1
|
Wang Y, Liu X, Chen S, Wang Q, Jin B, Wang L. Functions, accumulation, and biosynthesis of important secondary metabolites in the fig tree ( Ficus carica). FRONTIERS IN PLANT SCIENCE 2024; 15:1397874. [PMID: 39022605 PMCID: PMC11253076 DOI: 10.3389/fpls.2024.1397874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Ficus carica is an economically important horticultural plant. Due to its abundant secondary metabolites, F. carica has gained interest for its applications in medicine and as a nutritional supplement. Both external and internal factors affect the accumulation of secondary metabolites in F. carica. The assembly of the F. carica genome has facilitated functional analysis of key genes and transcription factors associated with the biosynthesis of secondary metabolites, particularly anthocyanin. In this review, we summarize the various types and functions of secondary metabolites, with a particular focus on flavonoids, coumarins, and terpenes. We also explore the factors influencing their biosynthesis and accumulation, including varieties, tissue, environmental factors (e.g., light), stresses (e.g., high temperature, low temperature, drought, nutrient deficiencies, salinity), hormonal treatments, and developmental factors. Furthermore, we discuss the involvement of structural genes and transcription factors in the biosynthesis of secondary metabolites, specifically anthocyanin and furanocoumarins, knowledge of which will promote the breeding and genetic engineering of novel F. carica varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Nid Ahmed M, Abourat K, Gagour J, Sakar EH, Majourhat K, Koubachi J, Gharby S. Valorization of saffron ( Crocus sativus L.) stigma as a potential natural antioxidant for soybean ( Glycine max L.) oil stabilization. Heliyon 2024; 10:e25875. [PMID: 38370196 PMCID: PMC10869852 DOI: 10.1016/j.heliyon.2024.e25875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Synthetic antioxidants are known for their efficiency to improve vegetable oil oxidative stability. But owing to their harmful effects on human health, edible oil industry is seeking for safe and healthy natural antioxidants. The present work was setup with the aim of improving soybean oil (SO) oxidative stability by using saffron (Crocus sativus L.) stigmas collected in Morocco. Saffron stigmas were used as a natural antioxidant at various concentrations (0.2, 0.3, and 0.6%) in soybean oil compared to tocobiol (0.3%) as a synthetic antioxidant (the positive control). Performances of such natural and synthetic antioxidants were evaluated by measuring oil basic quality indices under accelerated storage at 60 °C for 12 weeks. Such indices consisted of free fatty acids (FFA), peroxide value (PV), anisidine value (p-AV), total oxidation value (TOTOX), UV extinction coefficients (K232 and K270), fatty acids composition (FA), and iodine value (IV). The obtained data show that there were significant (p < 0.05) increases in FFA, PV, p-AV, K232, K270, and TOTOX but no much variations were observed for FA and IV especially in saffron stigmas fortified oils across storage times. However, in the case of oils fortified with saffron stigmas at different doses, such an increase was of a lesser magnitude (for FFA, PV, p-AV, K270, and TOTOX) as compared to tocobiol. These outcomes were confirmed by principal component analysis with strong positive correlations (p < 0.001) among FFA, PV, p-AV, K232, K270, and TOTOX. The most important, for which determination coefficient R2 > 0.9, were modeled through simple regressions. In conclusion, saffron stigmas with the different doses performed better than the positive control (tocobiol) regardless of the storage time. It could be concluded that saffron stigmas are a promising natural antioxidant, alternative to synthetic antioxidants, to enhance the oxidative stability of edible oils.
