1
|
Wang Y, Lu RS, Li MH, Lu XY, Sun XQ, Zhang YM. Unraveling the Molecular Basis of Color Variation in Dioscorea alata Tubers: Integrated Transcriptome and Metabolomics Analysis. Int J Mol Sci 2024; 25:2057. [PMID: 38396734 PMCID: PMC10889544 DOI: 10.3390/ijms25042057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Rui-Sen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Ming-Han Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xin-Yu Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Xiao-Qin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Yan-Mei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (Y.W.); (R.-S.L.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| |
Collapse
|
2
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
3
|
Brugger A, Yamati FI, Barreto A, Paulus S, Schramowsk P, Kersting K, Steiner U, Neugart S, Mahlein AK. Hyperspectral Imaging in the UV Range Allows for Differentiation of Sugar Beet Diseases Based on Changes in Secondary Plant Metabolites. PHYTOPATHOLOGY 2023; 113:44-54. [PMID: 35904439 DOI: 10.1094/phyto-03-22-0086-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal infections trigger defense or signaling responses in plants, leading to various changes in plant metabolites. The changes in metabolites, for example chlorophyll or flavonoids, have long been detectable using time-consuming destructive analytical methods including high-performance liquid chromatography or photometric determination. Recent plant phenotyping studies have revealed that hyperspectral imaging (HSI) in the UV range can be used to link spectral changes with changes in plant metabolites. To compare established destructive analytical methods with new nondestructive hyperspectral measurements, the interaction between sugar beet leaves and the pathogens Cercospora beticola, which causes Cercospora leaf spot disease (CLS), and Uromyces betae, which causes sugar beet rust (BR), was investigated. With the help of destructive analyses, we showed that both diseases have different effects on chlorophylls, carotenoids, flavonoids, and several phenols. Nondestructive hyperspectral measurements in the UV range revealed different effects of CLS and BR on plant metabolites resulting in distinct reflectance patterns. Both diseases resulted in specific spectral changes that allowed differentiation between the two diseases. Machine learning algorithms enabled the differentiation between the symptom classes and recognition of the two sugar beet diseases. Feature importance analysis identified specific wavelengths important to the classification, highlighting the utility of the UV range. The study demonstrates that HSI in the UV range is a promising, nondestructive tool to investigate the influence of plant diseases on plant physiology and biochemistry.
Collapse
Affiliation(s)
- Anna Brugger
- University of Bonn, Institute for Crop Science and Resource Conservation (INRES)-Plant Pathology, Bonn, 53115, Germany
| | | | - Abel Barreto
- Institute of Sugar Beet Research, Goettingen, 37079, Germany
| | - Stefan Paulus
- Institute of Sugar Beet Research, Goettingen, 37079, Germany
| | - Patrick Schramowsk
- Technical University Darmstadt, Computer Science Department and Centre for Cognitive Science, Darmstadt, 64289, Germany
| | - Kristian Kersting
- Technical University Darmstadt, Computer Science Department and Centre for Cognitive Science, Darmstadt, 64289, Germany
| | - Ulrike Steiner
- University of Bonn, Institute for Crop Science and Resource Conservation (INRES)-Plant Pathology, Bonn, 53115, Germany
| | - Susanne Neugart
- University of Goettingen, Division of Quality and Sensory of Plant Products, Goettingen, 37075, Germany
| | | |
Collapse
|
4
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Yu X, Le Quéré JM, Sotin H, Citeau M, Dauguet S, Guyot S. Characterisation and Quantification of Condensed Tannins in Rapeseed Hulls and Meals by Depolymerization Methods. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zhao H, Shang G, Yin N, Chen S, Shen S, Jiang H, Tang Y, Sun F, Zhao Y, Niu Y, Zhao Z, Xu L, Lu K, Du D, Qu C, Li J. Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2083-2099. [PMID: 35606456 DOI: 10.1007/s00122-022-04099-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Multi-omics analysis of the transcriptome, metabolome and genome identified major and minor loci and candidate genes for seed coat color and explored the mechanism of flavonoid metabolites biosynthesis in Brassica rapa. Yellow seed trait is considered an agronomically desirable trait with great potential for improving seed quality of Brassica crops. Mechanisms of the yellow seed trait are complex and not well understood. In this study, we performed an integrated metabolome, transcriptome and genome-wide association study (GWAS) on different B. rapa varieties to explore the mechanisms underlying the seed coat color formation. A total of 2,499 differentially expressed genes and 116 differential metabolites between yellow and black seeds with strong association with the flavonoid biosynthesis pathway was identified. In addition, 330 hub genes involved in the seed coat color formation, and the most significantly differential flavonoids biosynthesis were detected based on weighted gene co-expression network analysis. Metabolite GWAS analysis using the contents of 42 flavonoids in developing seeds of 159 B. rapa lines resulted in the identification of 1,626 quantitative trait nucleotides (QTNs) and 37 chromosomal intervals, including one major locus on chromosome A09. A combination of QTNs detection, transcriptome and functional analyses led to the identification of 241 candidate genes that were associated with different flavonoid metabolites. The flavonoid biosynthesis pathway in B. rapa was assembled based on the identified flavonoid metabolites and candidate genes. Furthermore, BrMYB111 members (BraA09g004490.3C and BraA06g034790.3C) involved in the biosynthesis of taxifolin were functionally analyzed in vitro. Our findings lay a foundation and provide a reference for systematically investigating the mechanism of seed coat color in B. rapa and in the other plants.
