1
|
Grasso S, Estévez M, Lorenzo JM, Pateiro M, Ponnampalam EN. The utilisation of agricultural by-products in processed meat products: Effects on physicochemical, nutritional and sensory quality - Invited Review. Meat Sci 2024; 211:109451. [PMID: 38350244 DOI: 10.1016/j.meatsci.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Several plant-based materials are discarded by the food industry due to oversupply, lack of transport, and inappropriate storage. These materials contain valuable essential micronutrients such as minerals, vitamins and bioactive components (e.g., polyphenol, tocopherols, ascorbic acid, carotenoids) with antioxidant, antimicrobial, and anti-inflammatory effects, among others. In the context of making our agriculture-food based economy more circular and sustainable, and to develop foods with clean labels and less E-numbers, fruits, vegetables, yams, cereal distillers, oilseeds and other plant by-products could be utilised and upcycled back into new food formulations. Meat products are a particularly suitable matrix for this purpose, due to their susceptibility to lipid and protein oxidation and microbial spoilage (which shorten their shelf life). This review brings together the latest (2020-23) reformulation efforts, preservative methods and other innovative pathways, including studies on by-products as plant-based additives and bio-actives. It will cover the use of plant-based by-products as natural additives into production of processed meat products such as burgers, fermented meats and sausages, produced from ruminant and monogastric animals (except poultry). The extraction methods, inclusion levels, processing methods used and the quality of the resulting meat products will be reported, including preservative effects (microbial growth, oxidative stability and shelf life) and effects on instrumental, nutritional and sensory quality. Furthermore, it will also critically discuss the gaps identified, recommendation of the most promising ingredients for quality enhancement, and provide directions for future research.
Collapse
Affiliation(s)
- Simona Grasso
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Mario Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, Universidad de Extremadura, 10003 Cáceres, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Eric N Ponnampalam
- School of Agriculture, Food and Ecosystems Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; Agrifeed Animal Production, 9 Poseidon Close, Mill Park, Victoria 3082, Australia
| |
Collapse
|
2
|
Zhang Y, Cheng W, Di H, Yang S, Tian Y, Tong Y, Huang H, Escalona VH, Tang Y, Li H, Zhang F, Sun B, Huang Z. Variation in Nutritional Components and Antioxidant Capacity of Different Cultivars and Organs of Basella alba. PLANTS (BASEL, SWITZERLAND) 2024; 13:892. [PMID: 38592915 PMCID: PMC10974134 DOI: 10.3390/plants13060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Basella alba is a frequently consumed leafy vegetable. However, research on its nutritional components is limited. This study aimed to explore the variation in the nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Here, we primarily chose classical spectrophotometry and high-performance liquid chromatography (HPLC) to characterize the variation in nutritional components and antioxidant capacity among different organs (inflorescences, green fruits, black fruits, leaves, and stems) of eight typical cultivars of Basella alba. The determination indices (and methods) included the total soluble sugar (anthrone colorimetry), total soluble protein (the Bradford method), total chlorophyll (the ethanol-extracting method), total carotenoids (the ethanol-extracting method), total ascorbic acid (the HPLC method), total proanthocyanidins (the p-dimethylaminocinnamaldehyde method), total flavonoids (AlCl3 colorimetry), total phenolics (the Folin method), and antioxidant capacity (the FRAP and ABTS methods). The results indicated that M5 and M6 exhibited advantages in their nutrient contents and antioxidant capacities. Additionally, the inflorescences demonstrated the highest total ascorbic acid and total phenolic contents, while the green and black fruits exhibited relatively high levels of total proanthocyanidins and antioxidant capacity. In a comparison between the green and black fruits, the green fruits showed higher levels of total chlorophyll (0.77-1.85 mg g-1 DW), total proanthocyanidins (0.62-2.34 mg g-1 DW), total phenolics (15.28-27.35 mg g-1 DW), and ABTS (43.39-59.16%), while the black fruits exhibited higher levels of total soluble protein (65.45-89.48 mg g-1 DW) and total soluble sugar (56.40-207.62 mg g-1 DW) in most cultivars. Chlorophyll, carotenoids, and flavonoids were predominantly found in the leaves of most cultivars, whereas the total soluble sugar contents were highest in the stems of most cultivars. Overall, our findings underscore the significant influence of the cultivars on the nutritional composition of Basella alba. Moreover, we observed notable variations in the nutrient contents among the different organs of the eight cultivars, and proanthocyanidins may contribute significantly to the antioxidant activity of the fruits. On the whole, this study provides a theoretical basis for the genetic breeding of Basella alba and dietary nutrition and serves as a reference for the comprehensive utilization of this vegetable.
