1
|
Kamani MH, Neji C, Fitzsimons SM, Fenelon MA, Murphy EG. Unlocking the nutritional and functional potential of legume waste to produce protein ingredients. Crit Rev Food Sci Nutr 2024; 64:7311-7329. [PMID: 36876476 DOI: 10.1080/10408398.2023.2184322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Worldwide, many production supply chains generate a considerable amount of legume by-products (e.g., leaves, husks, broken seeds, defatted cakes). These wastes can be revalorized to develop sustainable protein ingredients, with positive economic and environmental effects. To separate protein from legume by-products, a broad spectrum of conventional (e.g., alkaline solubilization, isoelectric precipitation, membrane filtration) and novel methodologies (e.g., ultrasound, high-pressure homogenization, enzymatic approaches) have been studied. In this review, these techniques and their efficiency are discussed in detail. The present paper also provides an overview of the nutritional and functional characteristics of proteins extracted from legume by-products. Moreover, existing challenges and limitations associated with the valorization of by-product proteins are highlighted, and future perspectives are proposed.
Collapse
Affiliation(s)
- Mohammad Hassan Kamani
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Chaima Neji
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sinead M Fitzsimons
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| | - Eoin G Murphy
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, County Cork, Ireland
| |
Collapse
|
2
|
Hadidi M, Tan C, Assadpour E, Jafari SM. Oilseed meal proteins: From novel extraction methods to nanocarriers of bioactive compounds. Food Chem 2024; 438:137971. [PMID: 37979261 DOI: 10.1016/j.foodchem.2023.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The global demand for animal proteins is predicted to increase twofold by 2050. This has led to growing environmental and health apprehensions, thereby prompting the appraisal of alternative protein sources. Oilseed meals present a promising alternative due to their abundance in global production and inherent dietary protein content. The alkaline extraction remains the preferred technique for protein extraction from oilseed meals in commercial processes. However, the combination of innovative techniques has proven to be more effective in the recovery and functional modification of oilseed meal proteins (OMPs), resulting in improved protein quality and reduced allergenicity and environmental hazards. This manuscript explores the extraction of valuable proteins from sustainable sources, specifically by-products from the oil processing industry, using emerging technologies. Chemical structure, nutritional value, and functional properties of the main OMPs are evaluated with a particular focus on their potential application as nanocarriers for bioactive compounds.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
3
|
Patra A, Arun Prasath V. Isolation of detoxified cassava (Manihot esculenta L.) leaf protein by alkaline extraction-isoelectric precipitation: Optimization and its characterization. Food Chem 2024; 437:137845. [PMID: 37922801 DOI: 10.1016/j.foodchem.2023.137845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The cassava leaves protein isolate extraction and optimization were investigated using response surface methodology, where the maximum protein content (21.83 ± 0.41 g/100 g dm), extraction yield (18.31 ± 0.53%), and protein recovery yield (69 ± 1.31%) were obtained at optimal conditions: 114 min extraction time, 46 °C extraction temperature, 23.5 mL/g solvent/solute ratio and pH 11.0 value. The presence of toxicant (Cyanide) and anti-nutrient (tannin) in cassava leaves reduced the bio-accessibility of its protein isolate, strictly prohibiting its consumption. Therefore, detoxification was applied to diminish cyanide and tannin to 85% and 69% in leaves, respectively, where the protein content was reduced to 9.7%. However, detoxified cassava leaf protein isolate exhibited changes in the compositional, structural, morphological, molecular, and thermal characteristics compared to the controlled one. Moreover, the functional properties in protein isolate improved after detoxification at different pH conditions, which can be used as an active ingredient in various foods.
