1
|
Roalsø MTT, Alexeeva M, Oanæs C, Watson M, Lea D, Zaharia C, Hagland HR, Søreide K. Patient-derived organoids from pancreatic cancer after pancreatectomy: Feasibility and organoid take rate in treatment-naïve periampullary tumors. Pancreatology 2024:S1424-3903(24)00846-9. [PMID: 39734118 DOI: 10.1016/j.pan.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND/OBJECTIVE Patient-derived organoids (PDOs) have emerged as essential for ex vivo modelling for pancreatic cancer (PDAC) but reports on efficacy and organoid take rate are scarce. This study aimed to assess the feasibility of establishing PDOs from resected specimens in periampullary tumors. METHODS Patients undergoing surgery for suspected periampullary cancer were included. PDO protocol amendments were tested, with organoid take rate as outcome measure. Samples from resected specimens were processed and expanded per protocol. Pooled estimate of take rates of PDOs in PDAC was derived from literature search. RESULTS 23 specimens were available for PDO, of which 10 were PDAC. In 15 patients other histopathology was found: neuroendocrine tumors (NET; n = 2), neuroendocrine carcinoma (NEC; n = 1), intraductal papillary mucinous neoplasm (IPMN; n = 4), distal cholangiocarcinoma (dCCA; n = 1), ampullary carcinoma (n = 1), duodenal carcinoma (n = 1), intra-ampullary papillary tubular neoplasm (IAPN; n = 1), indeterminate PDAC/ampullary carcinoma(n = 1), and one patient with chronic inflammation/fibrosis. Organoid cultures were grown from 7 of 10 (70 %) PDAC, 1 dCCA, 1 NEC, 1 duodenal carcinoma, 1 indeterminate tumor type and 1 ampullary carcinoma (i.e. 12/18; 66.7 % across periampullary cancers). Overall take rate of PDOs was 12 of 23 (52.2 %) for all tumors. A pooled mean estimate PDO take rate of 62.3 % (95 % CI:54.8-69.3 %) was reported across available studies in the literature. CONCLUSION In the current study, we found that PDOs could be established from resected pancreatic tumors in over half of resected periampullary tumors, and highest in PDACs. As such, generating a pancreatic cancer PDO biobank for translational research was feasible after cryopreservation.
Collapse
Affiliation(s)
- Marcus T T Roalsø
- Department of Quality and Health Technology, University of Stavanger, Stavanger, Norway; Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Marina Alexeeva
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Celine Oanæs
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Martin Watson
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway
| | - Dordi Lea
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Claudia Zaharia
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Hanne R Hagland
- Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Kjetil Søreide
- Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Unit, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Yan X, Tan D, Yu L, Li D, Huang W, Huang W, Wu H. A High-Throughput and Logarithm-Serial-Dilution Microfluidic Chip for Combinational Drug Screening on Tumor Organoids. ACS Pharmacol Transl Sci 2024; 7:4135-4143. [PMID: 39698291 PMCID: PMC11650729 DOI: 10.1021/acsptsci.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Tumor organoids are biological models for studying precision medicine. Microfluidic technology offers significant benefits for high throughput drug screening using tumor organoids. However, the range of concentrations achievable with traditional linear gradient generators in microfluidics is restricted, generating logarithmic drug concentration gradients by adjusting the channel ratio in the chip is confined to single-drug dilution chips, significantly restricting the application of microfluidics in drug screening. Here, we presented a microfluidic chip featuring continuous dilution capabilities, which generates logarithmic stepwise drug concentration gradients. We have devised a "mathematical-circuit-chip" model for designing such chips, and based on this model, we have developed and fabricated a device capable of providing 36 distinct drug concentration conditions for two types of drugs. The chip is composed of two structurally identical yet orthogonally arranged layers, each containing a dilution network capable of forming a 5-fold gradient and a tumor organoid culture module. Drug and culture medium delivery to the open culture chamber array is driven by syringe pumps. We have conducted drug screening experiments on patient-derived tumor organoids. This device facilitates high-throughput drug screening for patient-derived organoids, representing a significant stride toward the realization of precision medicine.