Collapse
Affiliation(s)
- Moussa Nid Ahmed
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Karima Abourat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Jamila Gagour
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology and Health, FS, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Khalid Majourhat
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
- Geo-Bio-Environmental Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, University Ibn Zohr, Agadir, Morocco
| | - Jamal Koubachi
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| | - Said Gharby
- Biotechnology, Analytical Sciences and Quality Control team Faculty Polydisciplinary of Taroudant, University Ibn Zohr, Morocco
| |
Collapse
|
3
|
Sandhu AK, Islam M, Edirisinghe I, Burton-Freeman B. Phytochemical Composition and Health Benefits of Figs (Fresh and Dried): A Review of Literature from 2000 to 2022. Nutrients 2023; 15:nu15112623. [PMID: 37299587 DOI: 10.3390/nu15112623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
With their rich history dating back 6000 years, figs are one of the oldest known plants to mankind and are a classical fruit in the Mediterranean diet. They possess a diverse array of bioactive components, including flavonoids, phenolic acids, carotenoids, and tocopherols, which have been used for centuries in traditional medicine for their health-promoting effects addressing gastrointestinal, respiratory, inflammatory, metabolic, and cardiovascular issues. This review summarizes the updated information on the phenolic composition, antioxidant capacity and other functional properties of fresh and dried figs cultivated in various parts of the world, highlighting variation in phenolic composition based on cultivar, harvesting time, maturity stage, processing, and fig parts. Additionally, the review delves into the bio-accessibility and bio-availability of bioactive components from figs and their potential influence on cardiovascular health, diabetes, obesity, and gut/digestive health. Data suggest that the intake of figs regularly in the diet, alone or with other dried fruits, increases select micronutrient intake and is associated with higher diet quality, respectively. Research in animal and human models of health and disease risk provide preliminary health benefits data on figs and their extracts from fig parts; however, additional well-controlled human studies, particularly using fig fruit, will be required to uncover and verify the potential impact of dietary intake of figs on modern day health issues.
Collapse
Affiliation(s)
- Amandeep K Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Maria Islam
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
4
|
Safarpour B, Kenari RE, Farmani J. Evaluation of antioxidant properties of nanoencapsulated sage ( Salvia officinalis L.) extract in biopolymer coating based on whey protein isolate and Qodumeh Shahri ( Lepidium perfoliatum) seed gum to increase the oxidative stability of sunflower oil. Food Sci Nutr 2023; 11:1394-1402. [PMID: 36911848 PMCID: PMC10002883 DOI: 10.1002/fsn3.3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Sage leaf extract (SLE) is considered an excellent source of bioactive compounds mainly because of its high content of phenolics, widely known as natural antioxidants. This study aimed to compare the performance of free/encapsulated SLE by different coatings in protecting sunflower oil against oxidative deterioration. The coating materials were whey protein isolate and qodumeh seed gum at different ratios (1:0, 1:1, and 0:1). Each nanocapsule was analyzed for particle size, zeta potential, encapsulation efficiency, phenolics release, and SEM images. The total phenolic compounds of SLE were 31.12 mg GA/g. The antioxidant activity of SLE was increased in both DPPH and FRAP assays by increasing extract concentration from 50 to 250 ppm. All nanoparticles exhibited nanometric size, negative zeta potential, encapsulation efficiency higher than 60%, and gradual release during storage. The oxidative stability of sunflower oil with or without the incorporation of 250 ppm of free/encapsulated SLE was evaluated during 24 days of storage at 60°C. Peroxide value (PV), thiobarbituric acid value (TBA), oxidative stability index (OSI), color index (CI), and conjugated dienes (CD) were determined. COPM nanoparticles showed the lowest PV, TBA, CI, and CD but both SGUM and WHEY were more effective in delaying oil oxidation than TBHQ and free extract. Higher OSI was observed in oil-containing nanoparticles with composite coating. Results obtained reinforce the use of whey protein isolate and qodumeh seed gum as a coating for encapsulating SLE to increase the shelf life of sunflower oil as a natural antioxidant.
