the animals. Pseudoloma neurophilia is a parasite with high potential for interference in behavioural, morphology, toxicological and genetic research, and is very common in zebrafish facilities. With that, we implemented a protocol for the pathogen elimination in a genetically modified lineage (prop 1) using eggs from specific pathogen-free (SPF) wild-type fish (AB line) for in vitro fertilization, along with water recirculation equipment disinfection, appropriate PCR screening and back crossing protocols. This resulted in SPF prop 1 heterozygotes, which allowed us to move forward with subsequent crossings to develop homozygote prop 1 mutants for our research. Hence, this demonstrates a useful strategy for an individual research laboratory to rederive a specific mutant free line that is not available from other SPF laboratories.
Collapse
Affiliation(s)
- Bianca H Ventura Fernandes
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caroline Caetano da Silva
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Inserm U1132 and Université de Paris, Paris, France
| | - Debora Bissegato
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Michael L Kent
- Departments of Microbiology and Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Luciani R Carvalho
- Centro de Bioterismo da Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
- Endocrinology discipline, internal medicine department Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Schuster CJ, Sanders JL, Couch C, Kent ML. Recent Advances with Fish Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:285-317. [PMID: 35544007 DOI: 10.1007/978-3-030-93306-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claire Couch
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
26
|
Printzi A, Kourkouta C, Fragkoulis S, Dimitriadi A, Geladakis G, Orfanakis M, Mazurais D, Zambonino-Infante JL, Koumoundouros G. Balancing between Artemia and microdiet usage for normal skeletal development in zebrafish (Danio rerio). JOURNAL OF FISH DISEASES 2021; 44:1689-1696. [PMID: 34275148 DOI: 10.1111/jfd.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Targeting in zebrafish fast growth, high survival rates and improved reproductive performance has led over the last years in variable feeding regimes between different facilities. Despite its significance on fish function and welfare, normal skeletal development has rarely been evaluated in establishing the best feeding practices for zebrafish. The aim of this study was to establish a protocol for normal skeletal development, growth and survival of zebrafish larvae through live feed-to-microdiet transition at an appropriate rate. Four feeding regimes including feeding exclusively on Artemia nauplii (A) or dry microdiet (D), and feeding on both Artemia and microdiet at two different transition rates (slow (B) or fast (C)) were applied from 5 to 24 dpf (days post-fertilization). Results demonstrated a significant effect of feeding regimes on the incidence of skeletal abnormalities (gill cover, fins and vertebral column, p < .05) in zebrafish larvae. The A and B experimental groups presented the highest (88 ± 3 and 84 ± 17%, respectively), but the C and D the lowest (18 ± 14 and 11 ± 2%, respectively), rates of normal fish (fish without any abnormality). Similarly, growth rate was comparatively elevated in A and B groups. No significant differences were observed in fish survival between A, B and C groups. However, D group presented a significantly lower survival rate. To our knowledge, this is the first study to show that the live feed-to-microdiet transition rate influences larval growth, survival and abnormality rates in a non-homogenous pattern.
Collapse
Affiliation(s)
- Alice Printzi
- Biology Department, University of Crete, Heraklion, Greece
- IFREMER, Univ Brest, CNRS, IRD, LEMAR, Plouzané, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi Z, Yan D, Cao L, Xu Y, Chang M. Zebrafish BID Exerts an Antibacterial Role by Negatively Regulating p53, but in a Caspase-8-Independent Manner. Front Immunol 2021; 12:707426. [PMID: 34531858 PMCID: PMC8439435 DOI: 10.3389/fimmu.2021.707426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Bid (BH3-interacting domain death agonist), a member of the Bcl-2 family, plays a crucial role in the initiation of apoptosis. Independent of its apoptotic function, Bid is also involved in the regulation of inflammation and innate immunity. However, the role of Bid during bacterial pathogen infection remains unclear. In the present study, Bid of zebrafish (Dario rerio) was cloned and its functions during Edwardsiella ictaluri infection were investigated. Zebrafish Bid enhances the apoptosis rate of Epithelioma papulosum cyprini (EPC) cells following E. ictaluri infection. Importantly, in vitro and in vivo bacterial invasion assays showed that overexpressed Bid could significantly inhibit the invasion and proliferation of E. ictaluri. Real-time qPCR analysis revealed that p53 gene expression was downregulated in embryos microinjected with Bid-FLAG. Further, in vitro and in vivo bacterial invasion assays showed that overexpressed p53 increased the invasion and proliferation of E. ictaluri. Moreover, the invasion and proliferation of E. ictaluri were inhibited when co-overexpressing Bid and p53 in vivo and in vitro. Further, the numbers of E. ictaluri in larvae treated with Z-IETD-FMK (caspase-8 inhibitor) were higher than those of larvae without Z-IETD-FMK treatment, while the number of E. ictaluri in larvae microinjected with bid-Flag decreased significantly, even if the larvae were treated in advance with Z-IETD-FMK. Collectively, our study demonstrated a novel antibacterial activity of fish Bid, providing evidence for understanding the function of apoptosis associated gene in pathogen infection.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Dong Yan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
28
|
Chung CY, Chen YJ, Kang CH, Lin HY, Huang CC, Hsu PH, Lin HJ. Toxic or Not Toxic, That Is the Carbon Quantum Dot's Question: A Comprehensive Evaluation with Zebrafish Embryo, Eleutheroembryo, and Adult Models. Polymers (Basel) 2021; 13:1598. [PMID: 34063447 PMCID: PMC8155906 DOI: 10.3390/polym13101598] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.