Collapse
Affiliation(s)
- Xingyang Yan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Deng Tan
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department
of Biology, Southern University of Science
and Technology, Shenzhen 518055, Guangdong, China
| | - Lei Yu
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - DanYu Li
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wei Huang
- Department
of Biology, Southern University of Science
and Technology, Shenzhen 518055, Guangdong, China
| | - Weiren Huang
- Shenzhen
Institute of Synthetic Biology, Shenzhen
Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department
of Urology, Shenzhen Institute of Translational Medicine, Shenzhen
Institutes of Advanced Technology, The First
Affiliated Hospital of Shenzhen University, International Cancer Center
of Shenzhen University, Shenzhen 518039, China
| | - Hongkai Wu
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- The
Hong Kong University of Science and Technology Shenzhen Research Institute, Shenzhen 518172, China
| |
Collapse
|
3
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Colloids Surf B Biointerfaces 2024; 247:114435. [PMID: 39647422 DOI: 10.1016/j.colsurfb.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
Collapse
Affiliation(s)
- Ke-Yu Zhao
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Yi-Xiang Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hui-Min Cao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Li-Ya Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xiu-Lan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
4
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
6
|
Zhang C, Lu X, Ni T, Wang Q, Gao X, Sun X, Li J, Mao F, Hou J, Wang Y. Developing patient-derived organoids to demonstrate JX24120 inhibits SAMe synthesis in endometrial cancer by targeting MAT2B. Pharmacol Res 2024; 209:107420. [PMID: 39293586 DOI: 10.1016/j.phrs.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we have successfully established a panel of PDOs from EC and conducted drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory β subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724 μM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs models. These findings suggest that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiaojing Lu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Ting Ni
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Qi Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Gao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Shanghai Key Laboratory of Embryo Original Disease, Shanghai 200030, China.
| |
Collapse
|
7
|
Chen D, Xu L, Xuan M, Chu Q, Xue C. Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clin Transl Med 2024; 14:e1802. [PMID: 39245957 PMCID: PMC11381553 DOI: 10.1002/ctm2.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.
Collapse
Affiliation(s)
- Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjuan Xuan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingfei Chu
- Department of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xue
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Hu X, Wei J, Liu P, Zheng Q, Zhang Y, Zhang Q, Yao J, Ni J. Organoid as a promising tool for primary liver cancer research: a comprehensive review. Cell Biosci 2024; 14:107. [PMID: 39192365 DOI: 10.1186/s13578-024-01287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignant gastrointestinal tumors worldwide. Limited by the shortage of liver transplantation donors and the heterogeneity of tumors, patients with liver cancer lack effective treatment options, which leads to rapid progression and metastasis. Currently, preclinical models of PLC fall short of clinical reality and are limited in their response to disease progression and the effectiveness of drug therapy. Organoids are in vitro three-dimensional cultured preclinical models with a high degree of heterogeneity that preserve the histomorphological and genomic features of primary tumors. Liver cancer organoids have been widely used for drug screening, new target discovery, and precision medicine; thus representing a promising tool to study PLC. Here, we summarize the progress of research on liver cancer organoids and their potential application as disease models. This review provides a comprehensive introduction to this emerging technology and offers new ideas for researchers to explore in the field of precision medicine.
Collapse
Affiliation(s)
- Xuekai Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Jiayun Wei
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Pinyan Liu
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Qiuxia Zheng
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yue Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Qichen Zhang
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Jia Yao
- The First school of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, 730000, China.
- The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- School of Basic Medical Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China.
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
9
|
Su YD, Ma R, Fu YB, Wu HL, Liang XL, Liu YT, Yu Y, Yang ZR, Li Y. Drug sensitivity tumor cell clusters in malignant peritoneal mesothelioma. J Surg Oncol 2024. [PMID: 39183488 DOI: 10.1002/jso.27847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND To explore the most effective adjuvant chemotherapy regimen for malignant peritoneal mesothelioma (MPM) through patient derived tumor-like cell clusters (PTC) drug sensitivity test. METHODS PTC were cultured in vitro with intraoperative specimens, and drug sensitivity test was performed to calculate the most effective chemotherapy regimen for MPM. The patients were divided into conventional and individualized chemotherapy group according to whether they received PTC drug testing. Univariate and multivariate analyses were conducted to identify independent prognostic factors. RESULTS Among 186 MPM patients included, 63 underwent PTC culture and drug sensitivity test. The results showed that the most effective chemotherapy regimen was oxaliplatin + gemcitabine. After propensity score matching, a total of 64 patients were enrolled in the following study, including 32 patients receiving individualized chemotherapy guided by PTC drug results as group 1 and 32 patients receiving conventional chemotherapy as group 2. Survival analysis showed that the median OS of group 1 was not reached, significantly longer than that of group 2 (23.5 months) (p < 0.05). CONCLUSIONS Compared with conventional chemotherapy, individualized chemotherapy guided by PTC drug sensitivity tests can prolong patient survival, and oxaliplatin + gemcitabine + apatinib could be the optimal adjuvant treatment regimen for MPM.