Collapse
Affiliation(s)
- Behnaz Safarpour
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Reza E. Kenari
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Jamshid Farmani
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
5
|
Kariminejad M, Naimabadi A, Morshedi A, Mohammadi-Moghaddam T, Shokuhi A, Bordbar M. Oxidative stability of sunflower and soybean oils enriched with black plum peel extract in comparison with synthetic antioxidants. PLoS One 2023; 18:e0279735. [PMID: 36662706 PMCID: PMC9858042 DOI: 10.1371/journal.pone.0279735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 01/21/2023] Open
Abstract
Black plum peel is the by-product of plum processing and is a valuable source of antioxidants and phenolic compounds. In this research, total phenolic compounds, total flavonoid content and antioxidant activity of black plum peel were measured. After that, black plum peel extract (in concentrations 0, 400, 800, 1200 and 2000 ppm) as a natural antioxidant for improving the stability of soybean and sunflower oil was used. The oxidative stability parameters of oils (peroxide value, free fatty acids, thiobarbituric acid, conjugated dienes, and carbonyl value) were measured at 60 °C for 4-16 days. Antioxidant activity, total phenolic compounds and total flavonoid content of black plum peel were 86.87% and 100.53 mg GA /g and 871.062 mg Quercetin/g respectively. Black plum peel extract could have a significant positive effect (P<0.05) on improvement of the quality and stability parameters of soybean oil and sunflower oil. The oxidative stability parameters for commercial oils and samples containing black plum peel extract were near each other and in an acceptable range. So, black plum peel is recommended as an oxidative stabilizer of oils and alternative synthetic antioxidants.
Collapse
Affiliation(s)
- Mohaddeseh Kariminejad
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Afsaneh Morshedi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolfazl Shokuhi
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahsa Bordbar
- Student Research Committee, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Industrial Application and Health Prospective of Fig ( Ficus carica) By-Products. Molecules 2023; 28:molecules28030960. [PMID: 36770628 PMCID: PMC9919570 DOI: 10.3390/molecules28030960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The current review was carried out on the industrial application of fig by-products and their role against chronic disorders. Fig is basically belonging to fruit and is botanically called Ficus carica. There are different parts of fig, including the leaves, fruits, seeds and latex. The fig parts are a rich source of bioactive compounds and phytochemicals including antioxidants, phenolic compounds, polyunsaturated fatty acids, phytosterols and vitamins. These different parts of fig are used in different food industries such as the bakery, dairy and beverage industries. Fig by-products are used in extract or powder form to value the addition of different food products for the purpose of improving the nutritional value and enhancing the stability. Fig by-products are additive-based products which contain high phytochemicals fatty acids, polyphenols and antioxidants. Due to the high bioactive compounds, these products performed a vital role against various diseases including cancer, diabetes, constipation, cardiovascular disease (CVD) and the gastrointestinal tract (GIT). Concussively, fig-based food products may be important for human beings and produce healthy food.
Collapse
|
7
|
Optimization of microwave-assisted solvent extraction of hemp (Cannabis sativa L.) seed oil using RSM: evaluation of oil quality. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01087-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Hssaini L, Ouaabou R, Razouk R, Charafi J, Hanine H, Houmanat K, Ennahli S, Lahlali R. ATR–FTIR Spectroscopy Combined with the Invitro Antioxidant Activity and Chromaticity for Rapid Discrimination of Fig (Ficus carica L.) Cultivars. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00189-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Meziant L, Bachir-bey M, Bensouici C, Saci F, Boutiche M, Louaileche H. Assessment of inhibitory properties of flavonoid-rich fig (Ficus carica L.) peel extracts against tyrosinase, α-glucosidase, urease and cholinesterases enzymes, and relationship with antioxidant activity. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2020.101272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Active Edible Polysaccharide-Based Coating for Preservation of Fresh Figs ( Ficus carica L.). Foods 2020; 9:foods9121793. [PMID: 33287134 PMCID: PMC7761759 DOI: 10.3390/foods9121793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Fresh figs are very sensitive to microbial spoilage, even in cold storage conditions. Thus, fresh figs are high perishable products during postharvest with microbiological decay that induces an unpleasant taste and smell due to rot, and suitable conservation methods must therefore be applied. The fruit usually is consumed fresh locally, dried, or preserved longer term in other transformed forms. A sustainable approach to extend the shelf-life of figs can be constituted by application of an edible coating able to maintain the quality of the fruit during storage. A comparison between fresh figs in a commercial preservation system, with the figs preserved in an edible coating, and an active edible coating to preserve their quality characteristics was carried out. The coating efficacy was enhanced with the addition of pomegranate peel extract at two different concentrations. The inclusion of a component with high antioxidant activity in an edible coating proved to be an excellent method for preserving the quality of this highly perishable fruit. The application of natural products, obtained from renewable sources, represents a simple and economic strategy, but also a tool capable of preserving the quality of the fruit during the postharvest storage, which is often consumed in production areas due to shelf-life problems.
