1
|
Braverman-Jaiven D, Manfredi L. Advancements in the use of AI in the diagnosis and management of inflammatory bowel disease. Front Robot AI 2024; 11:1453194. [PMID: 39498116 PMCID: PMC11532194 DOI: 10.3389/frobt.2024.1453194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) causes chronic inflammation of the colon and digestive tract, and it can be classified as Crohn's disease (CD) and Ulcerative colitis (UC). IBD is more prevalent in Europe and North America, however, since the beginning of the 21st century it has been increasing in South America, Asia, and Africa, leading to its consideration as a worldwide problem. Optical colonoscopy is one of the crucial tests in diagnosing and assessing the progression and prognosis of IBD, as it allows a real-time optical visualization of the colonic wall and ileum and allows for the collection of tissue samples. The accuracy of colonoscopy procedures depends on the expertise and ability of the endoscopists. Therefore, algorithms based on Deep Learning (DL) and Convolutional Neural Networks (CNN) for colonoscopy images and videos are growing in popularity, especially for the detection and classification of colorectal polyps. The performance of this system is dependent on the quality and quantity of the data used for training. There are several datasets publicly available for endoscopy images and videos, but most of them are solely specialized in polyps. The use of DL algorithms to detect IBD is still in its inception, most studies are based on assessing the severity of UC. As artificial intelligence (AI) grows in popularity there is a growing interest in the use of these algorithms for diagnosing and classifying the IBDs and managing their progression. To tackle this, more annotated colonoscopy images and videos will be required for the training of new and more reliable AI algorithms. This article discusses the current challenges in the early detection of IBD, focusing on the available AI algorithms, and databases, and the challenges ahead to improve the detection rate.
Collapse
Affiliation(s)
| | - Luigi Manfredi
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Kafetzis I, Fuchs KH, Sodmann P, Troya J, Zoller W, Meining A, Hann A. Efficient artificial intelligence-based assessment of the gastroesophageal valve with Hill classification through active learning. Sci Rep 2024; 14:18825. [PMID: 39138220 PMCID: PMC11322637 DOI: 10.1038/s41598-024-68866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Standardized assessment of the gastroesophageal valve during endoscopy, attainable via the Hill classification, is important for clinical assessment and therapeutic decision making. The Hill classification is associated with the presence of hiatal hernia (HH), a common endoscopic finding connected to gastro-esophageal reflux disease. A novel efficient medical artificial intelligence (AI) training pipeline using active learning (AL) is designed. We identified 21,970 gastroscopic images as training data and used our AL to train a model for predicting the Hill classification and detecting HH. Performance of the AL and traditionally trained models were evaluated on an external expert-annotated image collection. The AL model achieved accuracy of 76%. A traditionally trained model with 125% more training data achieved 77% accuracy. Furthermore, the AL model achieved higher precision than the traditional one for rare classes, with 0.54 versus 0.39 (p < 0.05) for grade 3 and 0.72 versus 0.61 (p < 0.05) for grade 4. In detecting HH, the AL model achieved 94% accuracy, 0.72 precision and 0.74 recall. Our AL pipeline is more efficient than traditional methods in training AI for endoscopy.
Collapse
Affiliation(s)
- Ioannis Kafetzis
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.
| | - Karl-Hermann Fuchs
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Philipp Sodmann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Wolfram Zoller
- Clinic for General Internal Medicine, Gastroenterology, Hepatology and Infectiology, Pneumology, Klinikum Stuttgart-Katharinenhospital, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Alexander Meining
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine 2, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
| |
Collapse
|
3
|
Calderaro J, Žigutytė L, Truhn D, Jaffe A, Kather JN. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol 2024; 21:585-599. [PMID: 38627537 DOI: 10.1038/s41575-024-00919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 07/31/2024]
Abstract
Liver cancer has high incidence and mortality globally. Artificial intelligence (AI) has advanced rapidly, influencing cancer care. AI systems are already approved for clinical use in some tumour types (for example, colorectal cancer screening). Crucially, research demonstrates that AI can analyse histopathology, radiology and natural language in liver cancer, and can replace manual tasks and access hidden information in routinely available clinical data. However, for liver cancer, few of these applications have translated into large-scale clinical trials or clinically approved products. Here, we advocate for the incorporation of AI in all stages of liver cancer management. We present a taxonomy of AI approaches in liver cancer, highlighting areas with academic and commercial potential, and outline a policy for AI-based liver cancer management, including interdisciplinary training of researchers, clinicians and patients. The potential of AI in liver cancer is immense, but effort is required to ensure that AI can fulfil expectations.
Collapse
Affiliation(s)
- Julien Calderaro
- Département de Pathologie, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Créteil, France
- Institut Mondor de Recherche Biomédicale, MINT-HEP Mondor Integrative Hepatology, Université Paris Est Créteil, Créteil, France
| | - Laura Žigutytė
- Else Kroener Fresenius Center for Digital Health (EKFZ), Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ariel Jaffe
- Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health (EKFZ), Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Sugino S, Yoshida N, Guo Z, Zhang R, Inoue K, Hirose R, Dohi O, Itoh Y, Nemoto D, Togashi K, Yamamoto H, Zhu X. Non-polypoid Colorectal Lesions Detection and False Positive Detection by Artificial Intelligence under Blue Laser Imaging and Linked Color Imaging. J Anus Rectum Colon 2024; 8:212-220. [PMID: 39086882 PMCID: PMC11286363 DOI: 10.23922/jarc.2023-070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives Artificial intelligence (AI) with white light imaging (WLI) is not enough for detecting non-polypoid colorectal polyps and it still has high false positive rate (FPR). We developed AIs using blue laser imaging (BLI) and linked color imaging (LCI) to detect them with specific learning sets (LS). Methods The contents of LS were as follows, LS (WLI): 1991 WLI images of lesion of 2-10 mm, LS (IEE): 5920 WLI, BLI, and LCI images of non-polypoid and small lesions of 2-20 mm. LS (IEE) was extracted from videos and included both in-focus and out-of-focus images. We designed three AIs as follows: AI (WLI) finetuned by LS (WLI), AI (IEE) finetuned by LS (WLI)+LS (IEE), and AI (HQ) finetuned by LS (WLI)+LS (IEE) only with images in focus. Polyp detection using a test set of WLI, BLI, and LCI videos of 100 non-polypoid or non-reddish lesions of 2-20 mm and FPR using movies of 15 total colonoscopy were analyzed, compared to 2 experts and 2 trainees. Results The sensitivity for LCI in AI (IEE) (83%) was compared to that for WLI in AI (IEE) (76%: p=0.02), WLI in AI (WLI) (57%: p<0.01), BLI in AI (IEE) (78%: p=0.14), and LCI in trainees (74%: p<0.01). The sensitivity for LCI in AI (IEE) (83%) was significantly higher than that in AI (HQ) (78%: p<0.01). The FPR for LCI (6.5%) in AI (IEE) were significantly lower than that in AI (HQ) (17.3%: p<0.01). Conclusions AI finetuned by appropriate LS detected non-reddish and non-polypoid polyps under LCI.
Collapse
Affiliation(s)
- Satoshi Sugino
- Department of Gastroenterology, Asahi University Hospital, Gifu, Japan
| | - Naohisa Yoshida
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zhe Guo
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| | - Ruiyao Zhang
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| | - Ken Inoue
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryohei Hirose
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Gastroenterology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Nemoto
- Department of Coloproctology, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | - Kazutomo Togashi
- Department of Coloproctology, Aizu Medical Center, Fukushima Medical University, Fukushima, Japan
| | - Hironori Yamamoto
- Department of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Xin Zhu
- Biomedical Information Engineering Lab, The University of Aizu, Fukushima, Japan
| |
Collapse
|
5
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
6
|
Lopes SR, Martins C, Santos IC, Teixeira M, Gamito É, Alves AL. Colorectal cancer screening: A review of current knowledge and progress in research. World J Gastrointest Oncol 2024; 16:1119-1133. [PMID: 38660635 PMCID: PMC11037045 DOI: 10.4251/wjgo.v16.i4.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, being the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths globally. Despite the progress in screening, early diagnosis, and treatment, approximately 20%-25% of CRC patients still present with metastatic disease at the time of their initial diagnosis. Furthermore, the burden of disease is still expected to increase, especially in individuals younger than 50 years old, among whom early-onset CRC incidence has been increasing. Screening and early detection are pivotal to improve CRC-related outcomes. It is well established that CRC screening not only reduces incidence, but also decreases deaths from CRC. Diverse screening strategies have proven effective in decreasing both CRC incidence and mortality, though variations in efficacy have been reported across the literature. However, uncertainties persist regarding the optimal screening method, age intervals and periodicity. Moreover, adherence to CRC screening remains globally low. In recent years, emerging technologies, notably artificial intelligence, and non-invasive biomarkers, have been developed to overcome these barriers. However, controversy exists over the actual impact of some of the new discoveries on CRC-related outcomes and how to effectively integrate them into daily practice. In this review, we aim to cover the current evidence surrounding CRC screening. We will further critically assess novel approaches under investigation, in an effort to differentiate promising innovations from mere novelties.