Collapse
Affiliation(s)
- Yan-Dong Su
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ru Ma
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yu-Bin Fu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - He-Liang Wu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xin-Li Liang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yi-Tong Liu
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Zhi-Ran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Surgical Oncology, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Müller D, Loskutov J, Küffer S, Marx A, Regenbrecht CRA, Ströbel P, Regenbrecht MJ. Cell Culture Models for Translational Research on Thymomas and Thymic Carcinomas: Current Status and Future Perspectives. Cancers (Basel) 2024; 16:2762. [PMID: 39123489 PMCID: PMC11312172 DOI: 10.3390/cancers16152762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cell culture model systems are fundamental tools for studying cancer biology and identifying therapeutic vulnerabilities in a controlled environment. TET cells are notoriously difficult to culture, with only a few permanent cell lines available. The optimal conditions and requirements for the ex vivo establishment and permanent expansion of TET cells have not been systematically studied, and it is currently unknown whether different TET subtypes require different culture conditions or specific supplements. The few permanent cell lines available represent only type AB thymomas and thymic carcinomas, while attempts to propagate tumor cells derived from type B thymomas so far have been frustrated. It is conceivable that epithelial cells in type B thymomas are critically dependent on their interaction with immature T cells or their three-dimensional scaffold. Extensive studies leading to validated cell culture protocols would be highly desirable and a major advance in the field. Alternative methods such as tumor cell organoid models, patient-derived xenografts, or tissue slices have been sporadically used in TETs, but their specific contributions and advantages remain to be shown.
Collapse
Affiliation(s)
- Denise Müller
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | | | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Christian R. A. Regenbrecht
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany; (S.K.); (C.R.A.R.)
| | - Manuela J. Regenbrecht
- CELLphenomics GmbH, 13125 Berlin, Germany (M.J.R.)
- ASC Oncology GmbH, 13125 Berlin, Germany
- Department for Pneumology, Palliative Medicine, DRK Kliniken Berlin, 14050 Berlin, Germany
| |
Collapse
|
11
|
Yang Y, Kong Y, Cui J, Hou Y, Gu Z, Ma C. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Rev Rep 2024; 20:1213-1226. [PMID: 38532032 DOI: 10.1007/s12015-024-10714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
In recent years, the rapid emergence of 3D organoid technology has garnered significant attention from researchers. These miniature models accurately replicate the structure and function of human tissues and organs, offering more physiologically relevant platforms for cancer research. These intricate 3D structures not only serve as promising models for studying human cancer, but also significantly contribute to the advancement of various potential applications in the field of cancer research. To date, organoids have been efficiently constructed from both normal and malignant tissues originating from patients. Using such bioengineering platforms, simulations of infections and cancer processes, mutations and carcinogenesis can be achieved, and organoid technology is also expected to facilitate drug testing and personalized therapies. In conclusion, regenerative medicine has the potential to enhance organoid technology and current transplantation treatments by utilizing genetically identical healthy organoids as substitutes for irreversibly deteriorating diseased organs. This review explored the evolution of cancer organoids and emphasized the significant role these models play in fundamental research and the advancement of personalized medicine in oncology.