Collapse
|
11
|
Dehghan B, Esmaeilzadeh Kenari R, Raftani Amiri Z. Nano‐encapsulation of orange peel essential oil in native gums (
Lepidium sativum
and
Lepidium perfoliatum
): Improving oxidative stability of soybean oil. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bahareh Dehghan
- Department of Food Science and Technology Sari Agricultural Sciences and Natural Resources University Mazandaran Iran
| | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology Sari Agricultural Sciences and Natural Resources University Mazandaran Iran
| | - Zeinab Raftani Amiri
- Department of Food Science and Technology Sari Agricultural Sciences and Natural Resources University Mazandaran Iran
| |
Collapse
|
12
|
Esmaeilzadeh Kenari R, Dehghan B. Optimization of ultrasound-assisted solvent extraction of hemp ( Cannabis sativa L.) seed oil using RSM: Evaluation of oxidative stability and physicochemical properties of oil. Food Sci Nutr 2020; 8:4976-4986. [PMID: 32994959 PMCID: PMC7500781 DOI: 10.1002/fsn3.1796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, the effect of solvent ratio of hexane to isopropanol (0:100, 50:50, and 100:0 v/v%), extraction temperature (30, 45, and 60°C), and time (30, 60, and 90 min) were investigated on the oil extraction efficiency, total phenol content, DPPH radical scavenging, peroxide value, and oil color index. Extraction conditions were optimized by response surface methodology and Box-Behnken design. The optimal conditions were obtained as hexane-to-isopropanol ratio of approximately 3:2, temperature of 40.26°C, and ultrasonication time of 54.40 min. Then, the hemp seed oil was extracted under the optimal conditions. The optimal predicted contents for oil yield (31.22%), total phenolics (3.19 mg GA/g oil), DPPH inhibition (73.86%), peroxide (4.62 meq/kg), and color index (28.2) were agreed with the predicted conditions because the RSE values were less than 5%. Hemp seed oil can be used extensively due to its high nutritional values, and antioxidant potential and ultrasound can improve oil extraction as a simple and fast method.
Collapse
Affiliation(s)
- Reza Esmaeilzadeh Kenari
- Department of Food Science and TechnologyFaculty of Agricultural EngineeringSari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Bahareh Dehghan
- Department of Food Science and TechnologyFaculty of Agricultural EngineeringSari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
13
|
Optimization of Iranian golpar (Heracleum persicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: chitosan as a wall materials and its effect on the shelf life of soybean oil during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00528-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Salami A, Asefi N, Kenari RE, Gharekhani M. Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00491-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Effect of Ficus carica L. leaves extract loaded gold nanoparticles against cisplatin-induced acute kidney injury. Colloids Surf B Biointerfaces 2019; 184:110465. [DOI: 10.1016/j.colsurfb.2019.110465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
|
16
|
Nutritional, chemical and bioactive profiles of different parts of a Portuguese common fig (Ficus carica L.) variety. Food Res Int 2019; 126:108572. [PMID: 31732029 DOI: 10.1016/j.foodres.2019.108572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022]
Abstract
This study aims to give an unprecedented contribution on the chemical composition and bioactivities of the most produced and appreciated Portuguese fig variety ("Pingo de Mel") with the view of expanding the knowledge on its potentialities. An advanced characterization of its peel and pulp parts was carried out. Four free sugars (glucose, fructose, trehalose and sucrose), 5 organic acids (oxalic, quinic, malic, citric, and succinic acids), tocopherols in all their 4 forms, besides 23 fatty acids were detected in the samples. Fifteen different phenolic components were found in the peel hydroethanolic extract; whereas 12 were detected in the pulp hydroethanolic extract. Quercetin-3-O-rutinoside (rutin) was the major constituent of the peel, accounting for 33.8% of its phenolic content, followed by 5-O-caffeoylquinic acid and