1
|
Cheng LW, Lee HC, Yan WX, Tseng YH, Huang WR, Wang PC, Chen SC. First report of a Kudoa lutjanus outbreak in farmed Chicken Grunts Parapristipoma trilineatum. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:70-83. [PMID: 38143312 DOI: 10.1002/aah.10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 12/26/2023]
Abstract
OBJECTIVE As part of the National Disease Surveillance Program for Taiwanese Aquaculture, we investigated the causative agent of disease outbreaks in farmed Chicken Grunts Parapristipoma trilineatum. METHODS In this study, outbreak cases on two separate farms were noticed in coastal Pingtung County, Taiwan. In total, 50 juvenile fish showing clinical signs (such as emaciation and erratic swimming behavior) and broodstock (two females and two males) from both farms were collected to perform gross lesion assessment, histopathological examination, and molecular identification of the pathogen. RESULT Clinical symptoms were infected fish exhibited erratic swimming behavior, such as whirling and floating on the surface of the water. In the following months, cumulative mortality had reached 19% and 24%, respectively. The gross lesions in the infected fish included white oval cysts in the muscle, serosa of the internal organs, sclera of the eyes, and cerebral meninges. After conducting a wet mount examination of cysts using a light microscope, we observed a significant quantity of spores with morphological characteristics, suggesting their affiliation with the Myxosporea group. The spores were semiquadrate, with four tiny suture notches at the periphery; the mean spore length was 7.3 μm (SD = 0.5), and the mean spore width was 8.2 μm (SD = 0.6). The mean length and width of the pyriform polar capsules (nematocysts) were 3.6 μm (SD = 0.5) and 2.2 μm (SD = 0.5), respectively. The 18S and 28S ribosomal RNA sequences of these specimens were identical to those of Kudoa lutjanus. CONCLUSION As this was the first time an outbreak of K. lutjanus in Chicken Grunts was confirmed, its reappearance with substantial mortality should serve as a warning to the aquaculture industry.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hsien-Chung Lee
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wei-Xiao Yan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Han Tseng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wen-Rou Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Xing Y, Xue M, Xiao Z, Hu X, Zhai J, Zhang C, Jiang N, Fan Y, Meng Y, Zhou Y. Isolation and identification of Chryseobacterium indologenes and its pathological changes in Pelodiscus sinensis. JOURNAL OF FISH DISEASES 2024; 47:e13864. [PMID: 37723838 DOI: 10.1111/jfd.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
The Chinese revered a species of aquatic reptile known as Pelodiscus sinensis as both an edible and medicinal species. When artificially breeding, many deaths occurred at the farmed P. sinensis, mainly due to excessive breeding density, water contamination, and turtles biting each other secondary to bacterial infections. In this study, an isolate of gram-negative bacteria WH0623 was isolated from the liver and kidney of diseased P. sinensis to trace the potential pathogen of this disease. Based on biochemical characteristics and 16S rRNA gene sequencing analyses, this isolated strain of WH0623 was identified as Chryseobacterium indologenes. The strain's median lethal dose (LD50 ) was 3.3 × 105 colony-forming units (CFU)/g per fish weight tested using artificial infection. Histopathological analysis revealed pathological changes, including cell swelling, hyperaemia, and necrosis in many tissues. Antibiotic susceptibility tests revealed that the bacteria WH0623 was susceptible to doxycycline, sulphonamides, ceftazidime, norfloxacin, and ciprofloxacin. These antibiotics could treat the disease. In conclusion, the pathogen causing the death of farmed P. sinensis was isolated and identified, and a drug-sensitive test was conducted. Our findings contribute to the future diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Yangyang Xing
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaowei Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jiale Zhai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chunjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
3
|
Xiao Z, Cheng M, Hu X, Xue M, Jiang N, Liu W, Fan Y, Meng Y, Xu C, Zhou Y. Pathological changes of highly pathogenic Bacillus cereus on Pelodiscus sinensis. Vet Q 2023; 43:1-10. [PMID: 38010068 PMCID: PMC11003482 DOI: 10.1080/01652176.2023.2287191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