Collapse
Affiliation(s)
- Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Guoxia Shang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Haiyan Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yunshan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yuhan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | | | - Zhi Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
7
|
Kim J, Sohn SI, Sathasivam R, Khaskheli AJ, Kim MC, Kim NS, Park SU. Targeted Metabolic and In-Silico Analyses Highlight Distinct Glucosinolates and Phenolics Signatures in Korean Rapeseed Cultivars. PLANTS (BASEL, SWITZERLAND) 2021; 10:2027. [PMID: 34685838 PMCID: PMC8537057 DOI: 10.3390/plants10102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 12/02/2022]
Abstract
Rapeseed is an economically important oilseed crop throughout the world. We examined the content and composition of glucosinolates (GSLs) and phenolics in the sprouts of seven Korean cultivars. A total of eight GSLs that include four aliphatic GSLs (AGSLs) (progoitrin, gluconapin, gluconapoleiferin, and glucobrassicanapin) and four indole GSLs (IGSLs) (4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, neoglucobrassicin, and glucobrassicin) were identified in these cultivars. Of the total GSLs, the highest level was detected for progoitrin, while the lowest level was identified for glucobrassicanapin in all the cultivars. Phenolics that include chlorogenic acid, catechin hydrate, 4-hydroxybenzoic acid, gallic acid, ferulic acid, p-coumaric acid, epicatechin, caffeic acid, rutin, quercetin, trans-cinnamic acid, benzoic acid, and kaempferol were present in all the cultivars. Of these, rutin was identified with the highest level while trans-cinnamic acid was identified with the lowest level in all the cultivars. Cluster analysis revealed the unique metabolic signature of eight GSLs and thirteen phenolics for the seven cultivars of rapeseed, which implies that genomic commonality and variability resulted from the previous breeding program. Further, gene expression and cis-regulatory elements suggest that the biosynthesis of GSLs and phenolics of these cultivars appears to be regulated through transcription factors associated with stress responses, phytohormones, and cellular growth.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Soo In Sohn
- Biosafety Division, Department of Agricultural Biotechnology, Jeonju 54874, Korea;
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
| | - Allah Jurio Khaskheli
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Min Cheol Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
| | - Nam Su Kim
- Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju 28116, Korea;
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (R.S.); (M.C.K.)
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
8
|
Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in Brassica juncea. Int J Mol Sci 2021; 22:ijms22137215. [PMID: 34281271 PMCID: PMC8268557 DOI: 10.3390/ijms22137215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
The allotetraploid species Brassica juncea (mustard) is grown worldwide as oilseed and vegetable crops; the yellow seed-color trait is particularly important for oilseed crops. Here, to examine the factors affecting seed coat color, we performed a metabolic and transcriptomic analysis of yellow- and dark-seeded B. juncea seeds. In this study, we identified 236 compounds, including 31 phenolic acids, 47 flavonoids, 17 glucosinolates, 38 lipids, 69 other hydroxycinnamic acid compounds, and 34 novel unknown compounds. Of these, 36 compounds (especially epicatechin and its derivatives) accumulated significantly different levels during the development of yellow- and dark-seeded B. juncea. In addition, the transcript levels of BjuDFR, BjuANS,BjuBAN, BjuTT8, and BjuTT19 were closely associated with changes to epicatechin and its derivatives during seed development, implicating this pathway in the seed coat color determinant in B. juncea. Furthermore, we found numerous variations of sequences in the TT8A genes that may be associated with the stability of seed coat color in B. rapa, B. napus, and B. juncea, which might have undergone functional differentiation during polyploidization in the Brassica species. The results provide valuable information for understanding the accumulation of metabolites in the seed coat color of B. juncea and lay a foundation for exploring the underlying mechanism.
