1
|
Liu X, Yin Q, Chen X, Sun P, Liu Y. Ultrasound-assisted extraction of phenolics from Sargassum carpophyllum - A kinetics study. JOURNAL OF PHYCOLOGY 2024; 60:956-967. [PMID: 38924088 DOI: 10.1111/jpy.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
The species of the brown macroalgal genus Sargassum are distributed globally and contain many bioactive compounds. In this study, ultrasound-assisted extraction (UAE) was applied to obtain phenolic compounds with strong antioxidant activity from Sargassum carpophyllum collected along the coastline of Weizhou Island in the South China Sea. The influence of different variables such as the solid-liquid ratio (1:5-1:30 g · mL-1), ultrasonic power (160-280 W), duty circle ratio (DCR, 1/3-1/1), and ethanol concentration (30% to ~90%) were studied using a single factor design. The extraction kinetics were investigated using the Peleg model and second-order kinetics model, and the second-order model described the extraction procedure better than the Peleg model. Total phenol content (TPC) values of 3.316, 2.964, 2.741, and 3.665 mg phloroglucinol (PHG) · g-1 algae were achieved at a higher solid-liquid ratio (1:30 g · mL-1), higher ultrasonic power (280 W), a higher DCR (1/1), and a moderate ethanol concentration (50%), respectively. However, a slightly different result was observed in the extract obtained, with total phenol contents (TPCextract) of 52.99, 65.00, 46.22, and 55.10 mg PHG · g-1 extract and DPPH radical scavenging activity (IC50) of 0.096, 0.066, 0.131, and 0.136 mg extract · mL-1 observed at 50% ethanol, 1:5 g m· mL-1, 2/3 DCR, and 200 W respectively. All variables studied influenced the extraction kinetics by altering the extraction rate and the TPC at equilibrium. As for the bioactivities in the extract, a larger solid-liquid ratio and greater ultrasonic power may not contribute because of their ability to extract non-phenolic components simultaneously, leading to reduced overall bioactivities. The results of the present study provide essential information for future UAE process design and optimization for extracting phenolics from S. carpophyllum through mathematical modeling and could be regarded as important reference for obtaining value-added products from other macroalgae species.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Qunjian Yin
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environmental and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, Guangxi, China
| | - Ying Liu
- Shenzhen Academy of Environmental Science, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Rakshit M, Muduli S, Srivastav PP, Mishra S. Pomegranate peel polyphenols prophylaxis against SARS-CoV-2 main protease by in-silico docking and molecular dynamics study. J Biomol Struct Dyn 2022; 40:12917-12931. [PMID: 34569409 DOI: 10.1080/07391102.2021.1979427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pomegranate peel, the waste product generated from pomegranate fruit, has prophylactic properties, such as antimicrobial, anti-malarial, and controls respiratory infections and influenza. Based on the previous literature and need of the hour, molecular docking was performed to evaluate the inhibitory effects of major pomegranate peel polyphenols against COVID-19. Among the 44 studied compounds, 37 polyphenols show interaction with the catalytic dyad of the Mpro protease and 18 polyphenols have a higher binding affinity than that of the Mpro protease inhibitor (N3), indicating their high probability of binding at ACE2: SARS-CoV-2 interface. Furthermore, several polyphenols studied in this work are found to have higher binding affinity as compared to those of hydroxychloroquine, lopinavir, nelfinavir, and curcumin, some of which have been earlier tested against COVID-19. Further, molecular dynamics simulations (200 ns) for Mpro-polyphenols including pelargonidin3-glucoside, quercetin3-O-rhamnoside, cyanidin3-glucoside and punicalin revealed highly stable complexes with less conformational fluctuations and similar degree of compactness. Estimation of total number of intermolecular hydrogen bonds and binding free energy confirmed the stability of these Mpro-polyphenol complexes over Mpro-curcumin complex. Based on the greater binding affinity of polyphenols of pomegranate peel towards Mpro as compared to that of curcumin, pomegranate peel may be considered in any herbal medicinal formulation or may be incorporated into daily diets for prevention of COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhulekha Rakshit
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
| | - Sunita Muduli
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India.,Centre for Computational and Data Sciences, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
3
|
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Barroso Peixoto
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | | | | | - Rafael Oliveira Defendi
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | - Rúbia Michele Suzuki