Collapse
Affiliation(s)
- Sara Ramos Lopes
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Claudio Martins
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Inês Costa Santos
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Madalena Teixeira
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Élia Gamito
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| | - Ana Luisa Alves
- Department of Gastroenterology, Centro Hospitalar de Setúbal, Setúbal 2910-446, Portugal
| |
Collapse
|
7
|
Goh WW, Chia KY, Cheung MF, Kee KM, Lwin MO, Schulz PJ, Chen M, Wu K, Ng SS, Lui R, Ang TL, Yeoh KG, Chiu HM, Wu DC, Sung JJ. Risk Perception, Acceptance, and Trust of Using AI in Gastroenterology Practice in the Asia-Pacific Region: Web-Based Survey Study. JMIR AI 2024; 3:e50525. [PMID: 38875591 PMCID: PMC11041476 DOI: 10.2196/50525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 11/23/2023] [Indexed: 06/16/2024]
Abstract
BACKGROUND The use of artificial intelligence (AI) can revolutionize health care, but this raises risk concerns. It is therefore crucial to understand how clinicians trust and accept AI technology. Gastroenterology, by its nature of being an image-based and intervention-heavy specialty, is an area where AI-assisted diagnosis and management can be applied extensively. OBJECTIVE This study aimed to study how gastroenterologists or gastrointestinal surgeons accept and trust the use of AI in computer-aided detection (CADe), computer-aided characterization (CADx), and computer-aided intervention (CADi) of colorectal polyps in colonoscopy. METHODS We conducted a web-based questionnaire from November 2022 to January 2023, involving 5 countries or areas in the Asia-Pacific region. The questionnaire included variables such as background and demography of users; intention to use AI, perceived risk; acceptance; and trust in AI-assisted detection, characterization, and intervention. We presented participants with 3 AI scenarios related to colonoscopy and the management of colorectal polyps. These scenarios reflect existing AI applications in colonoscopy, namely the detection of polyps (CADe), characterization of polyps (CADx), and AI-assisted polypectomy (CADi). RESULTS In total, 165 gastroenterologists and gastrointestinal surgeons responded to a web-based survey using the structured questionnaire designed by experts in medical communications. Participants had a mean age of 44 (SD 9.65) years, were mostly male (n=116, 70.3%), and mostly worked in publicly funded hospitals (n=110, 66.67%). Participants reported relatively high exposure to AI, with 111 (67.27%) reporting having used AI for clinical diagnosis or treatment of digestive diseases. Gastroenterologists are highly interested to use AI in diagnosis but show different levels of reservations in risk prediction and acceptance of AI. Most participants (n=112, 72.72%) also expressed interest to use AI in their future practice. CADe was accepted by 83.03% (n=137) of respondents, CADx was accepted by 78.79% (n=130), and CADi was accepted by 72.12% (n=119). CADe and CADx were trusted by 85.45% (n=141) of respondents and CADi was trusted by 72.12% (n=119). There were no application-specific differences in risk perceptions, but more experienced clinicians gave lesser risk ratings. CONCLUSIONS Gastroenterologists reported overall high acceptance and trust levels of using AI-assisted colonoscopy in the management of colorectal polyps. However, this level of trust depends on the application scenario. Moreover, the relationship among risk perception, acceptance, and trust in using AI in gastroenterology practice is not straightforward.
Collapse
Affiliation(s)
- Wilson Wb Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, Singapore, Singapore
| | - Kendrick Ya Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, Singapore, Singapore
| | - Max Fk Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
| | - Kalya M Kee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - May O Lwin
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - Peter J Schulz
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
- Wee Kim Wee School of Communication and Information, Nanyang Technological University, Singapore, Singapore
| | - Minhu Chen
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaichun Wu
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Simon Sm Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China (Hong Kong)
| | - Rashid Lui
- Prince of Wales Hospital, Hospital Authority, Hong Kong, China (Hong Kong)
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, SingHealth, Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan, China
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taiwan, China
| | | | - Joseph Jy Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Ding M, Yan J, Chao G, Zhang S. Application of artificial intelligence in colorectal cancer screening by colonoscopy: Future prospects (Review). Oncol Rep 2023; 50:199. [PMID: 37772392 DOI: 10.3892/or.2023.8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/30/2023] Open
Abstract
Colorectal cancer (CRC) has become a severe global health concern, with the third‑high incidence and second‑high mortality rate of all cancers. The burden of CRC is expected to surge to 60% by 2030. Fortunately, effective early evidence‑based screening could significantly reduce the incidence and mortality of CRC. Colonoscopy is the core screening method for CRC with high popularity and accuracy. Yet, the accuracy of colonoscopy in CRC screening is related to the experience and state of operating physicians. It is challenging to maintain the high CRC diagnostic rate of colonoscopy. Artificial intelligence (AI)‑assisted colonoscopy will compensate for the above shortcomings and improve the accuracy, efficiency, and quality of colonoscopy screening. The unique advantages of AI, such as the continuous advancement of high‑performance computing capabilities and innovative deep‑learning architectures, which hugely impact the control of colorectal cancer morbidity and mortality expectancy, highlight its role in colonoscopy screening.
Collapse
Affiliation(s)
- Menglu Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| | - Junbin Yan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University (The Xin Hua Hospital of Zhejiang Province), Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
9
|
Sanchez M, Alford K, Krishna V, Huynh TM, Nguyen CDT, Lungren MP, Truong SQH, Rajpurkar P. AI-clinician collaboration via disagreement prediction: A decision pipeline and retrospective analysis of real-world radiologist-AI interactions. Cell Rep Med 2023; 4:101207. [PMID: 37769656 PMCID: PMC10591030 DOI: 10.1016/j.xcrm.2023.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 10/03/2023]
Abstract
Clinical decision support tools can improve diagnostic performance or reduce variability, but they are also subject to post-deployment underperformance. Although using AI in an assistive setting offsets many concerns with autonomous AI in medicine, systems that present all predictions equivalently fail to protect against key AI safety concerns. We design a decision pipeline that supports the diagnostic model with an ecosystem of models, integrating disagreement prediction, clinical significance categorization, and prediction quality modeling to guide prediction presentation. We characterize disagreement using data from a deployed chest X-ray interpretation aid and compare clinician burden in this proposed pipeline to the diagnostic model in isolation. The average disagreement rate is 6.5%, and the expected burden reduction is 4.8%, even if 5% of disagreements on urgent findings receive a second read. We conclude that, in our production setting, we can adequately balance risk mitigation with clinician burden if disagreement false positives are reduced.
Collapse
Affiliation(s)
- Morgan Sanchez
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
| | - Kyle Alford
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Viswesh Krishna
- Department of Computer Science, Stanford University, Stanford, CA 94301, USA
| | | | - Chanh D T Nguyen
- VinBrain JSC, Hanoi 11622, Vietnam; VinUniversity, Hanoi 12450, Vietnam
| | - Matthew P Lungren
- Microsoft Corporation, Redmond, WA 98052, USA; University of California San Francisco, San Francisco, CA 94143, USA; Stanford University, Stanford, CA 94301, USA
| | - Steven Q H Truong
- VinBrain JSC, Hanoi 11622, Vietnam; VinUniversity, Hanoi 12450, Vietnam
| | - Pranav Rajpurkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Tham S, Koh FH, Teo EK, Lin CL, Foo FJ. Knowledge, perceptions and behaviours of endoscopists towards the use of artificial intelligence-aided colonoscopy. Surg Endosc 2023; 37:7395-7400. [PMID: 37670191 DOI: 10.1007/s00464-023-10412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Recent developments in artificial intelligence (AI) systems have enabled advancements in endoscopy. Deep learning systems, using convolutional neural networks, have allowed for real-time AI-aided detection of polyps with higher sensitivity than the average endoscopist. However, not all endoscopists welcome the advent of AI systems. METHODS We conducted a survey on the knowledge of AI, perceptions of AI in medicine, and behaviours regarding use of AI-aided colonoscopy, in a single centre 2 months after the implementation of Medtronic's GI Genius in colonoscopy. We obtained a response rate of 66.7% (16/24) amongst consultant-grade endoscopists. Fisher's exact test was used to calculate the significance of correlations. RESULTS Knowledge of AI varied widely amongst endoscopists. Most endoscopists were optimistic about AI's capabilities in performing objective administrative and clinical tasks, but reserved about AI providing personalised, empathetic care. 68.8% (n = 11) of endoscopists agreed or strongly agreed that GI Genius should be used as an adjunct in colonoscopy. In analysing the 31.3% (n = 5) of endoscopists who disagreed or were ambivalent about its use, there was no significant correlation with their knowledge or perceptions of AI, but a significant number did not enjoy using the programme (p-value = 0.0128) and did not think it improved the quality of colonoscopy (p-value = 0.033). CONCLUSIONS Acceptance of AI-aided colonoscopy systems is more related to the endoscopist's experience with using the programme, rather than general knowledge or perceptions towards AI. Uptake of such systems will rely greatly on how the device is delivered to the end user.