Collapse
Affiliation(s)
- Yi Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Wenjuan Cheng
- Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China;
- The State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Tianjin 300192, China
| | - Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Shihan Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Yuxiao Tian
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Yuantao Tong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Huanhuan Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Victor Hugo Escalona
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, Santiago 8820808, Metropolitan Region, Chile;
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (H.D.); (S.Y.); (Y.T.); (Y.T.); (H.H.); (Y.T.); (H.L.); (F.Z.)
| |
Collapse
|
3
|
Pateiro M, Domínguez R, Munekata PES, Nieto G, Bangar SP, Dhama K, Lorenzo JM. Bioactive Compounds from Leaf Vegetables as Preservatives. Foods 2023; 12:foods12030637. [PMID: 36766166 PMCID: PMC9914076 DOI: 10.3390/foods12030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Trends toward a healthier diet are increasing attention to clean-label products. This has led to the search for new ingredients that avoid the use of chemical additives. Food industries are responding to these demands by incorporating natural preservatives into their products, which consumers perceive as healthy. Leafy vegetables would fit this strategy since they are common components of the diet and are associated with beneficial health effects. The objective of this chapter is to offer an overview of the large number of bioactive compounds (phenolic acids, flavonoids, anthocyanins, glucosinolates, and sulfur compounds) present in these plants, which would be responsible for their activity as potential preservatives. Its incorporation into food would improve the quality and extend the shelf life by reducing oxidative processes and inhibiting or retarding the microbial growth that occurs during processing and storage without reducing the organoleptic characteristics of the product.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Campus Mare Nostrum, 30071 Espinardo, Spain
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly 243122, India
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Area de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
4
|
Genus Brassica By-Products Revalorization with Green Technologies to Fortify Innovative Foods: A Scoping Review. Foods 2023; 12:foods12030561. [PMID: 36766089 PMCID: PMC9914545 DOI: 10.3390/foods12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
Food losses and waste reduction are a worldwide challenge involving governments, researchers, and food industries. Therefore, by-product revalorization and the use of key extracted biocompounds to fortify innovative foods seems an interesting challenge to afford. The aim of this review is to evaluate and elucidate the scientific evidence on the use of green technologies to extract bioactive compounds from Brassica by-products with potential application in developing new foods. Scopus was used to search for indexed studies in JCR-ISI journals, while books, reviews, and non-indexed JCR journals were excluded. Broccoli, kale, cauliflower, cabbage, mustard, and radish, among others, have been deeply reviewed. Ultrasound and microwave-assisted extraction have been mostly used, but there are relevant studies using enzymes, supercritical fluids, ultrafiltration, or pressurized liquids that report a great extraction effectiveness and efficiency. However, predictive models must be developed to optimize the extraction procedures. Extracted biocompounds can be used, free or encapsulated, to develop, reformulate, and/or fortify new foods as a good tool to enhance healthiness while preserving their quality (nutritional, functional, and sensory) and safety. In the age of recycling and energy saving, more studies must evaluate the efficiency of the processes, the cost, and the environmental impact leading to the production of new foods and the sustainable extraction of phytochemicals.
Collapse
|
5
|
Khalil HE, Abdelwahab MF, Emeka PM, Badger-Emeka LI, Ahmed ASF, Anter AF, Abdel Hafez SMN, AlYahya KA, Ibrahim HIM, Thirugnanasambantham K, Matsunami K, Ibrahim Selim AH. Brassica oleracea L. var. botrytis Leaf Extract Alleviates Gentamicin-Induced Hepatorenal Injury in Rats—Possible Modulation of IL-1β and NF-κB Activity Assisted with Computational Approach. Life (Basel) 2022; 12:life12091370. [PMID: 36143406 PMCID: PMC9504091 DOI: 10.3390/life12091370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Recently, crop byproducts are considered a hot topic and can be converted into beneficial products. Cauliflower is well-known for its protective effects against oxidative stress-induced damage. The current study aimed to investigate the chemical profile and the ameliorative effects of cauliflower leaf extract (CL) on gentamicin-induced renal and hepatic injuries in rats. Methods: Cauliflower leaf was extracted with methanol to give the total methanol extract (TME) followed by the determination of total phenolic contents (TPC). Rats were divided into five groups; Group I was assigned as the control group, while the other groups were injected with gentamicin for ten days. Group II was given distilled water. Rats in groups III and IV were treated with oral CL (200 mg/kg and 400 mg/kg, respectively). Group V received L-cysteine (as a positive control). The functions of