Collapse
Affiliation(s)
- Yujia Yang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yajie Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Jinlei Cui
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yu Hou
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Zhanjing Gu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Cuiqing Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Immunology Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
12
|
Shin YC, Than N, Park SJ, Kim HJ. Bioengineered human gut-on-a-chip for advancing non-clinical pharmaco-toxicology. Expert Opin Drug Metab Toxicol 2024; 20:593-606. [PMID: 38849312 DOI: 10.1080/17425255.2024.2365254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION There is a growing need for alternative models to advance current non-clinical experimental models because they often fail to accurately predict drug responses in human clinical trials. Human organ-on-a-chip models have emerged as promising approaches for advancing the predictability of drug behaviors and responses. AREAS COVERED We summarize up-to-date human gut-on-a-chip models designed to demonstrate intricate interactions involving the host, microbiome, and pharmaceutical compounds since these models have been reported a decade ago. This overview covers recent advances in gut-on-a-chip models as a bridge technology between non-clinical and clinical assessments of drug toxicity and metabolism. We highlight the promising potential of gut-on-a-chip platforms, offering a reliable and valid framework for investigating reciprocal crosstalk between the host, gut microbiome, and drug compounds. EXPERT OPINION Gut-on-a-chip platforms can attract multiple end users as predictive, human-relevant, and non-clinical model. Notably, gut-on-a-chip platforms provide a unique opportunity to recreate a human intestinal microenvironment, including dynamic bowel movement, luminal flow, oxygen gradient, host-microbiome interactions, and disease-specific manipulations restricted in animal and in vitro cell culture models. Additionally, given the profound impact of the gut microbiome on pharmacological bioprocess, it is critical to leverage breakthroughs of gut-on-a-chip technology to address knowledge gaps and drive innovations in predictive drug toxicology and metabolism.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nam Than
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Soo Jin Park
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Jin H, Yang Q, Yang J, Wang F, Feng J, Lei L, Dai M. Exploring tumor organoids for cancer treatment. APL MATERIALS 2024; 12. [DOI: 10.1063/5.0216185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As a life-threatening chronic disease, cancer is characterized by tumor heterogeneity. This heterogeneity is associated with factors that lead to treatment failure and poor prognosis, including drug resistance, relapse, and metastasis. Therefore, precision medicine urgently needs personalized tumor models that accurately reflect the tumor heterogeneity. Currently, tumor organoid technologies are used to generate in vitro 3D tissues, which have been shown to precisely recapitulate structure, tumor microenvironment, expression profiles, functions, molecular signatures, and genomic alterations in primary tumors. Tumor organoid models are important for identifying potential therapeutic targets, characterizing the effects of anticancer drugs, and exploring novel diagnostic and therapeutic options. In this review, we describe how tumor organoids can be cultured and summarize how researchers can use them as an excellent tool for exploring cancer therapies. In addition, we discuss tumor organoids that have been applied in cancer therapy research and highlight the potential of tumor organoids to guide preclinical research.
Collapse
Affiliation(s)
- Hairong Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University 4 , Changsha 410011, Hunan, China
| | - Jing Yang
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
- Ningxia Medical University 3 , Ningxia 750004, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University 1 , Hangzhou 310015, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University 2 , Wenzhou 325200, China
| |
Collapse
|
14
|
Lin H, Fu H, Sun S, Yin H, Yuan J, Liao J. Patient tissue-derived FGFR4-variant and wild-type colorectal cancer organoid development and anticancer drug sensitivity testing. Heliyon 2024; 10:e30985. [PMID: 38826758 PMCID: PMC11141279 DOI: 10.1016/j.heliyon.2024.e30985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Objectives FGFR4-variant and wild-type colorectal cancer (CRC) organoids were developed to investigate the effects of FGFR4-targeted drugs, including FGFR4-IN and erdafitinib, on CRC and their possible molecular mechanism. Methods Clinical CRC tissues were collected, seven CRC organoids were developed, and whole exome sequencing (WES) was performed. CRC organoids were cultured and organoid drug sensitivity studies were conducted. Finally, an FGFR4-variant (no wild-type) CRC patient-derived orthotopic xenograft mouse model was developed. Western blot measured ERK/AKT/STAT3 pathway-related protein levels. Results WES results revealed the presence of FGFR4-variants in 5 of the 7 CRC organoids. The structural organization and integrity of organoids were significantly altered under the influence of targeted drugs (FGFR4-IN-1 and erdafitinib). The effects of FGFR4 targeted drugs were not selective for FGFR4 genotypes. FGFR4-IN-1 and erdafitinib significantly reduced the growth, diameter, and Adenosine Triphosphate (ATP) activity of organoids. Furthermore, chemotherapeutic drugs, including 5-fluorouracil and cisplatin, inhibited FGFR4-variant and wild-type CRC organoid activity. Moreover, the tumor volume of mice was significantly reduced at week 6, and p-ERK1/2, p-AKT, and p-STAT3 levels were down-regulated following FGFR4-IN-1 and erdafitinib treatment. Conclusions FGFR4-targeted and chemotherapeutic drugs inhibited the activity of FGFR4-variant and wild-type CRC organoids, and targeted drugs were more effective than chemotherapeutic drugs at the same concentration. Additionally, FGFR4 inhibitors hindered tumorigenesis in FGFR4-variant CRC organoids through ERK1/2, AKT, and STAT3 pathways. However, no wild-type control was tested in this experiment, which need further confirmation in the next study.