Collapse
Affiliation(s)
- Chih-Yu Chung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
| | - Yu-Ju Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
| | - Chia-Hui Kang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
| | - Hung-Yun Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Bachelor Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (C.-Y.C.); (Y.-J.C.); (C.-H.K.); (H.-Y.L.); (C.-C.H.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
29
|
Kent ML, Murray KN, Hobbs MR, Weiss LM, Spagnoli ST, Sanders JL. Intranuclear inclusions consistent with a Nucleospora sp. in a lymphoid lesion in a laboratory zebrafish, Danio rerio (Hamilton 1822). JOURNAL OF FISH DISEASES 2021; 44:107-112. [PMID: 33098687 PMCID: PMC7924166 DOI: 10.1111/jfd.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 05/06/2023]
Affiliation(s)
- Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Maurine R. Hobbs
- Centralized Zebrafish Animal Resource, University of Utah, Salt Lake City, UT, USA
| | | | - Sean T. Spagnoli
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Justin L. Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
30
|
Schaaf RM, Sharpton TJ, Murray KN, Kent AD, Kent ML. Retrospective analysis of the Zebrafish International Resource Center diagnostic data links Pseudocapillaria tomentosa to intestinal neoplasms in zebrafish Danio rerio (Hamilton 1822). JOURNAL OF FISH DISEASES 2020; 43:1459-1462. [PMID: 32892418 PMCID: PMC7924165 DOI: 10.1111/jfd.13233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/02/2023]
Affiliation(s)
- Russel M. Schaaf
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Statistics, Oregon State University, Corvallis, Oregon
| | - Katrina N. Murray
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | | | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
- Zebrafish International Resource Center, Eugene, Oregon
| |
Collapse
|
31
|
Norris L, Lawler N, Hunkapiller A, Mulrooney DM, Kent ML, Sanders JL. Detection of the parasitic nematode, Pseudocapillaria tomentosa, in zebrafish tissues and environmental DNA in research aquaria. JOURNAL OF FISH DISEASES 2020; 43:1087-1095. [PMID: 32720361 DOI: 10.1111/jfd.13220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Although zebrafish continue to increase in popularity as a vertebrate animal model for biomedical research, chronic infectious diseases in laboratory populations remain prevalent. The presence of pathogens such as Pseudocapillaria tomentosa, a parasitic nematode found in the intestine of infected zebrafish, can significantly influence experimental endpoints and negatively impact reproducibility of research findings. Thus, there is a need for screening tests for zebrafish with the sensitivity to detect even low levels of pathogens present in tissues. Assays based on the detection of DNA are commonly used for such screening tests. Newer technologies such as digital PCR provide an opportunity to improve the sensitivity and precision of these assays, so they can be reliably used to detect pathogen DNA in water, reducing the need for lethal testing. We have designed a qPCR-based assay with the sensitivity to detect less than 5 copies of the P. tomentosa SSU-rDNA gene in tissues of infected zebrafish and environmental DNA from aquarium water housing infected fish. In addition, we adapted this test to a dPCR platform to provide a precise quantification of P. tomentosa DNA and demonstrate the resistance of this assay to inhibitors commonly found in freshwater aquaria.
Collapse
Affiliation(s)
- Lauren Norris
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Noah Lawler
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Andree Hunkapiller
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Donna M Mulrooney
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Oregon Veterinary Diagnostic Laboratory, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|