1
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Symonds K, Teresinski HJ, Hau B, Dwivedi V, Belausov E, Bar-Sinai S, Tominaga M, Haraguchi T, Sadot E, Ito K, Snedden WA. Functional characterization of calmodulin-like proteins, CML13 and CML14, as novel light chains of Arabidopsis class VIII myosins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2313-2329. [PMID: 38280207 PMCID: PMC11272076 DOI: 10.1093/jxb/erae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Bryan Hau
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | - Vikas Dwivedi
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Sefi Bar-Sinai
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Einat Sadot
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Wayne A Snedden
- Department of Biology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
3
|
Liang Y, Zhang X, Wu B, Wang S, Kang L, Deng Y, Xie L, Li Z. Actomyosin-driven motility and coalescence of phase-separated viral inclusion bodies are required for efficient replication of a plant rhabdovirus. THE NEW PHYTOLOGIST 2023; 240:1990-2006. [PMID: 37735952 DOI: 10.1111/nph.19255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Phase separation has emerged as a fundamental principle for organizing viral and cellular membraneless organelles. Although these subcellular compartments have been recognized for decades, their biogenesis and mechanisms of regulation are poorly understood. Here, we investigate the formation of membraneless inclusion bodies (IBs) induced during the infection of a plant rhabdovirus, tomato yellow mottle-associated virus (TYMaV). We generated recombinant TYMaV encoding a fluorescently labeled IB constituent protein and employed live-cell imaging to characterize the intracellular dynamics and maturation of viral IBs in infected Nicotiana benthamiana cells. We show that TYMaV IBs are phase-separated biomolecular condensates and that viral nucleoprotein and phosphoprotein are minimally required for IB formation in vivo and in vitro. TYMaV IBs move along the microfilaments, likely through the anchoring of viral phosphoprotein to myosin XIs. Furthermore, pharmacological disruption of microfilaments or inhibition of myosin XI functions suppresses IB motility, resulting in arrested IB growth and inefficient virus replication. Our study establishes phase separation as a process driving the formation of liquid viral factories and emphasizes the role of the cytoskeletal system in regulating the dynamics of condensate maturation.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Binyan Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuo Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Lihua Kang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Li Xie
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
5
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
6
|
Wang X, Sheng X, Tian X, Zhang Y, Li Y. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1685-1697. [PMID: 33067901 DOI: 10.1111/tpj.15030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
F-actin and myosin XI play important roles in plant organelle movement. A few myosin XI genes in the genome of Arabidopsis are mainly expressed in mature pollen, which suggests that they may play a crucial role in pollen germination and pollen tube tip growth. In this study, a genetic complementation assay was conducted in a myosin xi-c (myo11c1) myosin xi-e (myo11c2) double mutant, and fluorescence labeling combined with microscopic observation was applied. We found that myosin XI-E (Myo11C2)-green fluorescent protein (GFP) restored the slow pollen tube growth and seed deficiency phenotypes of the myo11c1 myo11c2 double mutant and Myo11C2-GFP partially colocalized with mitochondria, peroxisomes and Golgi stacks. Furthermore, decreased mitochondrial movement and subapical accumulation were detected in myo11c1 myo11c2 double mutant pollen tubes. Fluorescence recovery after photobleaching experiments showed that the fluorescence recoveries of GFP-RabA4d and AtPRK1-GFP at the pollen tube tip of the myo11c1 myo11c2 double mutant were lower than those of the wild type were after photobleaching. These results suggest that Myo11C2 may be associated with mitochondria, peroxisomes and Golgi stacks, and play a crucial role in organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Wang X, Mao T. Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:86-96. [PMID: 31542697 DOI: 10.1016/j.pbi.2019.08.