Collapse
Affiliation(s)
- Hailing Lin
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hongbo Fu
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shishen Sun
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Hao Yin
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jie Yuan
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, 528000, Guangdong, China
| | - Jilin Liao
- Department of Pharmacy, The Second Affiliated Hospital, Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
15
|
Liu YY, Wu DK, Chen JB, Tang YM, Jiang F. Advances in the study of gastric organoids as disease models. World J Gastrointest Oncol 2024; 16:1725-1736. [PMID: 38764838 PMCID: PMC11099456 DOI: 10.4251/wjgo.v16.i5.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/09/2024] Open
Abstract
Gastric organoids are models created in the laboratory using stem cells and sophisticated three-dimensional cell culture techniques. These models have shown great promise in providing valuable insights into gastric physiology and advanced disease research. This review comprehensively summarizes and analyzes the research advances in culture methods and techniques for adult stem cells and induced pluripotent stem cell-derived organoids, and patient-derived organoids. The potential value of gastric organoids in studying the pathogenesis of stomach-related diseases and facilitating drug screening is initially discussed. The construction of gastric organoids involves several key steps, including cell extraction and culture, three-dimensional structure formation, and functional expression. Simulating the structure and function of the human stomach by disease modeling with gastric organoids provides a platform to study the mechanism of gastric cancer induction by Helicobacter pylori. In addition, in drug screening and development, gastric organoids can be used as a key tool to evaluate drug efficacy and toxicity in preclinical trials. They can also be used for precision medicine according to the specific conditions of patients with gastric cancer, to assess drug resistance, and to predict the possibility of adverse reactions. However, despite the impressive progress in the field of gastric organoids, there are still many unknowns that need to be addressed, especially in the field of regenerative medicine. Meanwhile, the reproducibility and consistency of organoid cultures are major challenges that must be overcome. These challenges have had a significant impact on the development of gastric organoids. Nonetheless, as technology continues to advance, we can foresee more comprehensive research in the construction of gastric organoids. Such research will provide better solutions for the treatment of stomach-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Yi-Yang Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - De-Kun Wu
- Teaching Experiment and Training Center, Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Ji-Bing Chen
- Central Laboratory, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - You-Ming Tang
- Department of Digestive Disease, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Feng Jiang
- AIDS Research Center, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
16
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
17
|
Yu S, Zhang L, Yang Y, Wang M, Liu T, Ji W, Liu Y, Lv H, Zhao Y, Chen X, Hu T. Polydopamine-Based Resveratrol-Hyaluronidase Nanomedicine Inhibited Pancreatic Cancer Cell Invasive Phenotype in Hyaluronic Acid Enrichment Tumor Sphere Model. ACS Pharmacol Transl Sci 2024; 7:1013-1022. [PMID: 38633596 PMCID: PMC11020062 DOI: 10.1021/acsptsci.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 04/19/2024]
Abstract
The dense storm microenvironment formed by an excessively cross-linked extracellular matrix, such as hyaluronic acid and collagens, serves as a major barrier that prevents drugs from reaching the deeper tumor. Current traditional two-dimensional (2D) cultures are not capable of modeling this drug delivery barrier in vitro. Thus, tumor spheroids have become increasingly important in cancer research due to their three-dimensional structure. Currently, various methods have been developed to construct tumor spheroids. However, there are still challenges, such as lengthy construction time, complex composition of added growth factors, and high cultivation costs. To address this technical bottleneck, our study combined the GelMA hydrogel system to develop a rapid and high-yield method for tumor spheroids generation. Additionally, we proposed an evaluation scheme to assess the effects of drugs on tumor spheroids. Building on the hyaluronic acid-rich pathological tumor microenvironment, we constructed a resveratrol-loaded nano-drug delivery system with tumor stroma modulation capability and used a three-dimensional (3D) tumor sphere model to simulate in vivo tumor conditions. This process was utilized to completely evaluate the ability of the nano-drug delivery system to enhance the deep penetration of resveratrol in the tumor microenvironment, providing new insights into future oncology drug screening, efficacy assessment, and drug delivery methods.