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| |
Collapse
|
4
|
Cano-Lamadrid M, Martínez-Zamora L, Castillejo N, Artés-Hernández F. From Pomegranate Byproducts Waste to Worth: A Review of Extraction Techniques and Potential Applications for Their Revalorization. Foods 2022; 11:foods11172596. [PMID: 36076782 PMCID: PMC9455765 DOI: 10.3390/foods11172596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The food industry is quite interested in the use of (techno)-functional bioactive compounds from byproducts to develop ‘clean label’ foods in a circular economy. The aim of this review is to evaluate the state of the knowledge and scientific evidence on the use of green extraction technologies (ultrasound-, microwave-, and enzymatic-assisted) of bioactive compounds from pomegranate peel byproducts, and their potential application via the supplementation/fortification of vegetal matrixes to improve their quality, functional properties, and safety. Most studies are mainly focused on ultrasound extraction, which has been widely developed compared to microwave or enzymatic extractions, which should be studied in depth, including their combinations. After extraction, pomegranate peel byproducts (in the form of powders, liquid extracts, and/or encapsulated, among others) have been incorporated into several food matrixes, as a good tool to preserve ‘clean label’ foods without altering their composition and improving their functional properties. Future studies must clearly evaluate the energy efficiency/consumption, the cost, and the environmental impact leading to the sustainable extraction of the key bio-compounds. Moreover, predictive models are needed to optimize the phytochemical extraction and to help in decision-making along the supply chain.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Lorena Martínez-Zamora
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Department of Food Technology, Nutrition, and Food Science, Faculty of Veterinary Sciences, University of Murcia, Espinardo, 30071 Murcia, Spain
| | - Noelia Castillejo
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
- Correspondence: ; Tel.: +34-968325509
| |
Collapse
|
5
|
Fan R, Wang L, Fan J, Sun W, Dong H. The Pulsed Electric Field Assisted-Extraction Enhanced the Yield and the Physicochemical Properties of Soluble Dietary Fiber From Orange Peel. Front Nutr 2022; 9:925642. [PMID: 35938122 PMCID: PMC9355398 DOI: 10.3389/fnut.2022.925642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The study aimed to investigate the effects of pulsed electric field (PEF)-assisted extraction on the yield, physicochemical properties, and structure of soluble dietary fiber (SDF) from orange peel. The results showed that the optinal parameters of PEF assisted extraction SDF was temperature of 45oC with the electric field intensity of 6.0 kV/cm, pulses number of 30, and time of 20min and SDF treated with PEF showed the higher water solubility, water-holding and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, foam stability and higher binding capacity for Pb2+, As3+, Cu2+, and higher which resulted from the higher viscosity due to PEF treatment. Compared with the untreated orange peel, the SDF obtained with PEF exhibited stronger antioxidant activities, which was due to its smaller molecular weight (189 vs. 512 kDa). In addition, scanning electron micrograph images demonstrated that the surface of PEF-SDF was rough and collapsed. Overall, it was suggested that PEF treatment could improve the physicochemical properties of SDF from the orange peel and would be the potential extraction technology with high efficiency.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Lei Wang
- Key Laboratory of Agricultural Product Quality Evaluation and Nutrition Health, Ministry of Agriculture and Rural Affairs, Tangshan, China
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China
| | - Jingfang Fan
- Hebei Plant Protection and Quarantine General Station, Shijiazhuang, China
| | - Wanqiu Sun
- Beijing Institute of Nutritional Resources Co., Ltd., Beijing, China
| | - Hui Dong
- Shijiazhuang Institute of Pomology, Heibei Academy of Agriculture and Forestry Science, National Pear Improvement Centre, Shijiazhuang, China
- *Correspondence: Hui Dong ;
| |
Collapse
|
6
|