Collapse
Affiliation(s)
- Sarah Tham
- Department of General Surgery, Sengkang General Hospital, SingHealth Services, Singapore, Singapore
| | - Frederick H Koh
- Colorectal Service, Department of General Surgery, Sengkang General Hospital, SingHealth Services, 110 Sengkang East Way, Singapore, 544886, Singapore.
| | - Eng-Kiong Teo
- Department of Gastroenterology and Hepatology, Sengkang General Hospital, SingHealth Services, Singapore, Singapore
| | - Cui-Li Lin
- Department of Gastroenterology and Hepatology, Sengkang General Hospital, SingHealth Services, Singapore, Singapore
| | - Fung-Joon Foo
- Colorectal Service, Department of General Surgery, Sengkang General Hospital, SingHealth Services, 110 Sengkang East Way, Singapore, 544886, Singapore
- Endoscopy Centre, Division of Hyperacute Care, Sengkang General Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Maida M, Marasco G, Facciorusso A, Shahini E, Sinagra E, Pallio S, Ramai D, Murino A. Effectiveness and application of artificial intelligence for endoscopic screening of colorectal cancer: the future is now. Expert Rev Anticancer Ther 2023; 23:719-729. [PMID: 37194308 DOI: 10.1080/14737140.2023.2215436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in gastrointestinal endoscopy includes systems designed to interpret medical images and increase sensitivity during examination. This may be a promising solution to human biases and may provide support during diagnostic endoscopy. AREAS COVERED This review aims to summarize and evaluate data supporting AI technologies in lower endoscopy, addressing their effectiveness, limitations, and future perspectives. EXPERT OPINION Computer-aided detection (CADe) systems have been studied with promising results, allowing for an increase in adenoma detection rate (ADR), adenoma per colonoscopy (APC), and a reduction in adenoma miss rate (AMR). This may lead to an increase in the sensitivity of endoscopic examinations and a reduction in the risk of interval-colorectal cancer. In addition, computer-aided characterization (CADx) has also been implemented, aiming to distinguish adenomatous and non-adenomatous lesions through real-time assessment using advanced endoscopic imaging techniques. Moreover, computer-aided quality (CADq) systems have been developed with the aim of standardizing quality measures in colonoscopy (e.g. withdrawal time and adequacy of bowel cleansing) both to improve the quality of examinations and set a reference standard for randomized controlled trials.
Collapse
Affiliation(s)
- Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS "Saverio de Bellis", Castellana Grotte, Bari, Italy
| | - Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto San Raffaele Giglio, Cefalu, Italy
| | - Socrate Pallio
- Digestive Diseases Endoscopy Unit, Policlinico G. Martino Hospital, University of Messina, Messina, Italy
| | - Daryl Ramai
- Gastroenterology & Hepatology, University of Utah Health, Salt Lake City, UT, USA
| | - Alberto Murino
- Royal Free Unit for Endoscopy, The Royal Free Hospital and University College London Institute for Liver and Digestive Health, Hampstead, London, UK
- Department of Gastroenterology, Cleveland Clinic London, London, UK
| |
Collapse
|
12
|
Mehta A, Kumar H, Yazji K, Wireko AA, Sivanandan Nagarajan J, Ghosh B, Nahas A, Morales Ojeda L, Anand A, Sharath M, Huang H, Garg T, Isik A. Effectiveness of artificial intelligence-assisted colonoscopy in early diagnosis of colorectal cancer: a systematic review. Int J Surg 2023; 109:946-952. [PMID: 36917126 PMCID: PMC10389330 DOI: 10.1097/js9.0000000000000285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION As artificial intelligence (AI)-assisted diagnosis gained immense popularity, it is imperative to consider its utility and efficiency in the early diagnosis of colorectal cancer (CRC), responsible for over 1.8 million cases and 881 000 deaths globally, as reported in 2018. Improved adenoma detection rate, as well as better characterizations of polyps, are significant advantages of AI-assisted colonoscopy (AIC). This systematic review (SR) investigates the effectiveness of AIC in the early diagnosis of CRC as compared to conventional colonoscopy. MATERIALS AND METHODS Electronic databases such as PubMed/Medline, SCOPUS, and Web of Science were reviewed for original studies (randomized controlled trials, observational studies), SRs, and meta-analysis between 2017 and 2022 utilizing Medical Subject Headings terminology in a broad search strategy. All searches were performed and analyzed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis methodology and were conducted from November 2022. A data extraction form based on the Cochrane Consumers and Communication Review group's extraction template for quality assessment and evidence synthesis was used for data extraction. All included studies considered for bias and ethical criteria and provided valuable evidence to answer the research question. RESULTS The database search identified 218 studies, including 87 from PubMed, 60 from SCOPUS, and 71 from Web of Science databases. The retrieved studies from the databases were imported to Rayyan software and a duplicate article check was performed, all duplicate articles were removed after careful evaluation of the data. The abstract and full-text screening was performed in accordance with the following eligibility criteria: Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) for observational studies; Preferred Reporting Items for Systematic Reviews and Meta-Analysis for review articles, ENTREQ for narrative studies; and modified JADAD for randomized controlled trials. This yielded 15 studies that met the requirements for this SR and were finally included in the review. CONCLUSION AIC is a safe, highly effective screening tool that can increase the detection rate of adenomas, and polyps resulting in an early diagnosis of CRC in adults when compared to conventional colonoscopy. The results of this SR prompt further large-scale research to investigate the effectiveness in accordance with sex, race, and socioeconomic status, as well as its influence on prognosis and survival rate.
Collapse
Affiliation(s)
- Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Katia Yazji
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Bikona Ghosh
- Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - Ahmad Nahas
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Luis Morales Ojeda
- Institute of Urology, University of Southern California, Los Angeles California, USA
| | - Ayush Anand
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Medha Sharath
- Bangalore Medical College and Research Institute, Bangalore, Karnataka
| | - Helen Huang
- RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, Punjab, India
| | - Arda Isik
- Department of General Surgery, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
13
|
Artificial Intelligence-Aided Endoscopy and Colorectal Cancer Screening. Diagnostics (Basel) 2023; 13:diagnostics13061102. [PMID: 36980409 PMCID: PMC10047293 DOI: 10.3390/diagnostics13061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with the highest incidence reported in high-income countries. However, because of the slow progression of neoplastic precursors, along with the opportunity for their endoscopic detection and resection, a well-designed endoscopic screening program is expected to strongly decrease colorectal cancer incidence and mortality. In this regard, quality of colonoscopy has been clearly related with the risk of post-colonoscopy colorectal cancer. Recently, the development of artificial intelligence (AI) applications in the medical field has been growing in interest. Through machine learning processes, and, more recently, deep learning, if a very high numbers of learning samples are available, AI systems may automatically extract specific features from endoscopic images/videos without human intervention, helping the endoscopists in different aspects of their daily practice. The aim of this review is to summarize the current knowledge on AI-aided endoscopy, and to outline its potential role in colorectal cancer prevention.
Collapse
|
14
|
Chadebecq F, Lovat LB, Stoyanov D. Artificial intelligence and automation in endoscopy and surgery. Nat Rev Gastroenterol Hepatol 2023; 20:171-182. [PMID: 36352158 DOI: 10.1038/s41575-022-00701-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/10/2022]
Abstract
Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient's anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery.