Collapse
Affiliation(s)
- Shuo Yu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Lu Zhang
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yanshen Yang
- Bioinspired
Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, Shaanxi 710000, China
| | - Meijuan Wang
- Department
of Anesthesia, Guangdong Provincial People’s
Hospital, Guangzhou 510080, China
| | - Tingting Liu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wenwen Ji
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yang Liu
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Hao Lv
- Department
of General Surgery, The Second Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yang Zhao
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Xi Chen
- National
& Local Joint Engineering Research Center of Biodiagnosis and
Biotherapy, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710004, China
| | - Tinghua Hu
- Department
of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
18
|
Liang CT, Roscow O, Zhang W. Generation and Characterization of Engineered Ubiquitin Variants to Modulate the Ubiquitin Signaling Cascade. Cold Spring Harb Protoc 2024; 2024:107784. [PMID: 36997275 DOI: 10.1101/pdb.over107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The ubiquitin signaling cascade plays a crucial role in human cells. Consistent with this, malfunction of ubiquitination and deubiquitination is implicated in the initiation and progression of numerous human diseases, including cancer. Therefore, the development of potent and specific modulators of ubiquitin signal transduction has been at the forefront of drug development. In the past decade, a structure-based combinatorial protein-engineering approach has been used to generate ubiquitin variants (UbVs) as protein-based modulators of multiple components in the ubiquitin-proteasome system. Here, we review the design and generation of phage-displayed UbV libraries, including the processes of binder selection and library improvement. We also provide a comprehensive overview of the general in vitro and cellular methodologies involved in characterizing UbV binders. Finally, we describe two recent applications of UbVs for developing molecules with therapeutic potential.
Collapse
Affiliation(s)
- Chen T Liang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Olivia Roscow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Ontario M5G1M1, Canada
| |
Collapse
|
19
|
Xu R, Chen R, Tu C, Gong X, Liu Z, Mei L, Ren X, Li Z. 3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:171-186. [PMID: 38884054 PMCID: PMC11169319 DOI: 10.1007/s43657-023-00111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2024]
Abstract
Sarcoma is a complex and heterogeneous cancer that has been difficult to study in vitro. While two-dimensional (2D) cell cultures and mouse models have been the dominant research tools, three-dimensional (3D) culture systems such as organoids have emerged as promising alternatives. In this review, we discuss recent developments in sarcoma organoid culture, with a focus on their potential as tools for drug screening and biobanking. We also highlight the ways in which sarcoma organoids have been used to investigate the mechanisms of gene regulation, drug resistance, metastasis, and immune interactions. Sarcoma organoids have shown to retain characteristics of in vivo biology within an in vitro system, making them a more representative model for sarcoma research. Our review suggests that sarcoma organoids offer a potential path forward for translational research in this field and may provide a platform for developing personalized therapies for sarcoma patients.
Collapse
Affiliation(s)
- Ruiling Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Ruiqi Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiaofeng Gong
- College of Life Science, Fudan University, Shanghai, 200433 China
| | - Zhongyue Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Lin Mei
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Changsha, 410011 Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, No. 139 Renmin Road, Changsha, 410011 Hunan China
| |
Collapse
|
20
|
Jiang KL, Jia YB, Liu XJ, Jia QL, Guo LK, Wang XX, Yang KM, Wu CH, Liang BB, Ling JH. Bibliometrics analysis based on the Web of Science: Current trends and perspective of gastric organoid during 2010-2023. World J Gastroenterol 2024; 30:969-983. [PMID: 38516239 PMCID: PMC10950634 DOI: 10.3748/wjg.v30.i8.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Three-dimensional organoid culture systems have been established as a robust tool for elucidating mechanisms and performing drug efficacy testing. The use of gastric organoid models holds significant promise for advancing personalized medicine research. However, a comprehensive bibliometric review of this bur-geoning field has not yet been published. AIM To analyze and understand the development, impact, and direction of gastric organoid research using bibliometric methods using data from the Web of Science Core Collection (WoSCC) database. METHODS This analysis encompassed literature pertaining to gastric organoids published between 2010 and 2023, as indexed in the WoSCC. CiteSpace and VOSviewer were used to depict network maps illustrating collaborations among authors, institutions and keywords related to gastric organoid. Citation, co-citation, and burst analysis methodologies were applied to assess the impact and progress of research. RESULTS A total of 656 relevant studies were evaluated. The majority of research was published in gastroenterology-focused journals. Globally, Yana Zavros, Hans Clevers, James M