Cai B, Mazahreh J, Ma Q, Wang F, Hu X. Ultrasound-assisted fabrication of biopolymer materials: A review. Int J Biol Macromol 2022; 209:1613-1628. [PMID: 35452704 DOI: 10.1016/j.ijbiomac.2022.04.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop technologies that can physically manipulate the structure of biocompatible and green polymer materials in order to tune their performance in an efficient, repeatable, easy-to-operate, chemical-free, non-contact, and highly controllable manner. Ultrasound technology produces a cavitation effect that promotes the generation of free radicals, the fracture of chemical chain segments and a rapid change of morphology. The cavitation effects are accompanied by thermal, chemical, and biological effects that interact with the material being studied. With its high efficiency, cleanliness, and reusability applications, ultrasound has a vast range of opportunity within the field of natural polymer-based materials. This work expounds the basic principle of ultrasonic cavitation and analyzes the influence that ultrasonic strength, temperature, frequency and induced liquid surface tension on the physical and chemical properties of biopolymer materials. The mechanism and the influence that ultrasonic modification has on materials is discussed, with highlighted details on the agglomeration, degradation, morphology, structure, and the mechanical properties of these novel materials from naturally derived polymers.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Janine Mazahreh
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qingyu Ma
- School of Computer and Electrical Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
7
|
Liao J, Peng B, Chu X, Yu G. Effects of process parameters on the extraction of total anthocyanins from purple sweet potatoes by ultrasound with wide frequency and its kinetics study. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianqing Liao
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| | - Bo Peng
- College of Life Science and Resources and Environment Yichun University,576 Xuefu Road Yichun China
| | - Xinhong Chu
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| | - Guicai Yu
- College of Physical Science and Engineering Yichun University, 576 Xuefu Road Yichun Jiangxi China
| |
Collapse
|
8
|
Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci Rep 2022; 12:8311. [PMID: 35585109 PMCID: PMC9117660 DOI: 10.1038/s41598-022-12244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
This paper studies the effect of different ultrasonic parameters on the yield of extraction and antioxidant activity of selected phenolic compounds from Sorbus intermedia berries. The sonication was carried out in two modes: continuous and pulse. In the pulse mode, the samples were sonicated with the following processor settings: 1 s on–2 s off. The effective ultrasonic processor times were 5, 10, and 15 min, and the total extraction times were 15, 30, and 45 min. The results showed that the duty cycle significantly affected the antioxidant activity of the extracts and the yield of chlorogenic acid, rutin, and total flavonoids. Compared to the continuous mode, the pulse ultrasound increased the extraction yield of rutin by 5–27%, chlorogenic acid by 12–29%, and total flavonoids by 8–42%. The effect of the duty cycle on the extraction yield was dependent on the intensity and duration of the ultrasound treatment. The mechanism of the influence of the pulsed ultrasound field on the extraction process has been elucidated. This research clearly demonstrated the superiority of pulsed ultrasound-assisted extraction for production of antioxidants from Sorbus intermedia berries.
Collapse
|
9
|
Lučić M, Sredović Ignjatović I, Lević S, Pećinar I, Antić M, Đurđić S, Onjia A. Ultrasound‐assisted extraction of essential and toxic elements from pepper in different ripening stages using Box‐Behnken design. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Milica Lučić
- Innovation Center Faculty of Technology and Metallurgy Karnegijeva 4 11120 Belgrade Serbia
| | | | - Steva Lević
- Faculty of Agriculture University of Belgrade Nemanjina 6 11080 Zemun
| | - Ilinka Pećinar
- Faculty of Agriculture University of Belgrade Nemanjina 6 11080 Zemun
| | - Mališa Antić
- Faculty of Agriculture University of Belgrade Nemanjina 6 11080 Zemun
| | - Slađana Đurđić
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade
| | - Antonije Onjia
- Faculty of Technology and Metallurgy University of Belgrade Karnegijeva 4 11000 Belgrade
| |
Collapse
|
10
|
Elnour AAM, Mirghani MES, Kabbashi NA, Musa KH, Shahabipour F, Ashammakhi N, Hamid AN. Comparative Study of the Characterisation and Extraction Techniques of Polyphenolic Compounds from Acacia seyal gum. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Abstract
Acacia seyal gum is an abundant source of natural polyphenolic compounds (NPPCs) and antioxidant activity with numerous benefits and is often used in cancer treatment. The type of extraction technique can significantly impact the yield and isolation of NPPCs from Acacia seyal gum (ASG). The traditional use of maceration extraction reportedly yields fewer NPPCs.
Objectives
This study investigates five extraction techniques for NPPCs and ASG antioxidant activity, namely: homogenisation, shaking, ultrasonication, magnetic stirring, and maceration.
Materials and Methods
The evaluation of the antioxidant activity (AoA) of the extracted NPPCs from ASG used five assays, namely: Total Flavonoids Content (TFC), Folin-Ciocalteu index (FCI), 2,2-Diphenyl-1-Picrylhydrazyl radical scavenging activity (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Cupric Reducing Antioxidant Capacity (CUPRAC).