Collapse
Affiliation(s)
- Abhipriya Patra
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - V Arun Prasath
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
4
|
Hadidi M, Aghababaei F, Gonzalez-Serrano DJ, Goksen G, Trif M, McClements DJ, Moreno A. Plant-based proteins from agro-industrial waste and by-products: Towards a more circular economy. Int J Biol Macromol 2024; 261:129576. [PMID: 38253140 DOI: 10.1016/j.ijbiomac.2024.129576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
There is a pressing need for affordable, abundant, and sustainable sources of proteins to address the rising nutrient demands of a growing global population. The food and agriculture sectors produce significant quantities of waste and by-products during the growing, harvesting, storing, transporting, and processing of raw materials. These waste and by-products can sometimes be converted into valuable protein-rich ingredients with excellent functional and nutritional attributes, thereby contributing to a more circular economy. This review critically assesses the potential for agro-industrial wastes and by-products to contribute to global protein requirements. Initially, we discuss the origins and molecular characteristics of plant proteins derived from agro-industrial waste and by-products. We then discuss the techno-functional attributes, extraction methods, and modification techniques that are applied to these plant proteins. Finally, challenges linked to the safety, allergenicity, anti-nutritional factors, digestibility, and sensory attributes of plant proteins derived from these sources are highlighted. The utilization of agro-industrial by-products and wastes as an economical, abundant, and sustainable protein source could contribute towards achieving the Sustainable Development Agenda's 2030 goal of a "zero hunger world", as well as mitigating fluctuations in food availability and prices, which have detrimental impacts on global food security and nutrition.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria.
| | | | - Diego J Gonzalez-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28816 Stuhr, Germany; CENCIRA Agrofood Research and Innovation Centre, Ion Mester 6, 400650 Cluj-Napoca, Romania
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 102 Holdsworth Way, Amherst, MA 01002, United States
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
5
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Sharma V, Tsai ML, Sun PP, Chen CW, Nargotra P, Dong CD. Sequential ultrasound assisted deep eutectic solvent-based protein extraction from Sacha inchi meal biomass: towards circular bioeconomy. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1425-1434. [PMID: 36936123 PMCID: PMC10020387 DOI: 10.1007/s13197-023-05689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023]
Abstract
The need for high-quality dietary proteins has risen over the years with improvements in the quality of life. Deep eutectic solvents (DESs) have been regarded as potential green alternatives to conventional organic solvents for protein extraction from press cake biomass, meeting the needs of sustainable development goals. Sacha inchi seed meal (SIM) is generated as a by-product of the seed oil extraction industries containing high protein content. The current study presents a novel ultrasound assisted DES method for the extraction of SIM protein in a sequential manner. Four different DESs were screened, out of which choline chloride (ChCl)/glycerol (1:2) gave promising results in protein recovery and was further selected. The sequential ultrasound-ChCl/glycerol could effectively extract high total crude protein content (77.43%) from SIM biomass compared to alone ultrasound (29.21%) or ChCl/glycerol (58.32%) treatment strategies. The SIM protein extracted from ultrasound-ChCl/glycerol exhibited high solubility (94.39%) at alkaline pH and highest in vitro digestibility (71.16%) by digestive enzymes (pepsin and trypsin). The protein characterization by SDS-PAGE and FTIR elucidated the structural properties and presence of different functional groups of SIM protein. Overall, the sequential ultrasound-ChCl/glycerol revealed its significant potential for one-step biorefining of the waste Sacha inchi meal biomass for circular bioeconomy.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Zhang A, Wang K, Liu X, Zhang X. Isolation and identification of dipeptidyl peptidase-IV inhibitory peptides from Sacha inchi meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2926-2938. [PMID: 36692392 DOI: 10.1002/jsfa.