Collapse
Affiliation(s)
- François Chadebecq
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Laurence B Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
| |
Collapse
|
15
|
Usefulness of a novel computer-aided detection system for colorectal neoplasia: a randomized controlled trial. Gastrointest Endosc 2023; 97:528-536.e1. [PMID: 36228695 DOI: 10.1016/j.gie.2022.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Artificial intelligence-based computer-aid detection (CADe) devices have been recently tested in colonoscopies, increasing the adenoma detection rate (ADR), mainly in Asian populations. However, evidence for the benefit of these devices in the occidental population is still low. We tested a new CADe device, namely, ENDO-AID (OIP-1) (Olympus, Tokyo, Japan), in clinical practice. METHODS This randomized controlled trial included 370 consecutive patients who were randomized 1:1 to CADe (n = 185) versus standard exploration (n = 185) from November 2021 to January 2022. The primary endpoint was the ADR. Advanced adenoma was defined as ≥10 mm, harboring high-grade dysplasia, or with a villous pattern. Otherwise, the adenoma was nonadvanced. ADR was assessed in both groups stratified by endoscopist ADR and colon cleansing. RESULTS In the intention-to-treat analysis, the ADR was 55.1% (102/185) in the CADe group and 43.8% (81/185) in the control group (P = .029). Nonadvanced ADRs (54.8% vs 40.8%, P = .01) and flat ADRs (39.4 vs 24.8, P = .006), polyp detection rate (67.1% vs 51%; P = .004), and number of adenomas per colonoscopy were significantly higher in the CADe group than in the control group (median [25th-75th percentile], 1 [0-2] vs 0 [0-1.5], respectively; P = .014). No significant differences were found in serrated ADR. After stratification by endoscopist and bowel cleansing, no statistically significant differences in ADR were found. CONCLUSIONS Colonoscopy assisted by ENDO-AID (OIP-1) increases ADR and number of adenomas per colonoscopy, suggesting it may aid in the detection of colorectal neoplastic lesions, especially because of its detection of diminutive and flat adenomas. (Clinical trial registration number: NCT04945044.).
Collapse
|
16
|
Mori Y, East JE, Hassan C, Halvorsen N, Berzin TM, Byrne M, von Renteln D, Hewett DG, Repici A, Ramchandani M, Al Khatry M, Kudo SE, Wang P, Yu H, Saito Y, Misawa M, Parasa S, Matsubayashi CO, Ogata H, Tajiri H, Pausawasdi N, Dekker E, Ahmad OF, Sharma P, Rex DK. Benefits and challenges in implementation of artificial intelligence in colonoscopy: World Endoscopy Organization position statement. Dig Endosc 2023; 35:422-429. [PMID: 36749036 DOI: 10.1111/den.14531] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The number of artificial intelligence (AI) tools for colonoscopy on the market is increasing with supporting clinical evidence. Nevertheless, their implementation is not going smoothly for a variety of reasons, including lack of data on clinical benefits and cost-effectiveness, lack of trustworthy guidelines, uncertain indications, and cost for implementation. To address this issue and better guide practitioners, the World Endoscopy Organization (WEO) has provided its perspective about the status of AI in colonoscopy as the position statement. WEO Position Statement: Statement 1.1: Computer-aided detection (CADe) for colorectal polyps is likely to improve colonoscopy effectiveness by reducing adenoma miss rates and thus increase adenoma detection; Statement 1.2: In the short term, use of CADe is likely to increase health-care costs by detecting more adenomas; Statement 1.3: In the long term, the increased cost by CADe could be balanced by savings in costs related to cancer treatment (surgery, chemotherapy, palliative care) due to CADe-related cancer prevention; Statement 1.4: Health-care delivery systems and authorities should evaluate the cost-effectiveness of CADe to support its use in clinical practice; Statement 2.1: Computer-aided diagnosis (CADx) for diminutive polyps (≤5 mm), when it has sufficient accuracy, is expected to reduce health-care costs by reducing polypectomies, pathological examinations, or both; Statement 2.2: Health-care delivery systems and authorities should evaluate the cost-effectiveness of CADx to support its use in clinical practice; Statement 3: We recommend that a broad range of high-quality cost-effectiveness research should be undertaken to understand whether AI implementation benefits populations and societies in different health-care systems.
Collapse
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK.,Division of Gastroenterology and Hepatology, Mayo Clinic Healthcare, London, UK
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Natalie Halvorsen
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
| | - Tyler M Berzin
- Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Michael Byrne
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Daniel von Renteln
- Division of Gastroenterology, University of Montreal Medical Center (CHUM) and Research Center (CRCHUM), Montreal, Canada
| | - David G Hewett
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | | | - Maryam Al Khatry
- Department of Gastroenterology, Obaidulla Hospital, Ras Al Khaimah, United Arab Emirates
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | - Pu Wang
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan
| | | | - Carolina Ogawa Matsubayashi
- Gastrointestinal Endoscopy Unit, Gastroenterology Department, University of São Paulo Medical School, São Paulo, Brazil
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Hisao Tajiri
- Jikei University School of Medicine, Tokyo, Japan
| | - Nonthalee Pausawasdi
- Vikit Viranuvatti Siriraj GI Endoscopy Center,, Mahidol University, Bangkok, Thailand.,Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Prateek Sharma
- Division of Gastroenterology and Hepatology, University of Kansas School of Medicine and VA Medical Center, Kansas City, USA
| | - Douglas K Rex
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
17
|
Katrevula A, Katukuri GR, Singh AP, Inavolu P, Rughwani H, Alla SR, Ramchandani M, Duvvur NR. Real-World Experience of AI-Assisted Endocytoscopy Using EndoBRAIN—An Observational Study from a Tertiary Care Center. JOURNAL OF DIGESTIVE ENDOSCOPY 2022. [DOI: 10.1055/s-0042-1758535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background and Aims Precise optical diagnosis of colorectal polyps could improve the cost-effectiveness of colonoscopy and reduce polypectomy-related complications. We conducted this study to estimate the diagnostic performance of visual inspection alone (WLI + NBI) and of EndoBRAIN (endocytoscopy-computer-aided diagnosis [EC-CAD]) in identifying a lesion as neoplastic or nonneoplastic using EC in real-world scenario.
Methods In this observational, prospective, pilot study, a total of 55 polyps were studied in the patients aged more than or equal to 18 years. EndoBRAIN is an artificial intelligence (AI)-based system that analyzes cell nuclei, crypt structure, and vessel pattern in differentiating neoplastic and nonneoplastic lesion in real-time. Endoscopist assessed polyps using white light imaging (WLI), narrow band imaging (NBI) initially followed by assessment using EC with NBI and EC with methylene blue staining. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of endoscopist and EndoBRAIN in identifying the neoplastic from nonneoplastic polyp was compared using histopathology as gold-standard.
Results A total of 55 polyps were studied, in which most of them were diminutive (36/55) and located in rectum (21/55). The image acquisition rate was 78% (43/55) and histopathology of the majority was identified to be hyperplastic (20/43) and low-grade adenoma (16/43). EndoBRAIN identified colonic polyps with 100% sensitivity, 81.82% specificity (95% confidence interval [CI], 59.7–94.8%), 90.7% accuracy (95% CI, 77.86–97.41%), 84% positive predictive value (95% CI, 68.4–92.72%), and 100% negative predictive value. The sensitivity and negative predictive value were significantly greater than visual inspection of endoscopist. The diagnostic accuracy seems to be superior; however, it did not reach statistical significance. Specificity and positive predictive value were similar in both groups.
Conclusion Optical diagnosis using EC and EC-CAD has a potential role in predicting the histopathological diagnosis. The diagnostic performance of CAD seems to be better than endoscopist using EC for predicting neoplastic lesions.