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Plants perceive multiple physiological and environmental signals in order to fine-tune their growth and development. The highly dynamic plant cytoskeleton, including actin and microtubule networks, can rapidly alter their organization, stability and dynamics in response to internal and external stimuli, which is considered vital for plant growth and adaptation to the environment. The cytoskeleton-associated proteins have been shown to be key regulatory molecules in mediating cytoskeleton reorganization in response to multiple environmental signals, such as light, salt, drought and biotic stimuli. Recent findings, including our studies, have expanded knowledge about the functions and underlying mechanisms of the plant cytoskeleton in environmental adaptation.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Liu H, Lu Y, Wang J, Hu J, Wuyun T. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis in Eucommia ulmoides. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1070-1082. [PMID: 29944209 DOI: 10.1111/jipb.12693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in regulatory networks controlling plant and animal gene expression. However, lncRNA roles in regulating rubber biosynthesis in Eucommia ulmoides, an emerging source of natural rubber (Eu-rubber), are currently unknown. Here, we report on RNA deep-sequencing of E. ulmoides fruits at two developmental stages. Based on application of a stringent pipeline, 29,103 lncRNAs and 9,048 transcripts of uncertain coding potential (TUCPs) were identified. Two differentially expressed (DE) TUCPs appear to simultaneously regulate 12 protein-coding genes involved in Eu-rubber biosynthesis (GIEBs), as well as 95 DE genes. Functional categorization of these 95 DE genes indicated their involvement in subcellular microstructures and cellular processes, such as cell wall, cell division, and growth. These DE genes may participate in the differentiation and development of laticifers, where Eu-rubber is synthesized. A model is proposed in which "commanders" (DE TUCPs) direct the "builders" (DE genes) to construct a "storehouse" of materials needed for Eu-rubber synthesis, and the "workers" (GIEBs) to synthesize Eu-rubber. These findings provide insights into both cis- and trans-polyisoprene biosynthesis in plants, laying the foundation for additional studies of this crucial process.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Juan Wang
- Chemistry department, University of Missouri-Columbia, Columbia MO 65201, USA
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai 200335, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
9
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
10
|
Abu-Abied M, Belausov E, Hagay S, Peremyslov V, Dolja V, Sadot E. Myosin XI-K is involved in root organogenesis, polar auxin transport, and cell division. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2869-2881. [PMID: 29579267 PMCID: PMC5972647 DOI: 10.1093/jxb/ery112] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 05/11/2023]
Abstract
The interplay between myosin- and auxin-mediated processes was investigated by following root development in the triple myosin knockout mutant xi-k xi-1 xi-2 (3KO). It was found that the 3KO plants generated significantly more lateral and adventitious roots than the wild-type plants or the rescued plant line expressing functional myosin XI-K:yellow fluorescent protein (YFP; 3KOR). Using the auxin-dependent reporter DR5:venus, a significant change in the auxin gradient toward the root tip was found in 3KO plants, which correlated with the loss of polar localization of the auxin transporter PIN1 in the stele and with the increased number of stele cells with oblique cell walls. Interestingly, myosin XI-K:YFP was localized to the cell division apparatus in the root and shoot meristems. In anaphase and early telophase, XI-K:YFP was concentrated in the midzone and the forming cell plate. In late telophase, XI-K:YFP formed a ring that overlapped with the growing phragmoplast. Myosin receptors MyoB1 and MyoB2 that are highly expressed throughout the plant were undetectable in dividing cells, suggesting that the myosin function in cell division relies on distinct adaptor proteins. These results suggest that myosin XIs are involved in orchestrating root organogenesis via effects on polar distribution of auxin responses and on cell division.