Wells, Sina Bartfeld, and Chen Zheng were the 5 most productive authors, while Hans Clevers, Huch Meritxell, Johan H van Es, Marc Van de Wetering, and Sato Toshiro were the foremost influential scientists in this area. Institutions from the University Medical Center Utrecht, Netherlands Institute for Developmental Biology (Utrecht), and University of Cincinnati (Cincinnati, OH, United States) made the most significant contributions. Currently, gastric organoids are used mainly in studies investigating gastric cancer (GC), Helicobacter pylori-infective gastritis, with a focus on the mechanisms of GC, and drug screening tests. CONCLUSION Key focus areas of research using gastric organoids include unraveling disease mechanisms and enhancing drug screening techniques. Major contributions from renowned academic institutions highlight this field's dynamic growth.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
- Laboratory of Cancer Biology, University of Oxford, Oxford OX37DQ, United Kingdom
| | - Yue-Bo Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Chinese Medicine, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Chen-Heng Wu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Bei-Bei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
21
|
Qu S, Xu R, Yi G, Li Z, Zhang H, Qi S, Huang G. Patient-derived organoids in human cancer: a platform for fundamental research and precision medicine. MOLECULAR BIOMEDICINE 2024; 5:6. [PMID: 38342791 PMCID: PMC10859360 DOI: 10.1186/s43556-023-00165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Cancer is associated with a high degree of heterogeneity, encompassing both inter- and intra-tumor heterogeneity, along with considerable variability in clinical response to common treatments across patients. Conventional models for tumor research, such as in vitro cell cultures and in vivo animal models, demonstrate significant limitations that fall short of satisfying the research requisites. Patient-derived tumor organoids, which recapitulate the structures, specific functions, molecular characteristics, genomics alterations and expression profiles of primary tumors. They have been efficaciously implemented in illness portrayal, mechanism exploration, high-throughput drug screening and assessment, discovery of innovative therapeutic targets and potential compounds, and customized treatment regimen for cancer patients. In contrast to conventional models, tumor organoids offer an intuitive, dependable, and efficient in vitro research model by conserving the phenotypic, genetic diversity, and mutational attributes of the originating tumor. Nevertheless, the organoid technology also confronts the bottlenecks and challenges, such as how to comprehensively reflect intra-tumor heterogeneity, tumor microenvironment, tumor angiogenesis, reduce research costs, and establish standardized construction processes while retaining reliability. This review extensively examines the use of tumor organoid techniques in fundamental research and precision medicine. It emphasizes the importance of patient-derived tumor organoid biobanks for drug development, screening, safety evaluation, and personalized medicine. Additionally, it evaluates the application of organoid technology as an experimental tumor model to better understand the molecular mechanisms of tumor. The intent of this review is to explicate the significance of tumor organoids in cancer research and to present new avenues for the future of tumor research.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Rongyang Xu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- The First Clinical Medical College of Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
| | - Huayang Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Nanfang Glioma Center, Guangzhou, 510515, Guangdong, China.
- Institute of Brain disease, Nanfang Hospital, Southern Medical University, Guangzhou Dadao Bei Street 1838, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
22
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
23
|
Jiang X, Oyang L, Peng Q, Liu Q, Xu X, Wu N, Tan S, Yang W, Han Y, Lin J, Xia L, Peng M, Tang Y, Luo X, Su M, Shi Y, Zhou Y, Liao Q. Organoids: opportunities and challenges of cancer therapy. Front Cell Dev Biol 2023; 11:1232528. [PMID: 37576596 PMCID: PMC10413981 DOI: 10.3389/fcell.2023.1232528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Organoids are a class of multicellular structures with the capability of self-organizing and the characteristic of original tissues, they are generated from stem cells in 3D culture in vitro. Organoids can mimic the occurrence and progression of original tissues and widely used in disease models in recent years. The ability of tumor organoids to retain characteristic of original tumors make them unique for tumorigenesis and cancer therapy. However, the history of organoid development and the application of organoid technology in cancer therapy are not well understood. In this paper, we reviewed the history of organoids development, the culture methods of tumor organoids establishing and the applications of organoids in cancer research for better understanding the process of tumor development and providing better strategies for cancer therapy. The standardization of organoids cultivation facilitated the large-scale production of tumor organoids. Moreover, it was found that combination of tumor organoids and other cells such as immune cells, fibroblasts and nervous cells would better mimic the microenvironment of tumor progression. This might be important developing directions for tumor organoids in the future.