Collapse
Affiliation(s)
- Anudeep Katrevula
- Department of Gastroenterology, AIG Hospitals, Hyderabad, Telangana, India
| | | | | | - Pradev Inavolu
- Department of Gastroenterology, AIG Hospitals, Hyderabad, Telangana, India
| | - Hardik Rughwani
- Department of Gastroenterology, AIG Hospitals, Hyderabad, Telangana, India
| | | | - Mohan Ramchandani
- Department of Gastroenterology, AIG Hospitals, Hyderabad, Telangana, India
| | | |
Collapse
|
18
|
Badrouchi S, Bacha MM, Hedri H, Ben Abdallah T, Abderrahim E. Toward generalizing the use of artificial intelligence in nephrology and kidney transplantation. J Nephrol 2022; 36:1087-1100. [PMID: 36547773 PMCID: PMC9773693 DOI: 10.1007/s40620-022-01529-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
With its robust ability to integrate and learn from large sets of clinical data, artificial intelligence (AI) can now play a role in diagnosis, clinical decision making, and personalized medicine. It is probably the natural progression of traditional statistical techniques. Currently, there are many unmet needs in nephrology and, more particularly, in the kidney transplantation (KT) field. The complexity and increase in the amount of data, and the multitude of nephrology registries worldwide have enabled the explosive use of AI within the field. Nephrologists in many countries are already at the center of experiments and advances in this cutting-edge technology and our aim is to generalize the use of AI among nephrologists worldwide. In this paper, we provide an overview of AI from a medical perspective. We cover the core concepts of AI relevant to the practicing nephrologist in a consistent and simple way to help them get started, and we discuss the technical challenges. Finally, we focus on the KT field: the unmet needs and the potential role that AI can play to fill these gaps, then we summarize the published KT-related studies, including predictive factors used in each study, which will allow researchers to quickly focus on the most relevant issues.
Collapse
Affiliation(s)
- Samarra Badrouchi
- Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia ,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Mongi Bacha
- Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia ,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia ,Laboratory of Kidney Transplantation Immunology and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis, Tunisia
| | - Hafedh Hedri
- Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia ,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Taieb Ben Abdallah
- Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia ,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia ,Laboratory of Kidney Transplantation Immunology and Immunopathology (LR03SP01), Charles Nicolle Hospital, Tunis, Tunisia
| | - Ezzedine Abderrahim
- Department of Internal Medicine A, Charles Nicolle Hospital, Tunis, Tunisia ,Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
19
|
Civaner MM, Uncu Y, Bulut F, Chalil EG, Tatli A. Artificial intelligence in medical education: a cross-sectional needs assessment. BMC MEDICAL EDUCATION 2022; 22:772. [PMID: 36352431 PMCID: PMC9646274 DOI: 10.1186/s12909-022-03852-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND As the information age wanes, enabling the prevalence of the artificial intelligence age; expectations, responsibilities, and job definitions need to be redefined for those who provide services in healthcare. This study examined the perceptions of future physicians on the possible influences of artificial intelligence on medicine, and to determine the needs that might be helpful for curriculum restructuring. METHODS A cross-sectional multi-centre study was conducted among medical students country-wide, where 3018 medical students participated. The instrument of the study was an online survey that was designed and distributed via a web-based service. RESULTS Most of the medical students perceived artificial intelligence as an assistive technology that could facilitate physicians' access to information (85.8%) and patients to healthcare (76.7%), and reduce errors (70.5%). However, half of the participants were worried about the possible reduction in the services of physicians, which could lead to unemployment (44.9%). Furthermore, it was agreed that using artificial intelligence in medicine could devalue the medical profession (58.6%), damage trust (45.5%), and negatively affect patient-physician relationships (42.7%). Moreover, nearly half of the participants affirmed that they could protect their professional confidentiality when using artificial intelligence applications (44.7%); whereas, 16.1% argued that artificial intelligence in medicine might cause violations of professional confidentiality. Of all the participants, only 6.0% stated that they were competent enough to inform patients about the features and risks of artificial intelligence. They further expressed that their educational gaps regarding their need for "knowledge and skills related to artificial intelligence applications" (96.2%), "applications for reducing medical errors" (95.8%), and "training to prevent and solve ethical problems that might arise as a result of using artificial intelligence applications" (93.8%). CONCLUSIONS The participants expressed a need for an update on the medical curriculum, according to necessities in transforming healthcare driven by artificial intelligence. The update should revolve around equipping future physicians with the knowledge and skills to effectively use artificial intelligence applications and ensure that professional values and rights are protected.
Collapse
Affiliation(s)
- M Murat Civaner
- Department of Medical Ethics, Bursa Uludag University School of Medicine, Bursa, Turkey.
| | - Yeşim Uncu
- Department of Family Medicine, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Filiz Bulut
- Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | | | | |
Collapse
|
20
|
Ainechi D, Misawa M, Barua I, Larsen SLV, Paulsen V, Garborg KK, Aabakken L, Tønnesen CJ, Løberg M, Kalager M, Kudo SE, Hotta K, Ohtsuka K, Saito S, Ikematsu H, Saito Y, Matsuda T, Itoh H, Mori K, Bretthauer M, Mori Y. Impact of artificial intelligence on colorectal polyp detection for early-career endoscopists: an international comparative study. Scand J Gastroenterol 2022; 57:1272-1277. [PMID: 35605150 DOI: 10.1080/00365521.2022.2070436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Artificial intelligence (AI) for polyp detection is being introduced to colonoscopy, but there is uncertainty how this affects endoscopists' ability to detect polyps and neoplasms. We performed a video-based study to address whether AI improved the endoscopists' performance to detect polyps. METHODS We established a dataset of 200 colonoscopy videos (length 5 s; 100 without polyps and 100 with one polyp). About 33 early-career endoscopists (50-400 colonoscopies performed) from 10 European countries classified each video as either 'polyp present' or 'polyp not present'. The video assessment was performed twice with a four-week interval. The first assessment was performed without any AI tool, whereas the second was performed with an AI tool for polyp detection. The primary endpoint was early-career endoscopists' sensitivity to detect polyps. Gold standard for presence and histology of polyps were confirmed by two expert endoscopists and pathologists, respectively. McNemar's test was used for statistical significance. RESULTS There were 86 neoplastic and 14 non-neoplastic polyps (mean size 5.6 mm) in the 100 videos with polyps. Early-career endoscopists' sensitivity to detect polyps increased from 86.3% (95% confidence interval [CI]: 85.1-87.5%) to 91.7% (95%CI: 90.7-92.6%) with the AI aid (p < .0001). Their sensitivity to detect neoplastic polyps increased from 85.4% (95% CI: 84.0-86.7%) to 92.1% (95%CI: 91.1-93.1%) with the AI aid (p < .0001). CONCLUSION The polyp detection AI tool helped early-career endoscopists to increase their sensitivity to identify all polyps and neoplastic polyps during colonoscopy.
Collapse
Affiliation(s)
- Diba Ainechi
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Ishita Barua
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Solveig Linnea Veen Larsen
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Vemund Paulsen
- Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Kjetil Kjeldstad Garborg
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Lars Aabakken
- Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Christer Julseth Tønnesen
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway.,Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Magnus Løberg
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Mette Kalager
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Kinichi Hotta
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuo Ohtsuka
- Department of Endoscopy, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoichi Saito
- Department of Gastroenterology, The Cancer Institute Hospital, Tokyo, Japan
| | - Hiroaki Ikematsu
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Takahisa Matsuda
- Division of Gastroenterology and Hepatology, Toho University Omori Medical Center, Tokyo, Japan
| | - Hayato Itoh
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kensaku Mori
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Michael Bretthauer
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway.,Clinical Effectiveness Research Group, Oslo University Hospital, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.,Section for Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Koo CS, Dolgunov D, Koh CJ. Key tips for using computer-aided diagnosis in colonoscopy - observations from two different platforms. Endoscopy 2022; 54:1018-1019. [PMID: 34911111 DOI: 10.1055/a-1701-6201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chieh Sian Koo
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore
| | - Dmitrii Dolgunov
- Division of Colorectal Surgery, Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Calvin Jianyi Koh
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
22
|
Kumagai Y, Takubo K, Kawada K, Ohue M, Higashi M, Ishiguro T, Hatano S, Toyomasu Y, Matsuyama T, Mochiki E, Ishida H. Endocytoscopic Observation of Esophageal Lesions: Our Own Experience and a Review of the Literature. Diagnostics (Basel) 2022; 12:2222. [PMID: 36140623 PMCID: PMC9498282 DOI: 10.3390/diagnostics12092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
This review outlines the process of the development of the endocytoscope (EC) with reference to previously reported studies including our own. The EC is an ultra-high-magnification endoscope capable of imaging at the cellular level. The esophagus is the most suitable site for EC observation because it is amenable to vital staining. The diagnosis of esophageal lesions using EC is based on nuclear density and nuclear abnormality, allowing biopsy histology to be omitted. The observation of nuclear abnormality requires a magnification of ×600 or higher using digital technology. Several staining methods have been proposed, but single staining with toluidine blue or methylene blue is most suitable because the contrast at the border of a cancerous area can be easily identified. A three-tier classification of esophageal lesions visualized by EC is proposed: Type 1 (non-cancerous), Type 2 (endocytoscopic borderline), and Type 3 (cancerous). Since characteristic EC images reflecting pathology can be obtained from non-cancerous esophageal lesions, a modified form of classification with four additional characteristic non-cancerous EC features has also been proposed. Recently, deep-learning AI for analysis of esophageal EC images has revealed that its diagnostic accuracy is comparable to that of expert pathologists.