Collapse
|
9
|
Bennouna D, Tourniaire F, Durand T, Galano JM, Fine F, Fraser K, Benatia S, Rosique C, Pau C, Couturier C, Pontet C, Vigor C, Landrier JF, Martin JC. The Brassica napus (oilseed rape) seeds bioactive health effects are modulated by agronomical traits as assessed by a multi-scale omics approach in the metabolically impaired ob-mouse. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 2:100011. [PMID: 35415621 PMCID: PMC8991728 DOI: 10.1016/j.fochms.2021.100011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/04/2021] [Accepted: 01/17/2021] [Indexed: 11/24/2022]
Abstract
Oilseed rape seeds are rich in nutritional bioactives. Current agronomical traits greatly modulate B. napus seeds bioactive contents. Such disparities influence health outcomes in a mice nutritional trial. Optimized agronomical conditions may beneficially improve B napus nutritional value.
Beside oil, oilseed rape (Brassica napus) seeds contains nutritional bioactives such as polyphenols and glucosinolates. However, to date their nutritional properties have been overlooked in the new “double zero” breeds. Seed alcoholic extracts from two B. napus cultivars most contrasting in their phytochemical contents as measured by mass-spectrometry were given to ob-mice. Biological outcomes including clinical metrics, gut and plasma metabolomes, liver transcriptome and metabolome were compared to ob-mice given a similar broccoli extract (Brassica oleracea). One B. napus extract induced a reduction of the oxidative stress indicated by the decrease of plasma isoprostanoids. This was associated to the regulation of the antioxidant stress defense Nrf2 pathway, to ‘omic’ oxidative stress functions, metabolic and cell process regulations, and the metabolomics microbiota profile. Extracts of B. napus seeds demonstrated health effects that may be improved by selecting appropriate agronomical traits, highlighting the potential benefits of better utilizing agronomy for improved human and animal nutrition
Collapse
|
10
|
Ding Y, Yu S, Wang J, Li M, Qu C, Li J, Liu L. Comparative transcriptomic analysis of seed coats with high and low lignin contents reveals lignin and flavonoid biosynthesis in Brassica napus. BMC PLANT BIOLOGY 2021; 21:246. [PMID: 34051742 PMCID: PMC8164251 DOI: 10.1186/s12870-021-03030-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Brassica napus L. (2n = 38, AACC) is one of the most important oil crops and sources of protein for animal feed worldwide. Lignin is a large molecule aromatic polymer and a major cell wall component. However, lignin in the seed coat reduces the availability and restricts the development of rapeseed cake. Therefore, it is critical to reduce the lignin content of the seed coat. Here, high-lignin (H-lignin) and low-lignin (L-lignin) content recombinant inbred lines (RILs) were selected from an RIL population for analysis. RESULTS The cross-section results indicated that the seed coat of the H-lignin lines was thicker than that of the L-lignin lines, especially the palisade layer. The seed coats and embryos at 35, 40 and 46 days after flowering (DAF) were subjected to RNA sequencing (RNA-Seq), and the expression of the BnPAL and BnC4H gene families in the lignin pathway was significantly higher in the H-lignin seed coat than in the L-lignin seed coat. The Bn4CL gene family also showed this trend. In addition, among the genes related to plant hormone synthesis, BnaC02g01710D was upregulated and BnaA07g11700D and BnaC09g00190D were downregulated in H-lignin lines. Some transcription factors were upregulated, such as BnNAC080, BnNAC083, BnMYB9, BnMYB9-1, BnMYB60 and BnMYB60-1, while BnMYB91 was downregulated in H-lignin lines. Moreover, most genes of the flavonoid pathway, such as BnCHS and BnDFR, were strongly expressed in H-lignin seed coat. CONCLUSIONS In Our study, some key genes such as hormone synthesis genes, transcription factors and miRNAs related to lignin and flavonoid biosynthesis were identified. A regulatory model of B. napus seed coat lignin was proposed. These results provide new insight into lignin and flavonoid biosynthesis in B. napus.
Collapse
Affiliation(s)
- Yiran Ding
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shizhou Yu
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guizhou, 550008, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Morreeuw ZP, Escobedo-Fregoso C, Ríos-González LJ, Castillo-Quiroz D, Reyes AG. Transcriptome-based metabolic profiling of flavonoids in Agave lechuguilla waste biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110748. [PMID: 33691954 DOI: 10.1016/j.plantsci.2020.110748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 05/23/2023]
Abstract
Agave lechuguilla is one of the most abundant species in arid and semiarid regions of Mexico, and is used to extract fiber. However, 85 % of the harvested plant material is discarded. Previous bioprospecting studies of the waste biomass suggest the presence of bioactive compounds, although the extraction process limited metabolite characterization. This work achieved flavonoid profiling of A. lechuguilla in both processed and non-processed leaf tissues using transcriptomic analysis. Functional annotation of the first de novo transcriptome of A. lechuguilla (255.7 Mbp) allowed identifying genes coding for 33 enzymes and 8 transcription factors involved in flavonoid biosynthesis. The flavonoid metabolic pathway was mostly elucidated by HPLC-MS/MS screening of alcoholic extracts. Key genes of flavonoid synthesis were higher expressed in processed leaf tissues than in non-processed leaves, suggesting a high content of flavonoids and glycoside derivatives in the waste biomass. Targeted HPLC-UV-MS analyses confirmed the concentration of isorhamnetin (1251.96 μg), flavanone (291.51 μg), hesperidin (34.23 μg), delphinidin (24.23 μg), quercetin (15.57 μg), kaempferol (13.71 μg), cyanidin (12.32 μg), apigenin (9.70 μg) and catechin (7.91 μg) per gram of dry residue. Transcriptomic and biochemical profiling concur in the potential of lechuguilla by-products with a wide range of applications in agriculture, feed, food, cosmetics, and pharmaceutical industries.