Collapse
Affiliation(s)
- Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| |
Collapse
|
24
|
Hye Jeong J, Park S, Lee S, Kim Y, Kyong Shim I, Jeong SY, Kyung Choi E, Kim J, Jun E. Orthotopic model of pancreatic cancer using CD34 + humanized mice and generation of tumor organoids from humanized tumors. Int Immunopharmacol 2023; 121:110451. [PMID: 37331294 DOI: 10.1016/j.intimp.2023.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
In pancreatic cancer (PC) as intractable solid cancer, current research is focused mainly on targeted immunotherapies such as antibodies and immune cell modulators. To identify promising immune-oncological agents, animal models that recapitulate the essential features of human immune status are essential. To this end, we constructed an orthotopic xenograft model using CD34+ human hematopoietic stem cell-based humanized NOD scid gamma mouse (NSG) mice injected with luciferase-expressing PC cell lines AsPC1 and BxPC3. The growth of orthotopic tumors was monitored using noninvasive multimodal imaging, while the subtype profiles of human immune cells in blood and tumor tissues were determined by flow cytometry and immunohistopathology. In addition, the correlations of blood and tumor-infiltrating immune cell count with tumor extracellular matrix density were calculated using Spearman's test. Tumor-derived cell lines and tumor organoids with continuous passage capacity in vitro were isolated from orthotopic tumors. It was further confirmed that these tumor-derived cells and organoids have reduced PD-L1 expression and are suitable for testing the efficacy of specific targeted immunotherapeutic agents. These animal and culture models could facilitate the development and validation of immunotherapeutic agents for intractable solid cancers including PC.
Collapse
Affiliation(s)
- Ji Hye Jeong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sujin Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sangyeon Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yeounhee Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - In Kyong Shim
- Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Seong-Yun Jeong
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea; Asan Preclinical Evaluation Center for Cancer TherapeutiX, ASAN Medical Center, Seoul 05505, Republic of Korea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, ASAN Medical Center, Seoul 05505, Republic of Korea; Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jinju Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Eunsung Jun
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, ASAN Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
25
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
26
|
Xie C, Gu A, Khan M, Yao X, Chen L, He J, Yuan F, Wang P, Yang Y, Wei Y, Tang F, Su H, Chen J, Li J, Cen B, Xu Z. Opportunities and challenges of hepatocellular carcinoma organoids for targeted drugs sensitivity screening. Front Oncol 2023; 12:1105454. [PMID: 36686807 PMCID: PMC9853547 DOI: 10.3389/fonc.2022.1105454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma is one of the malignancies worldwide with a high mortality rate and an increasing incidence. Molecular Targeted agents are its common first-line treatment. Organoid technology, as a cutting-edge technology, is gradually being applied in the development of therapeutic oncology. Organoid models can be used to perform sensitivity screening of targeted drugs to facilitate the development of innovative therapeutic agents for the treatment of hepatocellular carcinoma. The purpose of this review is to provide an overview of the opportunities and challenges of hepatocellular carcinoma organoids in targeted drug sensitivity testing as well as a future outlook.
Collapse
Affiliation(s)
- Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ancheng Gu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangcao Yao
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Leping Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiali He
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fumiao Yuan
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Wang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yufan Yang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yerong Wei
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fang Tang
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hualong Su
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiamin Chen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinxia Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bohong Cen
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| | - Zhongyuan Xu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Bohong Cen, ; Zhongyuan Xu,
| |
Collapse
|
27
|
Guan X, Huang S. Advances in the application of 3D tumor models in precision oncology and drug screening. Front Bioeng Biotechnol 2022; 10:1021966. [PMID: 36246388 PMCID: PMC9555934 DOI: 10.3389/fbioe.2022.1021966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional tumor models cannot perfectly simulate the real state of tumors in vivo, resulting in the termination of many clinical trials. 3D tumor models’ technology provides new in vitro models that bridge the gap between in vitro and in vivo findings, and organoids maintain the properties of the original tissue over a long period of culture, which enables extensive research in this area. In addition, they can be used as a substitute for animal and in vitro models, and organoids can be established from patients’ normal and malignant tissues, with unique advantages in clinical drug development and in guiding individualized therapies. 3D tumor models also provide a promising platform for high-throughput research, drug and toxicity testing, disease modeling, and regenerative medicine. This report summarizes the 3D tumor model, including evidence regarding the 3D tumor cell culture model, 3D tumor slice model, and organoid culture model. In addition, it provides evidence regarding the application of 3D tumor organoid models in precision oncology and drug screening. The aim of this report is to elucidate the value of 3D tumor models in cancer research and provide a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Shigao Huang,
| |
Collapse
|