Collapse
Affiliation(s)
- Youichi Kumagai
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kenro Kawada
- Department of Esophageal and General Surgery, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Center, Osaka 541-8567, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-0495, Japan
| | - Toru Ishiguro
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Satoshi Hatano
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Yoshitaka Toyomasu
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Takatoshi Matsuyama
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Erito Mochiki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Saitama, Japan
| |
Collapse
|
23
|
Mori Y, Kaminski MF, Hassan C, Bretthauer M. Clinical trial designs for artificial intelligence in gastrointestinal endoscopy. Lancet Gastroenterol Hepatol 2022; 7:785-786. [PMID: 35932767 DOI: 10.1016/s2468-1253(22)00232-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway; Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Michal F Kaminski
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland; Department of Oncological Gastroenterology and Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Cesare Hassan
- Endoscopy Unit, Humanitas Clinical and Research Center, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Michael Bretthauer
- Clinical Effectiveness Research Group, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Zacharakis G, Almasoud A. Using of artificial intelligence: Current and future applications in colorectal cancer screening. World J Gastroenterol 2022; 28:2778-2781. [PMID: 35979167 PMCID: PMC9260867 DOI: 10.3748/wjg.v28.i24.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Significant developments in colorectal cancer screening are underway and include new screening guidelines that incorporate considerations for patients aged 45 years, with unique features and new techniques at the forefront of screening. One of these new techniques is artificial intelligence which can increase adenoma detection rate and reduce the prevalence of colonic neoplasia.
Collapse
Affiliation(s)
- Georgios Zacharakis
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University Hospital, Al Kharj 16277, Saudi Arabia
| | - Abdulaziz Almasoud
- Department of Gastroenterology and Hepatology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| |
Collapse
|
25
|
Continuous ADR50 monitoring through automated linkage between endoscopy and pathology: a quality improvement initiative in a Brussels public hospital. Acta Gastroenterol Belg 2022; 85:259-266. [DOI: 10.51821/85.2.9706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background and study aim: Adenoma detection rate in patients aged 50 years or older (ADR50) is considered by the European Society of Gastrointestinal Endoscopy (ESGE) a key performance measures for lower gastrointestinal endoscopy. Technical and human resources constrain implementation of recording quality monitoring. The aim was to deploy an infrastructure for continuous monitoring of endoscopy quality indicators. And to evaluate its potential benefit on quality performance.
Methods: A company reporting system was adapted by adding a dedicated tab for quality monitoring, including: preparation, progression, number of resected polyps. Automated linkage with the pathology database resulted in continuous monitoring of inter alia: rate of adequate bowel preparation, cecal intubation rate and ADR50. Continuous monitoring was done for all nine endoscopists working at our center, with individual feedback after 4, 9 and 28 months.
Results: A total of 1434 colonoscopies were performed during the first 9 months of monitoring, 682 during the first 4 months, 752 during the following 5 months. Five months after feedback a global increase in ADR50 of 4.6% (22.9% to 27.5%) (P<0.05) was observed, compared to the first 4 months. Thus meeting the benchmark (≥25%) recommended by ESGE. A durable effect of monitoring and feedback was observed after 28 months (ADR50: 29.4%).
Conclusions: An easy to use infrastructure for registration of quality monitoring in daily endoscopy practice, automatically linking the pathology database, facilitates continuous monitoring of endoscopy quality indicators. A global and durable ADR50 increase was observed after feedback, considered a quality improvement in performance of lower gastrointestinal endoscopy at our center.
Collapse
|
26
|
Siripoppohn V, Pittayanon R, Tiankanon K, Faknak N, Sanpavat A, Klaikaew N, Vateekul P, Rerknimitr R. Real-time semantic segmentation of gastric intestinal metaplasia using a deep learning approach. Clin Endosc 2022; 55:390-400. [PMID: 35534933 PMCID: PMC9178134 DOI: 10.5946/ce.2022.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
Background/Aims Previous artificial intelligence (AI) models attempting to segment gastric intestinal metaplasia (GIM) areas have failed to be deployed in real-time endoscopy due to their slow inference speeds. Here, we propose a new GIM segmentation AI model with inference speeds faster than 25 frames per second that maintains a high level of accuracy.
Methods Investigators from Chulalongkorn University obtained 802 histological-proven GIM images for AI model training. Four strategies were proposed to improve the model accuracy. First, transfer learning was employed to the public colon datasets. Second, an image preprocessing technique contrast-limited adaptive histogram equalization was employed to produce clearer GIM areas. Third, data augmentation was applied for a more robust model. Lastly, the bilateral segmentation network model was applied to segment GIM areas in real time. The results were analyzed using different validity values.
Results From the internal test, our AI model achieved an inference speed of 31.53 frames per second. GIM detection showed sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union in GIM segmentation values of 93%, 80%, 82%, 92%, 87%, and 57%, respectively.
Conclusions The bilateral segmentation network combined with transfer learning, contrast-limited adaptive histogram equalization, and data augmentation can provide high sensitivity and good accuracy for GIM detection and segmentation.
Collapse
Affiliation(s)
- Vitchaya Siripoppohn
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Rapat Pittayanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kasenee Tiankanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Natee Faknak
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Naruemon Klaikaew
- Department of Pathology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Peerapon Vateekul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
- Correspondence: Peerapon Vateekul Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phaya Thai Rd, Wang Mai, Pathum Wan, Bangkok 10330, Thailand E-mail:
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Correspondence: Rungsun Rerknimitr Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Rama 4 Road, Patumwan, Bangkok 10330, Thailand E-mail:
| |
Collapse
|
27
|
Ahmad OF, González-Bueno Puyal J, Brandao P, Kader R, Abbasi F, Hussein M, Haidry RJ, Toth D, Mountney P, Seward E, Vega R, Stoyanov D, Lovat LB. Performance of artificial intelligence for detection of subtle and advanced colorectal neoplasia. Dig Endosc 2022; 34:862-869. [PMID: 34748665 DOI: 10.1111/den.14187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES There is uncertainty regarding the efficacy of artificial intelligence (AI) software to detect advanced subtle neoplasia, particularly flat lesions and sessile serrated lesions (SSLs), due to low prevalence in testing datasets and prospective trials. This has been highlighted as a top research priority for the field. METHODS An AI algorithm was evaluated on four video test datasets containing 173 polyps (35,114 polyp-positive frames and 634,988 polyp-negative frames) specifically enriched with flat lesions and SSLs, including a challenging dataset containing subtle advanced neoplasia. The challenging dataset was also evaluated by eight endoscopists (four independent, four trainees, according to the Joint Advisory Group on gastrointestinal endoscopy [JAG] standards in the UK). RESULTS In the first two video datasets, the algorithm achieved per-polyp sensitivities of 100% and 98.9%. Per-frame sensitivities were 84.1% and 85.2%. In the subtle dataset, the algorithm detected a significantly higher number of polyps (P < 0.0001), compared to JAG-independent and trainee endoscopists, achieving per-polyp sensitivities of 79.5%, 37.2% and 11.5%, respectively. Furthermore, when considering subtle polyps detected by both the algorithm and at least one endoscopist, the AI detected polyps significantly faster on average. CONCLUSIONS The AI based algorithm achieved high per-polyp sensitivities for advanced colorectal neoplasia, including flat lesions and SSLs, outperforming both JAG independent and trainees on a very challenging dataset containing subtle lesions that could have been overlooked easily and contribute to interval colorectal cancer. Further prospective trials should evaluate AI to detect subtle advanced neoplasia in higher risk populations for colorectal cancer.