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sacha inchi meal (SIM) is a by-product of oil processing. Our previous studies showed that SIM hydrolysates exhibited dipeptidyl peptidase-IV (DPP-IV) inhibition activity. The objective of the present work was to identify and characterize the bioactive peptides from protein hydrolysates of SIM; enzyme kinetics and peptide-enzyme interaction were also investigated. RESULTS From SIM hydrolysates, ten peptides responsible for the activity were identified: GPSRGF (GF-6), FPILSPDPA (FA-9), APYRRGGKI (AI-9), WPYH (WH-4), DPATWLALPT (DT-10), NPEDEFRQQ (NQ-9), APESKPVGV (AV-9), LEWRDR (LR-6), APVYWVQ (AQ-7) and LLMWPY (LY-6). The IC50 values of five peptides (GF-6, WH-4, AQ-7, AV-9 and LY-6) with better inhibitory activity on DPP-IV were within the range of 23.43-128.40 μmol L-1 . AQ-7 had the best activity, with an IC50 value of 23.43 μmol L-1 . Enzyme kinetics indicated the presence of various inhibition types (mixed, non-competitive and competitive). Isothermal titration microcalorimetry showed that the main forces of the binding sites between peptide (GF-6 or AQ-7) and DPP-IV were hydrogen bond, hydrophobic interaction and van der Waals force. The key residues involved in peptide-enzyme interaction were determined by molecular docking. Furthermore, at a concentration of 800 μmol L-1 , GF-6 was found to significantly increase the glucose consumption in insulin-resistant HepG2 cells (P < 0.05) compared with the model group. CONCLUSION Sacha inchi meal-derived peptides displayed potent DPP-IV inhibition activity and could be used in the health food industry and as lead compounds for diabetes therapy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aiyuan Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Kai Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Wang K, Wu S, Li P, Xiao N, Wen J, Lin J, Lu S, Cai X, Xu Y, Du B. Sacha Inchi Oil Press-Cake Protein Hydrolysates Exhibit Anti-Hyperuricemic Activity via Attenuating Renal Damage and Regulating Gut Microbiota. Foods 2022; 11:foods11162534. [PMID: 36010534 PMCID: PMC9407120 DOI: 10.3390/foods11162534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/17/2022] Open
Abstract
The incidence of hyperuricemia has increased globally due to changes in dietary habits. The sacha inchi oil press-cake is generally discarded, resulting in the waste of resources and adverse environmental impact. For the purpose of developing sacha inchi oil press-cake and identifying natural components with anti-hyperuricemic activities, we systemically investigated the underlying mechanisms of sacha inchi oil press-cake protein hydrolysates (SISH) in the hyperuricemic rat model. SISH was obtained from sacha inchi oil press-cake proteins after trypsin treatment, and 24 peptides with small molecular weight (<1000 Da) were identified. The results of animal experiments showed that SISH significantly decreased the serum uric acid (UA) level by inhibiting the xanthine oxidase (XOD) activity and regulating the gene expression related to UA production and catabolism in hyperuricemia rats, such as Xdh and Hsh. In addition, SISH attenuated the renal damage and reduced the gene expression related to inflammation (Tlr4, Map3k8, Pik3cg, Pik3ap1, Ikbke, and Nlrp3), especially Tlr4, which has been considered a receptor of UA. Notably, SISH reversed high purine-induced gut microbiota dysbiosis, particularly by enhancing the relative abundance of butyric acid-producing bacteria (unidentified_Ruminococcaceae, Oscillibacter, Ruminiclostridium, Intestinimonas). This research provided new insights into the treatment of hyperuricemia.
Collapse
|
9
|
Carlosama Adriana M, Rodríguez Misael C, Londoño Guillermo C, Sánchez Fernando O, Cock Liliana S. Optimization of the reproduction of Weissella cibaria in a fermentation substrate formulated with agroindustrial waste. ACTA ACUST UNITED AC 2021; 32:e00671. [PMID: 34603976 PMCID: PMC8473453 DOI: 10.1016/j.btre.2021.e00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
Use of pineapple and sacha inchi wastes in biotechnological processes. Valorization of agroindustrial waste in the context of circular economy. Use of alternative fermentation substrates (SFS) in the production of probiotics (Weissella cibaria), in order to substitute conventional substrates. Optimal conditions of the fermentation process for the reproduction and viability of W. cibaria.