Collapse
Affiliation(s)
- Zoé P Morreeuw
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Cristina Escobedo-Fregoso
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico
| | - Leopoldo J Ríos-González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila (UAdeC), Blvd. V. Carranza, Col. Republica Oriente, C.P. 25280, Saltillo, Coahuila, Mexico
| | - David Castillo-Quiroz
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Saltillo, Carretera Saltillo-Zacatecas 9515, Col. Hacienda Buenavista, C.P. 25315, Saltillo, Coahuila, Mexico
| | - Ana G Reyes
- CONACYT-CIBNOR, Av. Instituto Politécnico Nacional 195, Col. Playa Palo Santa Rita Sur, C.P. 23096, La Paz, BCS, Mexico.
| |
Collapse
|
12
|
Corso M, Perreau F, Mouille G, Lepiniec L. Specialized phenolic compounds in seeds: structures, functions, and regulations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110471. [PMID: 32540001 DOI: 10.1016/j.plantsci.2020.110471] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
Plants produce a huge diversity of specialized metabolites (SM) throughout their life cycle that play important physiological and ecological functions. SM can protect plants and seeds against diseases, predators, and abiotic stresses, or support their interactions with beneficial or symbiotic organisms. They also have strong impacts on human nutrition and health. Despite this importance, the biosynthesis and biological functions of most of the SM remain elusive and their diversity and/or quantity have been reduced in most crops during domestication. Seeds present a large number of SM that are important for their physiological, agronomic, nutritional or industrial qualities and hence, provide interesting models for both studying biosynthesis and producing large amounts of specialized metabolites. For instance, phenolics are abundant and widely distributed in seeds. More specifically, flavonoid pathway has been instrumental for understanding environmental or developmental regulations of specialized metabolic pathways, at the molecular and cellular levels. Here, we summarize current knowledge on seed phenolics as model, and discuss how recent progresses in omics approaches could help to further characterize their diversity, regulations, and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
13
|
Xie T, Chen X, Guo T, Rong H, Chen Z, Sun Q, Batley J, Jiang J, Wang Y. Targeted Knockout of BnTT2 Homologues for Yellow-Seeded Brassica napus with Reduced Flavonoids and Improved Fatty Acid Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5676-5690. [PMID: 32394708 DOI: 10.1021/acs.jafc.0c01126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Brassica napus is one of the important oil crops grown worldwide, and oil quality improvement is a major goal in rapeseed breeding. Yellow seed is an excellent trait, which has great potential in improving seed quality and economic value. In this study, we created stable yellow seed mutants using a CRISPR/Cas9 system and obtained the yellow seed phenotype only when the four alleles of two BnTT2 homologues were knocked out, indicating that the two BnTT2 homologues had conserved but redundant functions in regulating seed color. Histochemical staining and flavonoid metabolic analysis proved that the BnTT2 mutation hindered the synthesis and accumulation of proanthocyanidins. Transcriptome analysis also showed that the BnTT2 mutation inhibited the expression of genes in the phenylpropanoid and flavonoid biosynthetic pathway, which might be regulated by the complex of BnTT2, BnTT8 and BnTTG1. In addition, the homozygous mutants of BnTT2 homologues increased oil content and improved fatty acid composition with higher linoleic acid (C18:2) and linolenic acid (C18:3), which could be used for the genetic improvement of rapeseed. Overall, this research showed that the BnTT2 mutation can be used for yellow seed breeding and oil improvement, which is of great significance in improving the economic value of rapeseeds.