the kidneys and liver; oxidative stress and morphological and apoptotic changes of renal and hepatic tissues were assessed. Results: The TME was subjected to chromatographic techniques to yield ferulic acid, vanillic acid, p-coumaric acid and quercetin. TPC was 72.31 mg GAE/g of dried extract. CL treatment dose-dependently ameliorated gentamicin-induced impaired kidney and liver functions and improved the histopathological appearance of both organs. It also reduced gentamicin-induced oxidative stress. CL demonstrated downregulation of mRNA and protein expressions of IL-1β and NF-κB compared to nontreated rats. In silico interaction of the isolated compounds with amino acid residues of IL-1β and NF-κB might explain the current findings. Conclusion: Taken together, this study raises the waste-to-wealth potential of cauliflower to mitigate gentamicin-induced hepatorenal injury and convert the waste agromaterials into valuable products.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence:
| | - Miada F. Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Al-Shaimaa F. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Aliaa F. Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Khalid A. AlYahya
- Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa 36363, Saudi Arabia
| | - Hairul-Islam Mohamed Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry 605004, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | |
Collapse
|
6
|
Drabińska N, Jeż M, Nogueira M. Variation in the Accumulation of Phytochemicals and Their Bioactive Properties among the Aerial Parts of Cauliflower. Antioxidants (Basel) 2021; 10:1597. [PMID: 34679732 PMCID: PMC8533432 DOI: 10.3390/antiox10101597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetables from the Brassicaceae family are excellent sources of bioactive phytochemicals and may reduce the risk of chronic diseases. Variation of phytochemicals in the edible part of cauliflower is known. However, information about the distribution of bioactive and nutritive compounds as well as antioxidant activity among aerial organs of cauliflower is unavailable. Therefore, this study aimed to evaluate the distribution of glucosinolates (GLS), phenolics, flavonoids, chlorophylls, nutritive compounds and antioxidant capacity between the aerial parts of the common variety of cauliflower and to evaluate whether these changes contribute to the differences in the antioxidant capacity between the plant organs. Our study showed that all the aerial organs of cauliflower are a rich source of health-promoting bioactive compounds, including GLS, phenolics and flavonoids, exhibiting antioxidant capacity. The highest contents of phytochemicals and the highest antioxidant capacity were found in leaves. Cauliflower organs were also found to be rich in nutritive compounds, including minerals, proteins and amino acids. Our study showed that the non-edible organs, such as stems and leaves, being neglected parts of cauliflower, if not consumed as the main ingredient, can be used as additives for developing new, functional foodstuff.
Collapse
Affiliation(s)
- Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Food Volatilomics and Sensomics Group, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, 60-637 Poznań, Poland
| | - Maja Jeż
- Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mariana Nogueira
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Faculty of Biotechnology, Universidade Católica Portuguesa, 4169005 Porto, Portugal
| |
Collapse
|
7
|
Efenberger-Szmechtyk M, Gałązka-Czarnecka I, Otlewska A, Czyżowska A, Nowak A. Aronia melanocarpa (Michx.) Elliot, Chaenomeles superba Lindl. and Cornus mas L. Leaf Extracts as Natural Preservatives for Pork Meat Products. Molecules 2021; 26:molecules26103009. [PMID: 34070170 PMCID: PMC8158479 DOI: 10.3390/molecules26103009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the possibility of using Aronia melanocarpa, Chaenomeles superba, and Cornus mas leaf extracts as natural preservatives for pork meat products. Pork sausages were stored in modified atmosphere packaging (MAP) (80% N2 and 20% CO2) at 4 °C for 29 days. The total psychrotrophic counts (TPC) were determined during the storage period, along with the numbers of Enterobacteriaceae and lactic acid bacteria (LAB). The extracts improved the microbial quality of the meat products but to a lesser extent than sodium nitrate (III). They reduced the amounts of Enterobacteriaceae and LAB. The A.melanocarpa leaf extract showed the strongest preservative effect. The bacterial biodiversity of the meat products was investigated based on high-throughput sequencing of the 16S rRNA gene. Two predominant bacteria phyla were identified, Proteobacteria and Firmucutes, mostly consisting of genera Photobacterium, Brochothrix, and Carnobacterium. The extracts also influenced microbial community in sausages decreasing or increasing bacterial relative abundance. The extracts significantly inhibited lipid oxidation and improved the water-holding capacity of the meat, with C. superba extract showing the strongest influence. In addition, A. melanocarpa and C. superba improved the redness (a*) of the sausages. The results of this study show that A. melanocarpa, C. superba, and C. mas leaf extracts can extend the shelf life of meat products stored in MAP at 4 °C.
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
- Correspondence:
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.O.); (A.C.); (A.N.)
| |
Collapse
|