Agroindustrial wastes contain macronutrients and micronutrients essential for the reproduction of lactic acid bacteria. In this research, the reproduction of Weissella cibaria was experimentally optimized in a supplemented fermentation substrate (SFS) formulated from pineapple and sacha inchi wastes. Response surface methodology was used to evaluate the influence of the following independent variables: temperature (32–40 °C), pH (5.0–6.0), and stirring speed (SS) (100–150 rpm) on the following dependent variables: viability (Log10 CFU mL−1), biomass production (BWc), lactic acid production (LA), biomass yield (YBwc/S), biomass volumetric productivity (VPWc), LA volumetric productivity (VPLA), carbon source consumption (CSC), N2 consumption (N2C), and specific growth rate (µ). The experimental optimization of multiple responses presented a desirability of 76.8%, thus defining the independent variables of the process: temperature = 35.1 °C, pH = 5.0, and SS = 139.3 rpm; and the dependent variables: viability = 10.01 Log10 CFU mL−1, BWc = 2.9 g L−1, LA = 19.4 g mL−1, YBwc/S = 43.9 g biomass/g CSC, VPWc = 0.49 g L−1h − 1, VPLA = 3.2 g L−1 h−1, CSC = 17.2%, N2C = 63.6% and µ = 0.28 h−1. From these, viability, YBwc/S, CSC, N2C, and LA presented significant statistical differences, while the independent variable with the least important effect on the process was pH. Under optimal conditions of temperature, pH and SS; SFS favors the reproduction and viability of W. cibaria. This provides evidence of a sustainable alternative for the production of probiotics in the context of circular economy.
Collapse
Affiliation(s)
- Micanquer Carlosama Adriana
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Cortés Rodríguez Misael
- Departamento de Ingeniería Agrícola y de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Correa Londoño Guillermo
- Departamento de Ingeniería Agrícola y de Alimentos, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Orozco Sánchez Fernando
- Área Curricular de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Campus Medellín, Antioquia, Colombia
| | - Serna Cock Liliana
- Departamento de Ingeniería, Facultad de Ingeniería y Administración, Universidad Nacional de Colombia, Campus Palmira, Valle del Cauca, Colombia
| |
Collapse
|
10
|
A Review on the Extraction and Processing of Natural Source-Derived Proteins through Eco-Innovative Approaches. Processes (Basel) 2021. [DOI: 10.3390/pr9091626] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In addition to their nutritional and physiological role, proteins are recognized as the major compounds responsible for the rheological properties of food products and their stability during manufacture and storage. Furthermore, proteins have been shown to be source of bioactive peptides able to exert beneficial effects on human health. In recent years, scholarly interest has focused on the incorporation of high-quality proteins into the diet. This fact, together with the new trends of consumers directed to avoid the intake of animal proteins, has boosted the search for novel and sustainable protein sources and the development of suitable, cost-affordable, and environmentally friendly technologies to extract high concentrations of valuable proteins incorporated into food products and supplements. In this review, current data on emergent and promising methodologies applied for the extraction of proteins from natural sources are summarized. Moreover, the advantages and disadvantages of these novel methods, compared with conventional methods, are detailed. Additionally, this work describes the combination of these technologies with the enzymatic hydrolysis of extracted proteins as a powerful strategy for releasing bioactive peptides.
Collapse
|
11
|
|
12
|
Torres Sánchez EG, Hernández-Ledesma B, Gutiérrez LF. Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1900231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Erwin G. Torres Sánchez
- Instituto De Ciencia Y Tecnología De Alimentos, Universidad Nacional De Colombia, Bogotá D.C., Colombia
- Facultad De Ciencias Agrarias, Universidad Nacional De Colombia, Bogotá D.C., Colombia
| | - Blanca Hernández-Ledesma
- Instituto De Investigación En Ciencias De La Alimentación (CIAL, CSIC-UAM, CEI-UAM+CSIC), Madrid, Spain
| | - Luis-Felipe Gutiérrez
- Instituto De Ciencia Y Tecnología De Alimentos, Universidad Nacional De Colombia, Bogotá D.C., Colombia
| |
Collapse
|
13
|
Chirinos R, Pedreschi R, Campos D. Enzyme‐assisted hydrolysates from sacha inchi (
Plukenetia volubilis
) protein with in vitro antioxidant and antihypertensive properties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rosana Chirinos
- Instituto de Biotecnología Universidad Nacional Agraria La Molina Lima Peru
| | - Romina Pedreschi