vanillic acid malonyl di-deoxyhexoside. Caffeic acid derivatives, such as caffeic acid hexosides, were the major components of pulp, followed by vanillic acid derivatives and O-caffeoylquinic acid. Both extracts displayed promising antioxidant capacities in all methods used, namely the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging, the reducing power, the inhibition of β-carotene bleaching assays, the thiobarbituric acid reactive substances assay and the oxidative haemolysis inhibition assay; however, the peel presented significantly lower IC50 values than pulp. The extracts showed practically identical antibacterial capacities, being effective against methicillin-sensitive Staphylococcus aureus (MICs = 2.5 mg/mL), besides methicillin-resistant S. aureus, Escherichia coli and Morganella morganii (MICs = 5 mg/mL). The obtained results evidence that the fig peel is superior to the corresponding pulp as it relates to nutritional and phenolic profiles as well as bioactivities, endorsing the urgency in valorising and exploiting this usually discarded industrial by-product.
Collapse
|
17
|
Arvaniti OS, Samaras Y, Gatidou G, Thomaidis NS, Stasinakis AS. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res Int 2019; 119:244-267. [PMID: 30884655 DOI: 10.1016/j.foodres.2019.01.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 01/18/2023]
Abstract
Fig fruit (Ficus carica L.) is one of the most important agricultural products of the tropic and subtropics areas. In the Middle East and the Mediterranean region, the fig is included in diet since the ancient years and it is considered as the symbol of longevity. This review presents the main phytochemical compounds found in fresh and dried figs of different varieties, describes the analytical methods used for their determination and discuss the antioxidant capacity and the potential effects of figs in human health. Phenolic acids and flavonoids are the major types of phytochemical compounds that have been found in fresh and dried figs. Their levels are strongly influenced by various factors such as the color, the part of fruit, the maturity and the drying process. Gallic acid, chlorogenic acid, rutin, quercetin-3-O-rutinoside and epicatechin are the most predominant phenolic acids and flavonoids in dried and fresh fig varieties. Extracts of dark-colored varieties contain higher amount of phenolic compounds than the light-colored varieties. Fruit skin contributes most to the amount of phenolic compounds compared to the fruit pulp. The ripening stage affects the concentrations of phenolic compounds in figs, the maximum have been found in ripe fruit. On the other hand, contradictory results have been reported in the literature regarding the effect of air- and sun- drying on the total content of phytochemical compounds, as well as on the concentrations of individual phenolic compounds and carotenoids in figs. The antioxidant capacity of figs is highly correlated with their amount of phenolic compounds. The leaves, roots, fruit and latex of the plant are known for their health properties including acetyl cholinesterase inhibition, antifungal, anti-helminthic and anticarcinogenic activities. Future efforts should be focused on the application of fig extracts as functional ingredients of food products, on clinical trials in order to confirm the beneficial effect of plant extracts in human health and, on the valorization of the waste material produced during figs' processing.
Collapse
Affiliation(s)
- Olga S Arvaniti
- Department of Food Science and Technology, Laboratory of Wine and Spirits Quality Control, Ionian University, Vergoti's Ave, 28100 Argostoli, Kefalonia, Greece.
| | - Yiannis Samaras
- Department of Food Science and Technology, Laboratory of Wine and Spirits Quality Control, Ionian University, Vergoti's Ave, 28100 Argostoli, Kefalonia, Greece
| | - Georgia Gatidou
- Department of Environment, Water and Air Quality Laboratory, University of the Aegean, University Hill, 81100 Mytilene, Lesvos, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Athanasios S Stasinakis
- Department of Environment, Water and Air Quality Laboratory, University of the Aegean, University Hill, 81100 Mytilene, Lesvos, Greece
| |
Collapse
|