Collapse
Affiliation(s)
- Omer F Ahmad
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Division of Surgery and Interventional Sciences, University College London, London, UK
- Gastrointestinal Services, University College London Hospital, London, UK
| | - Juana González-Bueno Puyal
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Odin Vision Ltd, London, UK
| | - Patrick Brandao
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Odin Vision Ltd, London, UK
| | - Rawen Kader
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Division of Surgery and Interventional Sciences, University College London, London, UK
| | - Faisal Abbasi
- Division of Surgery and Interventional Sciences, University College London, London, UK
| | - Mohamed Hussein
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Division of Surgery and Interventional Sciences, University College London, London, UK
| | - Rehan J Haidry
- Division of Surgery and Interventional Sciences, University College London, London, UK
- Gastrointestinal Services, University College London Hospital, London, UK
| | | | | | - Ed Seward
- Gastrointestinal Services, University College London Hospital, London, UK
| | - Roser Vega
- Gastrointestinal Services, University College London Hospital, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
| | - Laurence B Lovat
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London
- Division of Surgery and Interventional Sciences, University College London, London, UK
- Gastrointestinal Services, University College London Hospital, London, UK
| |
Collapse
|
28
|
Mori Y, Misawa M, Kudo S. Challenges in artificial intelligence for polyp detection. Dig Endosc 2022; 34:870-871. [PMID: 35318734 PMCID: PMC9314935 DOI: 10.1111/den.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Yuichi Mori
- Clinical Effectiveness Research GroupInstitute of Health and SocietyUniversity of OsloOsloNorway,Section for GastroenterologyDepartment of Transplantation MedicineOslo University HospitalOsloNorway,Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Masashi Misawa
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| | - Shin‐ei Kudo
- Digestive Disease CenterShowa University Northern Yokohama HospitalKanagawaJapan
| |
Collapse
|
29
|
Vulpoi RA, Luca M, Ciobanu A, Olteanu A, Barboi OB, Drug VL. Artificial Intelligence in Digestive Endoscopy—Where Are We and Where Are We Going? Diagnostics (Basel) 2022; 12:diagnostics12040927. [PMID: 35453975 PMCID: PMC9029251 DOI: 10.3390/diagnostics12040927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Artificial intelligence, a computer-based concept that tries to mimic human thinking, is slowly becoming part of the endoscopy lab. It has developed considerably since the first attempt at developing an automated medical diagnostic tool, today being adopted in almost all medical fields, digestive endoscopy included. The detection rate of preneoplastic lesions (i.e., polyps) during colonoscopy may be increased with artificial intelligence assistance. It has also proven useful in detecting signs of ulcerative colitis activity. In upper digestive endoscopy, deep learning models may prove to be useful in the diagnosis and management of upper digestive tract diseases, such as gastroesophageal reflux disease, Barrett’s esophagus, and gastric cancer. As is the case with all new medical devices, there are challenges in the implementation in daily medical practice. The regulatory, economic, organizational culture, and language barriers between humans and machines are a few of them. Even so, many devices have been approved for use by their respective regulators. Future studies are currently striving to develop deep learning models that can replicate a growing amount of human brain activity. In conclusion, artificial intelligence may become an indispensable tool in digestive endoscopy.
Collapse
Affiliation(s)
- Radu-Alexandru Vulpoi
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| | - Mihaela Luca
- Institute of Computer Science, Romanian Academy—Iași Branch, 700481 Iași, Romania; (M.L.); (A.C.)
| | - Adrian Ciobanu
- Institute of Computer Science, Romanian Academy—Iași Branch, 700481 Iași, Romania; (M.L.); (A.C.)
| | - Andrei Olteanu
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| | - Oana-Bogdana Barboi
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
- Correspondence: ; Tel.: +40-74-345-5012
| | - Vasile Liviu Drug
- Institute of Gastroenterology and Hepatology, Saint Spiridon Hospital, “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iași, Romania; (R.-A.V.); (A.O.); (V.L.D.)
| |
Collapse
|
30
|
Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit Health 2022; 4:e436-e444. [DOI: 10.1016/s2589-7500(22)00042-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023]
|
31
|
Muguruma N, Takayama T. Artificial Intelligence-Based Colorectal Polyp Histology Prediction: High Accuracy in Larger Polyps. Clin Endosc 2022; 55:45-46. [PMID: 34974677 PMCID: PMC8831397 DOI: 10.5946/ce.2021.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Naoki Muguruma
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
32
|
Taghiakbari M, Mori Y, von Renteln D. Artificial intelligence-assisted colonoscopy: A review of current state of practice and research. World J Gastroenterol 2021; 27:8103-8122. [PMID: 35068857 PMCID: PMC8704267 DOI: 10.3748/wjg.v27.i47.8103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/22/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Colonoscopy is an effective screening procedure in colorectal cancer prevention programs; however, colonoscopy practice can vary in terms of lesion detection, classification, and removal. Artificial intelligence (AI)-assisted decision support systems for endoscopy is an area of rapid research and development. The systems promise improved detection, classification, screening, and surveillance for colorectal polyps and cancer. Several recently developed applications for AI-assisted colonoscopy have shown promising results for the detection and classification of colorectal polyps and adenomas. However, their value for real-time application in clinical practice has yet to be determined owing to limitations in the design, validation, and testing of AI models under real-life clinical conditions. Despite these current limitations, ambitious attempts to expand the technology further by developing more complex systems capable of assisting and supporting the endoscopist throughout the entire colonoscopy examination, including polypectomy procedures, are at the concept stage. However, further work is required to address the barriers and challenges of AI integration into broader colonoscopy practice, to navigate the approval process from regulatory organizations and societies, and to support physicians and patients on their journey to accepting the technology by providing strong evidence of its accuracy and safety. This article takes a closer look at the current state of AI integration into the field of colonoscopy and offers suggestions for future research.
Collapse
Affiliation(s)
- Mahsa Taghiakbari
- Department of Gastroenterology, CRCHUM, Montreal H2X 0A9, Quebec, Canada
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University of Oslo, Oslo 0450, Norway
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama 224-8503, Japan
| | - Daniel von Renteln
- Department of Gastroenterology, CRCHUM, Montreal H2X 0A9, Quebec, Canada
| |
Collapse
|
33
|
El-Nakeep S, El-Nakeep M. Artificial intelligence for cancer detection in upper gastrointestinal endoscopy, current status, and future aspirations. Artif Intell Gastroenterol 2021; 2:124-132. [DOI: 10.35712/aig.v2.i5.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
This minireview discusses the benefits and pitfalls of machine learning, and artificial intelligence in upper gastrointestinal endoscopy for the detection and characterization of neoplasms. We have reviewed the literature for relevant publications on the topic using PubMed, IEEE, Science Direct, and Google Scholar databases. We discussed the phases of machine learning and the importance of advanced imaging techniques in upper gastrointestinal endoscopy and its association with artificial intelligence.
Collapse
Affiliation(s)
- Sarah El-Nakeep
- Gastroenterology and Hepatology Unit, Internal Medicine Department, Faculty of Medicine, AinShams University, Cairo 11591, Egypt
| | - Mohamed El-Nakeep
- Master of Science in Electrical Engineering "Electronics and Communications", Electronics and Electrical Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11736, Egypt
- Bachelor of Science in Electronics and Electrical Communications, Electronics and Communications and Computers Department, Faculty of Engineering, Helwan University, Cairo 11736, Egypt
| |
Collapse
|
34
|
Ang TL, East JE. Image-enhanced endoscopy for detection and diagnosis of colonic neoplasia: Time to shift focus. J Gastroenterol Hepatol 2021; 36:2635-2636. [PMID: 34622988 DOI: 10.1111/jgh.15684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital; Duke-NUS Medical School; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK.,Mayo Clinic Healthcare London, London, UK
| |
Collapse
|
35
|
Deep learning for automated bowel preparation assessment during colonoscopy: time to embrace a new approach? Lancet Digit Health 2021; 3:e685-e686. [PMID: 34538737 DOI: 10.1016/s2589-7500(21)00143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 11/24/2022]
|
36
|
Correia FP, Lourenço LC. Artificial intelligence application in diagnostic gastrointestinal endoscopy - Deus ex machina? World J Gastroenterol 2021; 27:5351-5361. [PMID: 34539137 PMCID: PMC8409168 DOI: 10.3748/wjg.v27.i32.5351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The close relationship of medicine with technology and the particular interest in this symbiosis in recent years has led to the development of several computed artificial intelligence (AI) systems aimed at various areas of medicine. A number of studies have demonstrated that those systems allow accurate diagnoses with histological precision, thus facilitating decision-making by clinicians in real time. In the field of gastroenterology, AI has been applied in the diagnosis of pathologies of the entire digestive tract and their attached glands, and are increasingly accepted for the detection of colorectal polyps and confirming their histological classification. Studies have shown high accuracy, sensitivity, and specificity in relation to expert endoscopists, and mainly in relation to those with less experience. Other applications that are increasingly studied and with very promising results are the investigation of dysplasia in patients with Barrett's esophagus and the endoscopic and histological assessment of colon inflammation in patients with ulcerative colitis. In some cases AI is thus better than or at least equal to human abilities. However, additional studies are needed to reinforce the existing data, and mainly to determine the applicability of this technology in other indications. This review summarizes the state of the art of AI in gastroenterological pathology.