Results
To minimise the dataset dimensionality requires Principal Component Analysis. The ultrasonic and maceration techniques were the best techniques to extract NPPCs and examine the AoA of ASG, with a high correlation between the NPPCs and AoA. However, the maceration process was slow (12 h) compared to ultrasonication (1 h). Slow extraction can result in a decline of the NPPCs due to polyphenol oxidase-enzyme and impact productivity.
Conclusions
These findings provide an essential guide for the choice of extraction techniques for the effective extraction of NPPCs from ASG and other plant materials.
Collapse
Affiliation(s)
- Ahmed A M Elnour
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
- Bioenvironmental Engineering Research Centre (BERC), Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
- Institute of Gum Arabic & Desertification Studies (IGADS), University of Kordofan, Sudan, Elobied, Sudan
| | - Mohamed E S Mirghani
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
| | - Nassereldeen A Kabbashi
- Bioenvironmental Engineering Research Centre (BERC), Biotechnology Engineering Department, Kulliyyah of Engineering, International Islamic University, Malaysia (IIUM), Gombak, Kuala Lumpur, Malaysia
| | - Khalid Hamid Musa
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Kingdom of Saudi Arabia
| | - Fahimeh Shahabipour
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Abdurahman Nour Hamid
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), University Malaysia Pahang Gambang, Malaysia
| |
Collapse
|
11
|
Liu Y, Kong KW, Wu DT, Liu HY, Li HB, Zhang JR, Gan RY. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chem 2021; 374:131635. [PMID: 34823934 DOI: 10.1016/j.foodchem.2021.131635] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
The pomegranate peel is a by-product of pomegranate fruit rich in polyphenols. In this study, pomegranate peel polyphenols were explored using LC-MS/MS, and punicalagin was the most abundant compound. The highest yield (505.89 ± 1.73 mg/g DW) of punicalagin was obtained by ultrasonic-assisted extraction (UAE) with the ethanol concentration of 53%, sample-to-liquid ratio of 1:25 w/v, ultrasonic power of 757 W, and extraction time of 25 min. Punicalagin was further purified by the macroporous resin D101 and prep-HPLC, reaching the purity of 92.15%. The purified punicalagin had the IC50 of 82 ± 0.02 µg/mL against α-glucosidase, similar to the punicalagin standard with IC50 of 58 ± 0.014 µg/mL, both exhibiting a mixed inhibitory mechanism. Molecular docking further revealed that a steric hindrance with the intermolecular energy of -7.99 kcal/mol was formed between punicalagin and α-glucosidase. Overall, pomegranate peel is a promising source of punicalagin to develop anti-diabetic functional foods.
Collapse
Affiliation(s)
- Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jia-Rong Zhang
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China; Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
12
|
Kinetics and mechanistic models of solid-liquid extraction of pectin using advance green techniques- a review. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A, Vo DVN, Prabhakar S. Techniques and modeling of polyphenol extraction from food: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3409-3443. [PMID: 33753968 PMCID: PMC7968578 DOI: 10.1007/s10311-021-01217-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 05/18/2023]
Abstract
There is a growing demand for vegetal food having health benefits such as improving the immune system. This is due in particular to the presence of polyphenols present in small amounts in many fruits, vegetables and functional foods. Extracting polyphenols is challenging because extraction techniques should not alter food quality. Here, we review technologies for extracting polyphenolic compounds from foods. Conventional techniques include percolation, decoction, heat reflux extraction, Soxhlet extraction and maceration, whereas advanced techniques are ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, high-voltage electric discharge, pulse electric field extraction and enzyme-assisted extraction. Advanced techniques are 32-36% more efficient with approximately 15 times less energy consumption and producing higher-quality extracts. Membrane separation and encapsulation appear promising to improve the sustainability of separating polyphenolic compounds. We present kinetic models and their influence on process parameters such as solvent type, solid and solvent ratio, temperature and particle size.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| | - Dai-Viet N. Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
14
|
Rakshit M, Srivastav PP. Optimization of pulsed ultrasonic‐assisted extraction of punicalagin from pomegranate (
Punica granatum
) peel: A comparison between response surface methodology and artificial neural network‐multiobjective genetic algorithm. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Madhulekha Rakshit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| | - P. P. Srivastav
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur India
| |
Collapse
|