1
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Louboutin L, Cabon J, Beven V, Hirchaud E, Blanchard Y, Morin T. Characterization of a New Toti-like Virus in Sea Bass, Dicentrarchus labrax. Viruses 2023; 15:2423. [PMID: 38140664 PMCID: PMC10748352 DOI: 10.3390/v15122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The European sea bass Dicentrarchus labrax is the main species reared in Mediterranean aquaculture. Its larval stage, which is very sensitive and highly affected by sanitary and environmental conditions, is particularly scrutinized in hatcheries. Recently, a Mediterranean sea bass farm had to deal with an abnormal increase in mortality, especially between 20 and 35 days post-hatching (dph). Biological investigations led to the observation of cytopathic effects on three different fish cell lines after almost 3 weeks of culture at 14 °C in contact with homogenized affected larvae, suggesting the presence of a viral agent. High-throughput sequencing revealed a 6818-nucleotide-long RNA genome with six putative ORFs, corresponding to the organization of viruses belonging to the Totiviridae family. This genome clustered with the newly described and suggested Pistolvirus genus, sharing 45.5% to 37.2% nucleotide identity with other piscine toti-like viruses such as Cyclopterus lumpus toti-like virus (CLuTLV) or piscine myocarditis virus (PMCV), respectively. Therefore, we propose to name this new viral agent sea bass toti-like virus (SBTLV). Specific real-time RT-PCR confirmed the presence of the viral genome in the affected larval homogenate from different production batches and the corresponding cell culture supernatant. Experimental infections performed on sea bass fingerlings did not induce mortality, although the virus could be detected in various organs and a specific immune response was developed. Additional studies are needed to understand the exact involvement of this virus in the mortality observed in hatcheries and the potential associated cofactors.
Collapse
Affiliation(s)
- Lénaïg Louboutin
- Unité Virologie, Immunologie et Écotoxicologie des Poissons, Laboratoire de Ploufragan-Plouzané-Niort, National Infrastructure Emerg’In, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 29280 Plouzané, France; (L.L.); (J.C.)
| | - Joëlle Cabon
- Unité Virologie, Immunologie et Écotoxicologie des Poissons, Laboratoire de Ploufragan-Plouzané-Niort, National Infrastructure Emerg’In, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 29280 Plouzané, France; (L.L.); (J.C.)
| | - Véronique Beven
- Unité Génétique virale et biosécurité, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 22440 Ploufragan, France; (V.B.); (E.H.)
| | - Edouard Hirchaud
- Unité Génétique virale et biosécurité, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 22440 Ploufragan, France; (V.B.); (E.H.)
| | - Yannick Blanchard
- Unité Génétique virale et biosécurité, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 22440 Ploufragan, France; (V.B.); (E.H.)
| | - Thierry Morin
- Unité Virologie, Immunologie et Écotoxicologie des Poissons, Laboratoire de Ploufragan-Plouzané-Niort, National Infrastructure Emerg’In, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 29280 Plouzané, France; (L.L.); (J.C.)
| |
Collapse
|