An outbreak of a disease with a high mortality rate occurred in a Chinese Softshell Turtle (Pelodiscus sinensis) farm in Hubei Province. This study isolated a highly pathogenic Bacillus cereus strain (Y271) from diseased P. sinensis. Y271 has β hemolysis, containing both Hemolysin BL (hblA, hblC, and hblD), Non-hemolytic enterotoxin, NHE (nheA, nheB, and nheC), and Enterotoxin FM (entFM) genes. Y271 is highly pathogenic against P. sinensis with an LD50 = 6.80 × 103 CFU/g weight. B. cereus was detected in multiple tissues of the infected P. sinensis. Among them, spleen tissue showed the highest copy number density (1.54 ± 0.12 × 104 copies/mg). Multiple tissues and organs of diseased P. sinensis exhibited significant pathological damage, especially the spleen, liver, kidney, and intestine. It showed obvious tissue structure destruction, lesions, necrosis, red blood cells, and inflammatory cell infiltration. B. cereus proliferating in the spleen, liver, and other tissues was observed. The intestinal microbiota of the diseased P. sinensis was altered, with a greater abundance of Firmicutes, Fusobacterium, and Actinomyces than in the healthy group. Allobaculum, Rothia, Aeromonas, and Clostridium abundance were higher in the diseased group than in the healthy group. The number of unique microbial taxa (472) in the disease group was lower than that of the healthy group (705). Y271 was sensitive to multiple drugs, including florfenicol, enrofloxacin, neomycin, and doxycycline. B. cereus is the etiological agent responsible for the massive death of P. sinensis and reveals its potential risks during P. sinensis cultivation.
Collapse
Affiliation(s)
- Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mengmeng Cheng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaowei Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Department of Fisheries Development, College of Fisheries, Henan Normal University, Xinxiang, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
4
|
Cheng LW, Byadgi OV, Tsai CE, Wang PC, Chen SC. Pathogenicity and Genomic Characterization of a Novel Genospecies, Bacillus shihchuchen, of the Bacillus cereus Group Isolated from Chinese Softshell Turtle ( Pelodiscus sinensis). Int J Mol Sci 2023; 24:ijms24119636. [PMID: 37298593 DOI: 10.3390/ijms24119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chin-En Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
5
|
Tsai JM, Kuo HW, Cheng W. Retrospective Screening of Anthrax-like Disease Induced by Bacillus tropicus str. JMT from Chinese Soft-Shell Turtles in Taiwan. Pathogens 2023; 12:pathogens12050693. [PMID: 37242363 DOI: 10.3390/pathogens12050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Bacillus cereus is ubiquitous in the environment and a well-known causative agent of foodborne disease. Surprisingly, more and more emerging strains of atypical B. cereus have been identified and related to severe disease in humans and mammals such as chimpanzees, apes, and bovine. Recently, the atypical B. cereus isolates, which mainly derive from North America and Africa, have drawn great attention due to the potential risk of zoonosis. The cluster of B. cereus carries several anthrax-like virulent genes that are implicated in lethal disease. However, in non-mammals, the distribution of atypical B. cereus is still unknown. In this study, we conducted a retrospective screening of the 32 isolates of Bacillus spp. from diseased Chinese soft-shelled turtles from 2016 to 2020. To recognize the causative agent, we used various methods, such as sequencing analysis using PCR-amplification of the 16S rRNA gene, multiplex PCR for discriminating, and colony morphology by following previous studies. Furthermore, the digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were calculated, respectively, below the 70 and 96% cutoff to define species boundaries. According to the summarized results, the pathogen is taxonomically classified as Bacillus tropicus str. JMT (previous atypical Bacillus cereus). Subsequently, analyses such as targeting the unique genes using PCR and visual observation of the bacteria under various staining techniques were implemented in our study. Our findings show that all (32/32, 100%) isolates in this retrospective screening share similar phenotypical properties and carry the protective antigen (PA), edema factor (EF), hyaluronic acid (HA), and exopolysaccharide (Bps) genes on their plasmids. In this study, the results indicate that the geographic distribution and host range of B. tropicus were previously underestimated.
