1
|
Sacco MA, Gualtieri S, Cordasco F, Tarallo AP, Verrina MC, Princi A, Bruni A, Garofalo E, Aquila I. The Role of Adrenomedullin as a Predictive Marker of the Risk of Death and Adverse Clinical Events: A Review of the Literature. J Clin Med 2024; 13:4847. [PMID: 39200990 PMCID: PMC11355278 DOI: 10.3390/jcm13164847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Adrenomedullin (ADM) is a vasodilatory peptide that plays a crucial role in maintaining cardiovascular health through its various biological functions. ADM was discovered in the acidic extract of human pheochromocytoma tissue and has been recognized for its significant effects on the vascular system. The main functions of ADM include vasodilation, controlling blood pressure and maintaining vascular integrity, although its role on cardiovascular health is broader. Research has shown that elevated levels of adrenomedullin have been observed in a large number of severe diseases, with high risk of death. In this work, we examined the role of ADM as a predictive molecule of the risk of mortality and adverse clinical outcome through a narrative review of the scientific literature. The results were divided based on the pathologies and anatomical districts examined. This review demonstrates how ADM shows, in many diseases and different systems, a close correlation with the risk of mortality. These results prove the value of ADM as a prognostic marker in various clinical contexts and diseases, with utility in the stratification of the risk of clinical worsening and/or death and in the evaluation of therapeutic efficacy. The results open new perspectives with respect to the concrete possibility that ADM enters clinical practice as an effective diagnostic and prognostic marker of death as well as a molecular target for therapies aimed at patient survival.
Collapse
Affiliation(s)
- Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Saverio Gualtieri
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Fabrizio Cordasco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Alessandro Pasquale Tarallo
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Maria Cristina Verrina
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Aurora Princi
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| | - Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.)
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (A.B.); (E.G.)
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, ‘Magna Graecia’ University of Catanzaro, 88100 Catanzaro, Italy; (M.A.S.); (S.G.); (F.C.); (A.P.T.); (M.C.V.); (A.P.)
| |
Collapse
|
2
|
Washida K, Saito S, Tanaka T, Nakaoku Y, Ishiyama H, Abe S, Kuroda T, Nakazawa S, Kakuta C, Omae K, Tanaka K, Minami M, Morita Y, Fukuda T, Shindo A, Maki T, Kitamura K, Tomimoto H, Aso T, Ihara M. A multicenter, single-arm, phase II clinical trial of adrenomedullin in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100211. [PMID: 38375188 PMCID: PMC10875187 DOI: 10.1016/j.cccb.2024.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Background Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common form of hereditary cerebral small vessel disease (SVD), currently lacks disease-modifying treatments. Adrenomedullin (AM), a vasoactive peptide with angiogenic, vasodilatory, anti-inflammatory, and anti-oxidative properties, shows potential effects on the neuro-glial-vascular unit. Objective The AdrenoMedullin for CADASIL (AMCAD) study aims to assess the efficacy and safety of AM in patients with CADASIL. Sample size Overall, 60 patients will be recruited. Methods The AMCAD is a multicenter, investigator-initiated, single-arm phase II trial. Patients with a confirmed CADASIL diagnosis, based on NOTCH3 genetic testing, will receive an 8-h AM treatment (15 ng/kg/min) for 14 days following a baseline assessment (from day 1 to day 14). Follow-up evaluations will be performed on days 15, 28, 90, and 180. Study outcomes The primary endpoint is the cerebral blood flow change rate in the frontal cortex, evaluated using arterial spin labeling magnetic resonance imaging, from baseline to day 28. Summary statistics, 95% confidence intervals, and a one-sample t-test will be used for analysis. Conclusion The AMCAD study aims to represent the therapeutic potential of AM in patients with CADASIL, addressing an unmet medical need in this challenging condition. Clinical Trial Registration jRCT 2,051,210,117 (https://jrct.niph.go.jp/en-latest-detail/jRCT2051210117).
Collapse
Affiliation(s)
- Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Soichiro Abe
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Takehito Kuroda
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shinsaku Nakazawa
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Chikage Kakuta
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Katsuhiro Omae
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenta Tanaka
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Manabu Minami
- Department of Data Science, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate school of Medicine, Tsu, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuo Kitamura
- Department of Projects Research, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate school of Medicine, Tsu, Japan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
3
|
Xing D, Jin Y, Jin B. A narrative review on inflammaging and late-onset hypogonadism. Front Endocrinol (Lausanne) 2024; 15:1291389. [PMID: 38298378 PMCID: PMC10827931 DOI: 10.3389/fendo.2024.1291389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The increasing life expectancy observed in recent years has resulted in a higher prevalence of late-onset hypogonadism (LOH) in older men. LOH is characterized by the decline in testosterone levels and can have significant impacts on physical and mental health. While the underlying causes of LOH are not fully understood, there is a growing interest in exploring the role of inflammaging in its development. Inflammaging is a concept that describes the chronic, low-grade, systemic inflammation that occurs as a result of aging. This inflammatory state has been implicated in the development of various age-related diseases. Several cellular and molecular mechanisms have been identified as contributors to inflammaging, including immune senescence, cellular senescence, autophagy defects, and mitochondrial dysfunction. Despite the extensive research on inflammaging, its relationship with LOH has not yet been thoroughly reviewed in the literature. To address this gap, we aim to review the latest findings related to inflammaging and its impact on the development of LOH. Additionally, we will explore interventions that target inflammaging as potential treatments for LOH.
Collapse
Affiliation(s)
- Dong Xing
- Medical College of Southeast University, Nanjing, Jiangsu, China
| | - Yihan Jin
- Reproductive Medicine Center, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Ma Y, Hu Y, Ma J. Animal models of the placenta accreta spectrum: current status and further perspectives. Front Endocrinol (Lausanne) 2023; 14:1118168. [PMID: 37223034 PMCID: PMC10200980 DOI: 10.3389/fendo.2023.1118168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023] Open
Abstract
Placenta accreta spectrum disorder (PAS) is a kind of disease of placentation defined as abnormal trophoblast invasion of part or all of the placenta into the myometrium, even penetrating the uterus. Decidual deficiency, abnormal vascular remodeling in the maternal-fetal interface, and excessive invasion by extravillous trophoblast (EVT) cells contribute to its onset. However, the mechanisms and signaling pathways underlying such phenotypes are not fully understood, partly due to the lack of suitable experimental animal models. Appropriate animal models will facilitate the comprehensive and systematic elucidation of the pathogenesis of PAS. Due to the remarkably similar functional placental villous units and hemochorial placentation to humans, the current animal models of PAS are based on mice. There are various mouse models induced by uterine surgery to simulate different phenotypes of PAS, such as excessive invasion of EVT or immune disturbance at the maternal-fetal interface, which could define the pathological mechanism of PAS from the perspective of the "soil." Additionally, genetically modified mouse models could be used to study PAS, which is helpful to exploring the pathogenesis of PAS from the perspectives of both "soil" and "seed," respectively. This review details early placental development in mice, with a focus on the approaches of PAS modeling. Additionally, the strengths, limitations and the applicability of each strategy and further perspectives are summarized to provide the theoretical foundation for researchers to select appropriate animal models for various research purposes. This will help better determine the pathogenesis of PAS and even promote possible therapy.
Collapse
Affiliation(s)
- Yongdan Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yongyan Hu
- Laboratory Animal Center, Peking University First Hospital, Beijing, China
| | - Jingmei Ma
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| |
Collapse
|
5
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|