- Facultad de Ciencias Agronómicas y de los Alimentos Pontificia Universidad Católica de Valparaíso Valparaiso Chile
| | - David Campos
- Instituto de Biotecnología Universidad Nacional Agraria La Molina Lima Peru
| |
Collapse
|
14
|
Chirinos R, Pedreschi R, Velásquez‐Sánchez M, Aguilar‐Galvez A, Campos D. In vitroantioxidant and angiotensin I‐converting enzyme inhibitory properties of enzymatically hydrolyzed quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus) proteins. Cereal Chem 2020. [DOI: 10.1002/cche.10317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rosana Chirinos
- Instituto de BiotecnologíaUniversidad Nacional Agraria La Molina Lima Peru
| | - Romina Pedreschi
- Pontificia Universidad Católica de ValparaísoEscuela de Agronomía La Palma Chile
| | | | - Ana Aguilar‐Galvez
- Instituto de BiotecnologíaUniversidad Nacional Agraria La Molina Lima Peru
| | - David Campos
- Instituto de BiotecnologíaUniversidad Nacional Agraria La Molina Lima Peru
| |
Collapse
|
15
|
Kodahl N. Sacha inchi (Plukenetia volubilis L.)-from lost crop of the Incas to part of the solution to global challenges? PLANTA 2020; 251:80. [PMID: 32185506 DOI: 10.1007/s00425-020-03377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/11/2020] [Indexed: 05/19/2023]
Abstract
The underutilized, oleaginous crop Plukenetia volubilis L. has a remarkable lipid composition and a large potential for further domestication, alleviation of malnutrition, and integration into sustainable food production systems. Current global challenges include climate change, increasing population size, lack of food security, malnutrition, and degradation of arable lands. In this context, a reformation of our food production systems is imperative. Underutilized crops, or orphan crops, can provide valuable traits for this purpose, e.g., climate change resilience, nutritional benefits, cultivability on marginal lands, and improvement of income opportunities for smallholders. Plukenetia volubilis L. (Euphorbiaceae)-sacha inchi-is a 'lost crop' of the Incas native to the Amazon basin. Its oleaginous seeds are large, with a high content of ω-3, and -6 fatty acids (ca. 50.5, and 34.1%, of the lipid fraction, respectively), protein, and antioxidants. Culinarily, the seeds are nut-like and the crop has been associated with humans since Incan times. Research has particularly been undertaken in seed biochemistry, and to some extent in phylogeny, genetics, and cultivation ecology, but attention has been unevenly distributed, causing knowledge gaps in areas such as ethnobotany, allergenicity, and sustainable cultivation practices. Recently, seed size evolution and molecular drivers of the fatty acid synthesis and composition have been studied, however, further research into the lipid biosynthesis is desirable. Targeted breeding has not been undertaken but might be especially relevant for yield, sensory qualities, and cultivation with low environmental impact. Similarly, studies of integration into sustainable management systems are of highest importance. Here, present knowledge on P. volubilis is reviewed and a general framework for conducting research on underutilized crops with the aim of integration into sustainable food production systems is presented.
Collapse
Affiliation(s)
- Nete Kodahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
LIU Y, MA XY, LIU LN, XIE YP, KE YJ, CAI ZJ, WU GJ. Ultrasonic-assisted extraction and functional properties of wampee seed protein. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.03918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | | | - Guo-Jie WU
- Zhongkai University of Agriculture and Engineering, China
| |
Collapse
|
17
|
Nyari N, Paulazzi A, Zamadei R, Steffens C, Zabot GL, Tres MV, Zeni J, Venquiaruto L, Dallago RM. Synthesis of isoamyl acetate by ultrasonic system using Candida antarctica
lipase B immobilized in polyurethane. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Nádia Nyari
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Alessandro Paulazzi
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Raquel Zamadei
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Clarice Steffens
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE); Federal University of Santa Maria, UFSM, Ernesto Barros St., 1345; Cachoeira do Sul RS 96506-322 Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE); Federal University of Santa Maria, UFSM, Ernesto Barros St., 1345; Cachoeira do Sul RS 96506-322 Brazil
| | - Jamile Zeni
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Luciana Venquiaruto
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| | - Rogério Marcos Dallago
- Department of Food Engineering; Integrated Regional University (URI), Sete de Setembro Av., 1621; Erechim RS 99709-910 Brazil
| |
Collapse
|
18
|
Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|