Collapse
Affiliation(s)
- Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tuli Guo
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyi Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qinfu Sun
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
14
|
Qu C, Yin N, Chen S, Wang S, Chen X, Zhao H, Shen S, Fu F, Zhou B, Xu X, Liu L, Lu K, Li J. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3033-3049. [PMID: 32052629 DOI: 10.1021/acs.jafc.9b07173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The high levels of secondary metabolites in rapeseed play important roles in determining the oil quality and feeding value. Here, we characterized the metabolic profiles in seeds of various yellow- and black-seeded rapeseed accessions. Two hundred and forty-eight features were characterized, including 31 phenolic acids, 54 flavonoids, 24 glucosinolates, 65 lipid compounds, and 74 other polar compounds. The most abundant phenolic acids and various flavonoids (epicatechin, isorhamnetin, kaempferol, quercetin, and their derivatives) were widely detected and showed significant differences in distribution between the yellow- and black-seeded rapeseed. Furthermore, the related genes (e.g., BnTT3, BnTT18, BnTT10, BnTT12, and BnBAN) involved in the proanthocyanidin pathway had lower expression levels in yellow-seeded rapeseed, strongly suggesting that the seed coat color could be mainly determined by the levels of epicatechin and their derivatives. These results improve our understanding of the primary constituents of rapeseed and lay the foundation for breeding novel varieties with a high nutritional value.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Xingyu Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N02X, Canada
| | - Baojin Zhou
- Deepxomics-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
15
|
Jiang J, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, Wang YP. Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC PLANT BIOLOGY 2019; 19:203. [PMID: 31096923 PMCID: PMC6524335 DOI: 10.1186/s12870-019-1821-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/07/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Brassica napus is of substantial economic value for vegetable oil, biofuel, and animal fodder production. The breeding of yellow-seeded B. napus to improve seed quality with higher oil content, improved oil and meal quality with fewer antinutrients merits attention. Screening the genes related to this phenotype is valuable for future rapeseed breeding. RESULTS A total of 85,407 genes, including 4317 novel genes, were identified in the developing seeds of yellow- and black-seeded B. napus, and yellow rapeseed was shown to be an introgression line between black-seeded B. napus and yellow-seeded Sinapis alba. A total of 15,251 differentially expressed genes (DEGs) were identified among all the libraries, and 563 and 397 common DEGs were identified throughout black and yellow seed development, including 80 upregulated and 151 downregulated genes related to seed development and fatty acid accumulation. In addition, 11 up-DEGs and 31 down-DEGs were identified in all developmental stages of yellow rapeseed compared with black seed. Enrichment analysis revealed that many DEGs were involved in biosynthetic processes, pigment metabolism, and oxidation-reduction processes, such as flavonoid and phenylpropanoid biosynthesis, phenylalanine metabolism, flavone and flavonol biosynthesis, and fatty acid biosynthesis and metabolism. We found that more than 77 DEGs were related to flavonoid and lignin biosynthesis, including 4CL, C4H, and PAL, which participated in phenylalanine metabolism, and BAN, CHI/TT5, DFR, F3H, FLS, LDOX, PAP, CHS/TT4, TT5, bHLH/TT8, WD40, MYB, TCP, and CYP, which were involved in flavonoid biosynthesis. Most of these DEGs were downregulated in yellow rapeseed and were consistent with the decreased flavonoid and lignin contents. Both up- and down-DEGs related to fatty acid biosynthesis and metabolism were also analyzed, which could help to explain the improved oil content of yellow rapeseed. CONCLUSION This research provided comprehensive transcriptome data for yellow-seeded B. napus with a unique genetic background, and all the DEGs in comparison with the black-seeded counterpart could help to explain seed quality differences, such as lower pigmentation and lignin contents, and higher oil content.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Shuang Zhu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Yi Yuan
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Yue Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Lei Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA Australia
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
16
|
Park CH, Kim NS, Park JS, Lee SY, Lee JW, Park SU. Effects of Light-Emitting Diodes on the Accumulation of Glucosinolates and Phenolic Compounds in Sprouting Canola ( Brassica napus L.). Foods 2019; 8:E76. [PMID: 30791403 PMCID: PMC6406741 DOI: 10.3390/foods8020076] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 02/03/2023] Open
Abstract
In this study, we investigated optimal light conditions for enhancement of the growth and accumulation of glucosinolates and phenolics in the sprouts of canola (Brassica napus L.). We found that the shoot lengths and fresh weights of red light-irradiated sprouts were higher than those of sprouts exposed to white, blue, and blue + red light, whereas root length was not notably different among red, blue, white, and blue + red light treatments. The accumulations of total glucosinolates in plants irradiated with white, blue, and red lights were not significantly different (19.32 ± 0.13, 20.69 ± 0.05, and 20.65 ± 1.70 mg/g dry weight (wt.), respectively). However, sprouts exposed to blue + red light contained the lowest levels of total glucosinolates (17.08 ± 0.28 mg/g dry wt.). The accumulation of total phenolic compounds was the highest in plants irradiated with blue light (3.81 ± 0.08 mg/g dry wt.), 1.33 times higher than the lowest level in plants irradiated with red light (2.87 ± 0.05 mg/g dry wt.). These results demonstrate that red light-emitting diode (LED) light is suitable for sprout growth and that blue LED light is effective in increasing the accumulation of glucosinolates and phenolics in B. napus sprouts.