Collapse
Affiliation(s)
- Jia-Ming Tsai
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Fish Doctor Veterinary Clinic, Pingtung 94042, Taiwan
| | - Hsin-Wei Kuo
- General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
6
|
Rahmawaty A, Chen MY, Byadgi OV, Wang PC, Chen SC. Phenotypic and genotypic analysis of Edwardsiella isolates from Taiwan indicates wide variation with a particular reference to Edwardsiella tarda and Edwardsiella anguillarum. JOURNAL OF FISH DISEASES 2022; 45:1659-1672. [PMID: 35916068 DOI: 10.1111/jfd.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Edwardsiella spp. is a gram-negative, facultatively anaerobic, intracellular bacteria threatening the aquaculture industry worldwide. Noticeably, E. tarda is now genotypically classified into three distinct groups (E. tarda, E. piscicida and E. anguillarum), but morphologically, it is unclear due to varying degrees of virulence in different fish hosts. Hence, to reclassify E. tarda, we investigated differences in genotypes, phenotypes and pathogenicity. We collected Edwardsiella isolates from five different counties of Taiwan between 2017 and 2021. At first, gyrB gene was amplified for a phylogenetic tree from 40 isolates from different fish and one reference isolate, BCRC10670, from the human. Thirty-nine strains clustered into E. anguillarum, 1 strain into E. piscicida and 1 strain into E. tarda from human strain. Second, all isolates were characterized using various phenotypic (API 20E biochemical profiles) and genotypic (pulsed-field gel electrophoresis [PFGE], and virulence-related gene detection). SpeI digestion revealed 10 pulsotypes and I-CeuI into 7 pulsotypes. Virulent genes (citC, gadB, katB, mukF and fimA) confirmed in 35, 31, 28, 37 and 38 isolates, respectively. Finally, in vivo challenge test in milkfish (Chanos chanos) indicated the highest mortality from E. anguillarum. Overall, results revealed unique features with Edwardsiella spp. genotypes and pathogenicity, which are relevant to the host and provide useful insights for future vaccine development.
Collapse
Affiliation(s)
- Atiek Rahmawaty
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
7
|
Rajalingam N, Jung J, Seo SM, Jin HS, Kim BE, Jeong MI, Kim D, Ryu JG, Ryu KY, Oh KK. Prevalence, distribution, enterotoxin profiles, antimicrobial resistance, and genetic diversity of Bacillus cereus group isolates from lettuce farms in Korea. Front Microbiol 2022; 13:906040. [PMID: 36081801 PMCID: PMC9445581 DOI: 10.3389/fmicb.2022.906040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Lettuce wraps are popular in Korean cuisine for their high nutritional value and versatility as healthy additions to multiple dishes. Microbial contamination of lettuce is a major concern, as lettuce is consumed fresh without cooking. Among foodborne pathogens, the spore-forming, facultative anaerobic bacterium, Bacillus cereus is one of the frequently detected pathogen in lettuce in Korea. In this study, we investigated the prevalence and distribution of Bacillus cereus strains in lettuce production farms and further evaluated the enterotoxin gene profiles, antibiotic susceptibility, multidrug resistance pattern, and genetic differences among the B. cereus group isolates. Of the 140 samples isolated from 10 lettuce production farms, 30 samples (21.42%) were positive for B. cereus in which 19 (31.6%) and 10 (23.25%) were from soil and lettuce, respectively. The enterotoxin patterns A (hblCDA, nheABC, entFM, and cytK genes) and B (hblCDA, nheABC, and entFM genes) accounted for 50% and 20% of all the isolates, whereas the emetic gene cesB was not detected in any of the B. cereus group isolates. Antibiotic susceptibility testing of the B. cereus group isolates revealed that all the strains were predominantly resistant to β-lactam antibiotics except imipenem and generally susceptible to most of the non β-lactam antibiotics, including gentamycin, streptomycin, chloramphenicol, and tetracycline. ERIC-PCR and MLST analysis revealed high genetic diversity among the 30 B. cereus group isolates, which belonged to 26 different sequence types (STs) and seven new STs. Moreover, isolates with identical STs exhibited similar patterns of antibiotic resistance and enterotoxin profiles. Results of this study indicate a high prevalence of B. cereus group isolates in lettuce production farms in the Republic of Korea.