Collapse
Affiliation(s)
- Fábio Pereira Correia
- Department of Gastroenterology, Hospital Prof. Dr Fernando Fonseca, Lisbon 2720-276, Portugal
| | - Luís Carvalho Lourenço
- Department of Gastroenterology, Hospital Prof. Dr Fernando Fonseca, Lisbon 2720-276, Portugal
| |
Collapse
|
37
|
Valizadeh A, Jafarzadeh Ghoushchi S, Ranjbarzadeh R, Pourasad Y. Presentation of a Segmentation Method for a Diabetic Retinopathy Patient's Fundus Region Detection Using a Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7714351. [PMID: 34354746 PMCID: PMC8331281 DOI: 10.1155/2021/7714351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Diabetic retinopathy is characteristic of a local distribution that involves early-stage risk factors and can forecast the evolution of the illness or morphological lesions related to the abnormality of retinal blood flows. Regional variations in retinal blood flow and modulation of retinal capillary width in the macular area and the retinal environment are also linked to the course of diabetic retinopathy. Despite the fact that diabetic retinopathy is frequent nowadays, it is hard to avoid. An ophthalmologist generally determines the seriousness of the retinopathy of the eye by directly examining color photos and evaluating them by visually inspecting the fundus. It is an expensive process because of the vast number of diabetic patients around the globe. We used the IDRiD data set that contains both typical diabetic retinopathic lesions and normal retinal structures. We provided a CNN architecture for the detection of the target region of 80 patients' fundus imagery. Results demonstrate that the approach described here can nearly detect 83.84% of target locations. This result can potentially be utilized to monitor and regulate patients.
Collapse
Affiliation(s)
- Amin Valizadeh
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Jafarzadeh Ghoushchi
- Department of Industrial Engineering, Urmia University of Technology (UUT), P.O. Box 57166-419, Urmia, Iran
| | - Ramin Ranjbarzadeh
- Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Yaghoub Pourasad
- Department of Electrical Engineering, Urmia University of Technology (UUT), P.O. Box 57166-419, Urmia, Iran
| |
Collapse
|
38
|
Ahmad OF. Early detection of gastric neoplasia: is artificial intelligence the solution? Lancet Gastroenterol Hepatol 2021; 6:678-679. [PMID: 34297943 DOI: 10.1016/s2468-1253(21)00254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Omer F Ahmad
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London W1W 7TS, UK.
| |
Collapse
|
39
|
Lovejoy CA, Alqahtani SA. AI in colonoscopy and beyond: On the cusp of clinical implementation? United European Gastroenterol J 2021; 9:525-526. [PMID: 33960666 PMCID: PMC8259269 DOI: 10.1002/ueg2.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/05/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Saleh A. Alqahtani
- Liver Transplantation UnitKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
- Division of Gastroenterology and HepatologyJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
40
|
Ebigbo A, Messmann H. Artificial intelligence in the upper GI tract: the future is fast approaching. Gastrointest Endosc 2021; 93:1342-1343. [PMID: 33715878 DOI: 10.1016/j.gie.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
41
|
Stewart C, Wong SKY, Sung JJY. Mapping ethico-legal principles for the use of artificial intelligence in gastroenterology. J Gastroenterol Hepatol 2021; 36:1143-1148. [PMID: 33955059 DOI: 10.1111/jgh.15521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/20/2022]
Abstract
The rapid development of artificial intelligence (AI) and digital health raise concerns about equitable access to innovative interventions, appropriate use of health data and privacy, inclusiveness, bias and discrimination, and even changes to the clinician-patient relationship. This article outlines a number of ethical and legal issues when examining the use of AI in gastroenterology. Substantive ethico-legal principles including respect for persons, privacy and confidentiality, integrity, conflict of interest, beneficence, nonmaleficence, and justice, are discussed. Much of what we articulated is relevant to the use of AI in other medical fields. Going forward, consorted efforts should be use to address more particular and concrete problems, but for now, a principle-based approach is best used in problem-solving.
Collapse
Affiliation(s)
- Cameron Stewart
- Sydney Law School, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen K Y Wong
- Barrister-at-Law; formerly Principal Government Counsel and Privacy Commissioner, Hong Kong
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
42
|
Li JW, Ang TL. Colonoscopy and artificial intelligence: Bridging the gap or a gap needing to be bridged? Artif Intell Gastrointest Endosc 2021; 2:36-49. [DOI: 10.37126/aige.v2.i2.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/27/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Research in artificial intelligence (AI) in gastroenterology has increased over the last decade. Colonoscopy represents the most widely published field with regards to its use in gastroenterology. Most studies to date center on polyp detection and characterization, as well as real-time evaluation of adequacy of mucosal exposure for inspection. This review article discusses how advances in AI has bridged certain gaps in colonoscopy. In addition, the gaps formed with the development of AI that currently prevent its routine use in colonoscopy will be explored.
Collapse
Affiliation(s)
- James Weiquan Li
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore 529889, Singapore
| |
Collapse
|
43
|
Cao JS, Lu ZY, Chen MY, Zhang B, Juengpanich S, Hu JH, Li SJ, Topatana W, Zhou XY, Feng X, Shen JL, Liu Y, Cai XJ. Artificial intelligence in gastroenterology and hepatology: Status and challenges. World J Gastroenterol 2021; 27:1664-1690. [PMID: 33967550 PMCID: PMC8072192 DOI: 10.3748/wjg.v27.i16.1664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Originally proposed by John McCarthy in 1955, artificial intelligence (AI) has achieved a breakthrough and revolutionized the processing methods of clinical medicine with the increasing workloads of medical records and digital images. Doctors are paying attention to AI technologies for various diseases in the fields of gastroenterology and hepatology. This review will illustrate AI technology procedures for medical image analysis, including data processing, model establishment, and model validation. Furthermore, we will summarize AI applications in endoscopy, radiology, and pathology, such as detecting and evaluating lesions, facilitating treatment, and predicting treatment response and prognosis with excellent model performance. The current challenges for AI in clinical application include potential inherent bias in retrospective studies that requires larger samples for validation, ethics and legal concerns, and the incomprehensibility of the output results. Therefore, doctors and researchers should cooperate to address the current challenges and carry out further investigations to develop more accurate AI tools for improved clinical applications.
Collapse
Affiliation(s)
- Jia-Sheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Zi-Yi Lu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Ming-Yu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Sarun Juengpanich
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jia-Hao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Shi-Jie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Win Topatana
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xue-Yin Zhou
- School of Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Xu Feng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Ji-Liang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiu-Jun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| |
Collapse
|
44
|
Lin B, Wu S. Digital Transformation in Personalized Medicine with Artificial Intelligence and the Internet of Medical Things. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 26:77-81. [PMID: 33887155 DOI: 10.1089/omi.2021.0037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Digital transformation is impacting every facet of science and society, not least because there is a growing need for digital services and products with the COVID-19 pandemic. But the need for digital transformation in diagnostics and personalized medicine field cuts deeper. In the past, personalized/precision medicine initiatives have been unable to capture the patients' experiences and clinical outcomes in real-time and in real-world settings. The availability of wearable smart sensors, wireless connectivity, artificial intelligence, and the Internet of Medical Things is changing the personalized/precision medicine research and implementation landscape. Digital transformation in poised to accelerate personalized/precision medicine and systems science in multiple fronts such as deep real-time phenotyping with patient-reported outcomes, high-throughput association studies between omics and highly granular phenotypic variation, digital clinical trials, among others. The present expert review offers an analysis of these systems science frontiers with a view to future applications at the intersection of digital health and personalized medicine, or put in other words, signaling the rise of "digital personalized medicine."
Collapse
Affiliation(s)
- Biaoyang Lin
- Zhejiang-California International Nanosystems Institute (ZCNI) Proprium Research Center, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, The First Affiliated Hospital, Hangzhou, China.,Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shengjun Wu
- Department of Clinical Laboratories, School of Medicine, Zhejiang University, Sir Run Run Shaw Hospital, Hangzhou, China
| |
Collapse
|
45
|
Ang TL, Carneiro G. Artificial intelligence in gastrointestinal endoscopy. J Gastroenterol Hepatol 2021; 36:5-6. [PMID: 33448513 DOI: 10.1111/jgh.15344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore.,Medicine Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gustavo Carneiro
- Australian Institute for Machine Learning, School of Computer Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|