Collapse
Affiliation(s)
- Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Nam Su Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong Seok Park
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sook Young Lee
- Marine Bio Research Center, Chosun University, 61-220 Myeongsasimni, Sinji-myeon, Wando-gun, Jeollanamdo 59146, Korea.
| | - Jong-Won Lee
- Department of Horticulture Environment System, Korea National College of Agriculture and Fisheries, 1515, Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do 54874, Korea.
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
17
|
Correlation Analysis of Phenolic Contents and Antioxidation in Yellow- and Black-Seeded Brassica napus. Molecules 2018; 23:molecules23071815. [PMID: 30037115 PMCID: PMC6100393 DOI: 10.3390/molecules23071815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Abstract
Brassica napus L. is rich in phenolic components and it has natural antioxidant characteristics which are important to human health. In the present study, the total phenolic and flavonoid contents of developing seeds of yellow- and black-seeded B. napus were compared. Both phenolic and flavonoid contents were significantly higher at 5 weeks after flowering (WAF) in black seeds (6.44 ± 0.97 mg EE/g phenolics and 3.78 ± 0.05 mg EE/g flavonoids) than yellow seeds (2.80 ± 0.13 mg/g phenolics and 0.83 ± 0.01 mg/g flavonoids). HPLC–DAD–ESI/MS analysis revealed different content of 56 phenolic components between yellow and black-seeded B. napus, including kaempferol-3-O-glucoside, isorhamnetin-3-O-glucoside, quercetin-3-O-sophoroside, procyanidin B2 ([DP 2]), which were significantly reduced in yellow seeds compared with black seeds. Applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical assay, we found maximum clearance of DPPH and ABTS in the late developmental stages of yellow and black seeds. Additionally, the ferric reducing antioxidant power (FRAP) value maximized at 5 WAF in black seeds (432.52 ± 69.98 μmol Fe (II)/g DW) and 6 WAF in yellow seeds (274.08 ± 2.40 μmol Fe (II)/g DW). Generally, antioxidant ability was significantly reduced in yellow-seeded B. napus compared to black rapeseed, and positive correlations between antioxidation and flavonoid content were found in both yellow- and black-seeded B. napus.
Collapse
|
18
|
Hong M, Hu K, Tian T, Li X, Chen L, Zhang Y, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2017; 8:1674. [PMID: 29051765 PMCID: PMC5633857 DOI: 10.3389/fpls.2017.01674] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/12/2017] [Indexed: 05/18/2023]
Abstract
Yellow seeds are a favorable trait for Brassica crops breeding due to better quality than their black-seeded counterparts. Here, we compared the Brassica napus seed coat transcriptomes between yellow- and brown-seeded near-isogenic lines (Y-NIL and B-NIL) that were developed from the resynthesized yellow-seeded line No. 2127-17. A total of 4,974 differentially expressed genes (DEG) were identified during seed development, involving 3,128 up-regulated and 1,835 down-regulated genes in yellow seed coats. Phenylpropanoid and flavonoid biosynthesis pathways were enriched in down-regulated genes, whereas the top two pathways for up-regulated genes were plant-pathogen interaction and plant hormone signal transduction. Twelve biosynthetic genes and three regulatory genes involved in the flavonoid pathway exhibited similar expression patterns in seed coats during seed development, of which the down-regulation mainly contributed to the reduction of proanthocyanidins (PAs) in yellow seed coats, indicating that these genes associated with PA biosynthesis may be regulated by an unreported common regulator, possibly corresponding to the candidate for the dominant black-seeded gene D in the NILs. Three transcription factor (TF) genes, including one bHLH gene and two MYB-related genes that are located within the previous seed coat color quantitative trait locus (QTL) region on chromosome A09, also showed similar developmental expression patterns to the key PA biosynthetic genes and they might thus potentially involved participate in flavonoid biosynthesis regulation. Our study identified novel potential TFs involved in PAs accumulation and will provide pivotal information for identifying the candidate genes for seed coat color in B. napus.