Collapse
Affiliation(s)
- Nagendran Rajalingam
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jieun Jung
- Functional Food and Nutrition Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seung-Mi Seo
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Hyun-Sook Jin
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Bo-Eun Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Myeong-In Jeong
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Dawoon Kim
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jae-Gee Ryu
- Planning and Coordination Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kyoung-Yul Ryu
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- *Correspondence: Kwang Kyo Oh,
| |
Collapse
|
8
|
Rao S, Chen MY, Sudpraseart C, Lin P, Yoshida T, Wang PC, Chen SC. Genotyping and phenotyping of Lactococcus garvieae isolates from fish by pulse-field gel electrophoresis (PFGE) and electron microscopy indicate geographical and capsular variations. JOURNAL OF FISH DISEASES 2022; 45:771-781. [PMID: 35235703 DOI: 10.1111/jfd.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Lactococcus garvieae is the etiological agent of Lactococcosis, an evolving disease affecting many fish species and causing significant economic losses worldwide. Assessing pathogen relatedness and bacterial population structure is critical for determining the epidemiology of L. garvieae infections and in establishing effective pathogen management methods. The previously published morphological and genetic studies point to a clonal population structure, as seen in other fish bacteria. In the present study, the pulsed-field gel electrophoresis (PFGE) method was utilized to define a population of 41 Taiwanese isolates from outbreaks with comparisons to four well-characterized non-Taiwanese isolates previously published. Two restriction enzymes (ApaI and SmaI) were utilized individually for PFGE analysis (cut-off value = 90.0%), revealing genetic heterogeneity across L. garvieae isolates, with ApaI and SmaI yielding 12 and seven distinct PFGE band patterns, respectively. The phylogenic analysis using internal transcribed spacer region clustered all L. garvieae isolates in the same clad. Furthermore, the electron microscopic results confirmed the absence of capsular gene cluster (CGC) in previously characterized Taiwanese vaccine strain (S3) from grey mullet. Overall, our findings emphasize the importance of analysing the morphological and genetic diversity in L. garvieae being correlated for proper taxonomic classification in vaccine strain selection and epidemiological studies.
Collapse
Affiliation(s)
- Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Mei-Yun Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chiranan Sudpraseart
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peiry Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Terutoyo Yoshida
- Faculty of Agriculture, Department of Marine Biology and Environmental Sciences, Miyazaki University, Miyazaki, Japan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
9
|
Cheng LW, Rao S, Wang PC, Chen SC. First report of acanthocephalan parasite, Longicollum pagrosomi Yamaguti, 1935 in cultured red snapper (Lutjanus erythropterus) in Taiwan. JOURNAL OF FISH DISEASES 2022; 45:579-593. [PMID: 35083744 DOI: 10.1111/jfd.13583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
For the first time, Longicollum pagrosomi Yamaguti, 1935, an acanthocephalan parasite, has been characterized with morphological, histopathological and molecular detail in farmed red snapper (Lutjanus erythropterus) in Taiwan. The diseased fish showed clinical signs of anorexia, emaciation and were gasping for air at the water's surface. Gross examination revealed extensive necrosis in the intestine and even penetration at the site of parasitic attachment, resulting in a large number of parasites being lodged in the peritoneal cavity, surrounded by black hyperplastic connective tissue. The parasites collected from the intestine were studied using optical microscopy, histopathology, scanning electron microscopy (SEM) and molecular phylogenetic analysis. They were creamy white in colour, and were separated into their proboscis, neck and metasoma (trunk) under optical microscopy. Histopathological examination revealed ovarian balls (floating ovaries) inside the ligament sac and eggs within the egg sorting apparatus. The SEM images revealed that the proboscis had 11-14 longitudinal rows with 9-12 recurrent, backward-facing, organized hooks. In the 18S and 28S phylogenetic tree, sequences of the specimens were identical to those of other Longicollum pagrosomi, in addition to the morphological features. Thus, we confirmed that the parasites belonged to Longicollum pagrosomi in this study.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shreesha Rao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|