Collapse
|
19
|
Liu X, Lu Y, Yan M, Sun D, Hu X, Liu S, Chen S, Guan C, Liu Z. Genome-Wide Identification, Localization, and Expression Analysis of Proanthocyanidin-Associated Genes in Brassica. FRONTIERS IN PLANT SCIENCE 2016; 7:1831. [PMID: 28018375 PMCID: PMC5145881 DOI: 10.3389/fpls.2016.01831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/21/2016] [Indexed: 05/29/2023]
Abstract
Proanthocyanidins (PA) is a type of prominent flavonoid compound deposited in seed coats which controls the pigmentation in all Brassica species. Annotation of Brassica juncea genome survey sequences showed 72 PA genes; however, a functional description of these genes, especially how their interactions regulate seed pigmentation, remains elusive. In the present study, we designed 19 primer pairs to screen a bacterial artificial chromosome (BAC) library of B. juncea. A total of 284 BAC clones were identified and sequenced. Alignment of the sequences confirmed that 55 genes were cloned, with every Arabidopsis PA gene having 2-7 homologs in B. juncea. BLAST analysis using the recently released B. rapa or B. napus genome database identified 31 and 58 homologous genes, respectively. Mapping and phylogenetic analysis indicated that 30 B. juncea PA genes are located in the A-genome chromosomes except A04, whereas the remaining 25 genes are mapped to the B-genome chromosomes except B05 and B07. RNA-seq data and Fragments Per Kilobase of a transcript per Million mapped reads (FPKM) analysis showed that most of the PA genes were expressed in the seed coat of B. juncea and B. napus, and that BjuTT3, BjuTT18, BjuANR, BjuTT4-2, BjuTT4-3, BjuTT19-1, and BjuTT19-3 are transcriptionally regulated, and not expressed or downregulated in yellow-seeded testa. Importantly, our study facilitates in better understanding of the molecular mechanism underlying Brassica PA profiles and accumulation, as well as in further characterization of PA genes.
Collapse
Affiliation(s)
- Xianjun Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
- College of Life Sciences, Resources and Environment Sciences, Yichun UniversityYichun, China
| | - Ying Lu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Mingli Yan
- School of Biology, Hunan University of Science and TechnologyXiangtan, China
| | - Donghong Sun
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | | | - Shuyan Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Sheyuan Chen
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Chunyun Guan
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| | - Zhongsong Liu
- Oilseed Crops Institute, Hunan Agricultural UniversityChangsha, Hunan, China
| |
Collapse
|
20
|
Wang Y, Xiao L, Guo S, An F, Du D. Fine Mapping and Whole-Genome Resequencing Identify the Seed Coat Color Gene in Brassica rapa. PLoS One 2016; 11:e0166464. [PMID: 27829069 PMCID: PMC5102352 DOI: 10.1371/journal.pone.0166464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
A yellow seed coat is a desirable agronomic trait in the seeds of oilseed-type Brassica crops. In this study, we identified a candidate gene for seed coat color in Dahuang, a landrace of Brassica rapa. A previous study of Dahuang mapped the seed coat color gene Brsc1 to a 2.8-Mb interval on chromosome A9 of B. rapa. In the present study, the density of the linkage map for Brsc1 was increased by adding simple sequence repeat (SSR) markers, and the candidate region for Brsc1 was narrowed to 1.04 Mb. In addition, whole-genome resequencing with bulked segregant analysis (BSA) was conducted to identify candidate intervals for Brsc1. A genome-wide comparison of SNP profiles was performed between yellow-seeded and brown-seeded bulk samples. SNP index analyses identified a major candidate interval on chromosome A9 (A09:18,255,838-18,934,000, 678 kb) containing a long overlap with the target region recovered from the fine mapping results. According to gene annotation, Bra028067 (BrTT1) is an important candidate gene for Brsc1 in the overlapping region. Quantitative reverse transcription (qRT)-PCR revealed that BrTT1 mainly functions in the seed. Point mutations and small deletions in BrTT1 were found between yellow- and brown-seeded Dahuang plants. Collectively, the expression and sequence analysis results provide preliminary evidence that BrTT1 is a candidate gene for the seed coat color trait in Dahuang.
Collapse
Affiliation(s)
- Yanhua Wang
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Lu Xiao
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Shaomin Guo
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Fengyun An
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Dezhi Du
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- * E-mail:
| |
Collapse
|
21
|
Jiang J, Wang Y, Xie T, Rong H, Li A, Fang Y, Wang Y. Metabolic Characteristics in Meal of Black Rapeseed and Yellow-Seeded Progeny of Brassica napus-Sinapis alba Hybrids. Molecules 2015; 20:21204-13. [PMID: 26633322 PMCID: PMC6332043 DOI: 10.3390/molecules201219761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
Breeding of yellow-seeded rapeseed (Brassica napus) is preferred over black-seeded rapeseed for the desirable properties of the former. This study evaluated the metabolites and nutritive values of black-seeded rapeseed meal and yellow-seeded meal from the progeny of a B. napus–Sinapis alba hybrid. Yellow-seed meal presented higher protein (35.46% vs. 30.29%), higher sucrose (7.85% vs. 7.29%), less dietary fiber (26.19% vs. 34.63%) and crude fiber (4.56% vs. 8.86%), and less glucosinolates (22.18 vs. 28.19 μmol/g) than black-seeded one. Amounts of ash (3.65% vs. 4.55%), phytic acid (4.98% vs. 5.60%), and total polyphenols (2.67% vs. 2.82%) were decreased slightly in yellow-seeded meal compared with black-seeded meal. Yellow-seeded meal contained more essential amino acids than black-seeded meal. Levels of the mineral elements Fe, Mn, and Zn in yellow-seeded meal were higher than black-seeded meal. By contrast, levels of P, Ca, and Mg were lower in yellow-seeded meal. Moreover, yellow-seeded meal showed lower flavonol (kaempferol, quercetin, isorhamnetin, and their derivatives) content than black-seeded meal. Comparison of metabolites between yellow and black rapeseed confirmed the improved nutritional value of meal from yellow-seeded B. napus, and this would be helpful to the breeding and improvement of rapeseed for animal feeding.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Yue Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Aimin Li
- Jiangsu Institute of Agricultural Science in the Lixiahe District, Yangzhou 225009, China.
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
22
|
Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. PLoS One 2015; 10:e0124794. [PMID: 25919591 PMCID: PMC4412398 DOI: 10.1371/journal.pone.0124794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/06/2015] [Indexed: 11/25/2022] Open
Abstract
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianqiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Supervision and Testing Center for Vegetable Quality, Ministry of Agriculture, Beijing, 100081, China
| | - Xinying Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haolun Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Kook SH, Choi KC, Lee YH, Cho HK, Lee JC. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory response through negative regulation of the p38 MAPK-NF-κB pathway. Int Immunopharmacol 2014; 23:726-34. [DOI: 10.1016/j.intimp.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 02/02/2023]
|
24
|
Wu XL, Liu ZH, Hu ZH, Huang RZ. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:582-93. [PMID: 24393360 DOI: 10.1111/jipb.12158] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/30/2013] [Indexed: 05/08/2023]
Abstract
Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.
Collapse
Affiliation(s)
- Xue-Long Wu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Plant Metabolic Engineering of Zhejiang Province, Hangzhou, 310021, China
| | | | | | | |
Collapse
|
25
|
Shao Y, Jiang J, Ran L, Lu C, Wei C, Wang Y. Analysis of flavonoids and hydroxycinnamic acid derivatives in rapeseeds (Brassica napus L. var. napus) by HPLC-PDA--ESI(--)-MS(n)/HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2935-45. [PMID: 24620834 DOI: 10.1021/jf404826u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A comprehensive description of flavonoids and hydroxycinnamic acid derivatives in Brassica napus L. var. napus seeds is important to improve rapeseed quality. HPLC-PDA-ESI(-)-MS(n)/HRMS has been broadly applied to study phenolic compounds in plants. In the present study, crude phenolic compounds extracted from rapeseed were subjected to column chromatography, alkaline hydrolysis, and HPLC-PDA-ESI(-)-MS(n)/HRMS analysis. A total of 91 flavonoids and hydroxycinnamic acid derivatives were detected, including 39 kaempferol derivatives, 11 isorhamnetin derivatives, 5 quercetin derivatives, 6 flavanols and their oligomers, and 30 hydroxycinnamic acid derivatives. A total of 78 of these compounds were tentatively identified; of these, 55 were reported for the first time in B. napus L. var. napus and 24 were detected for the first time in the genus Brassica. This research enriches our knowledge of the phenolic composition of rapeseed and provides a reliable guide for the selection of rapeseed with valuable breeding potential.
Collapse
Affiliation(s)
- Yanlin Shao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology and ‡Test Center, Yangzhou University , Yangzhou, 225009 Jiangsu, China
| | | | | | | | | | | |
Collapse
|
26
|
Becker MG, Hsu SW, Harada JJ, Belmonte MF. Genomic dissection of the seed. FRONTIERS IN PLANT SCIENCE 2014; 5:464. [PMID: 25309563 PMCID: PMC4162360 DOI: 10.3389/fpls.2014.00464] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 05/20/2023]
Abstract
Seeds play an integral role in the global food supply and account for more than 70% of the calories that we consume on a daily basis. To meet the demands of an increasing population, scientists are turning to seed genomics research to find new and innovative ways to increase food production. Seed genomics is evolving rapidly, and the information produced from seed genomics research has exploded over the past two decades. Advances in modern sequencing strategies that profile every molecule in every cell, tissue, and organ and the emergence of new model systems have provided the tools necessary to unravel many of the biological processes underlying seed development. Despite these advances, the analyses and mining of existing seed genomics data remain a monumental task for plant biologists. This review summarizes seed region and subregion genomic data that are currently available for existing and emerging oilseed models. We provide insight into the development of tools on how to analyze large-scale datasets.
Collapse
Affiliation(s)
- Michael G. Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MBCanada
| | - Ssu-Wei Hsu
- Department of Plant Biology, University of California Davis, Davis, CAUSA
| | - John J. Harada
- Department of Plant Biology, University of California Davis, Davis, CAUSA
| | - Mark F. Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MBCanada
- *Correspondence: Mark F. Belmonte, Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada e-mail:
| |
Collapse
|