Collapse
Affiliation(s)
- Mohamad Abu-Abied
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Sapir Hagay
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
| | - Valera Peremyslov
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Valerian Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Einat Sadot
- The Institute of Plant Sciences, The Volcani Center, ARO, HaMaccabim Road, Rishon LeZion, Israel
- Correspondence:
| |
Collapse
|
11
|
Sui X, Liu X, Lin W, Wu Z, Yang L. Targeting of rice grassy stunt virus pc6 protein to plasmodesmata requires the ER-to-Golgi secretory pathway and an actin-myosin VIII motility system. Arch Virol 2018; 163:1317-1323. [PMID: 29392491 DOI: 10.1007/s00705-018-3726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/10/2017] [Indexed: 10/18/2022]
Abstract
The nonstructural protein pc6 encoded by rice grassy stunt virus (RGSV) plays a significant role in viral cell-to-cell movement, presumably by transport through plasmodesmata (PD). We confirmed the association of pc6 with PD, and also elucidated the mechanisms of protein targeting to PD. Several inhibitor treatments showed conclusively that pc6 is targeted to PD via the ER-to-Golgi secretory system and actin filaments. In addition, VIII-1 myosin was also found to be involved in pc6 PD targeting. Deletion mutants demonstrated that C-terminal amino acid residues 209-229 (transmembrane domain 2; TM2) are essential for pc6 to move through PD.
Collapse
Affiliation(s)
- Xuelian Sui
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaojuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenwu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Liang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
12
|
Abstract
ABSTRACT
Plants are sessile and require diverse strategies to adapt to fluctuations in the surrounding light conditions. Consequently, the photorelocation movement of chloroplasts is essential to prevent damages that are induced by intense light (avoidance response) and to ensure efficient photosynthetic activities under weak light conditions (accumulation response). The mechanisms that underlie chloroplast movements have been revealed through analysis of the behavior of individual chloroplasts and it has been found that these organelles can move in any direction without turning. This implies that any part of the chloroplast periphery can function as the leading or trailing edge during movement. This ability is mediated by a special structure, which consists of short actin filaments that are polymerized at the leading edge of moving chloroplasts and are specifically localized in the space between the chloroplast and the plasma membrane, and is called chloroplast-actin. In addition, several of the genes that encode proteins that are involved in chloroplast-actin polymerization or maintenance have been identified. In this Review, we discuss the mechanisms that regulate chloroplast movements through polymerization of the chloroplast-actin and propose a model for actin-driven chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro Gongju-si, Chungcheongnam-do 32588, Republic of Korea
| |
Collapse
|
13
|
Wang P, Hawkins TJ, Hussey PJ. Connecting membranes to the actin cytoskeleton. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:71-76. [PMID: 28779654 DOI: 10.1016/j.pbi.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
In plants, the actin cytoskeleton plays a major role in organelle movement, cargo transport, maintaining cell polarity and controlling the morphogenesis of endomembrane systems. All of these events require a direct connection between membrane structures and the cytoskeleton. Our knowledge in this field has been greatly advanced by a few recent discoveries including the identification of the plant specific NETWORKED family of proteins, which can mediate such linkages. Other proteins that are known to regulate actin nucleation and polymerization are also likely to be involved, but many key questions still remain unanswered. In this paper, we will focus on recent research on the interfaces between the actin cytoskeleton and membranes of the endoplasmic reticulum, the vacuole and autophagosomes.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Tim J Hawkins
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
14
|
Breuer D, Nowak J, Ivakov A, Somssich M, Persson S, Nikoloski Z. System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells. Proc Natl Acad Sci U S A 2017; 114:E5741-E5749. [PMID: 28655850 PMCID: PMC5514762 DOI: 10.1073/pnas.1706711114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms.
Collapse
Affiliation(s)
- David Breuer
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany;
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Jacqueline Nowak
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Ivakov
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- ARC Centre of Excellence for Translational Photosynthesis, College of Medicine, Biology and Environment, Australian National University, Canberra, Acton, ACT 2601, Australia
| | - Marc Somssich
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Staffan Persson
- ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
- Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Peng X, Yan T, Sun M. The WASP-Arp2/3 complex signal cascade is involved in actin-dependent sperm nuclei migration during double fertilization in tobacco and maize. Sci Rep 2017; 7:43161. [PMID: 28225074 PMCID: PMC5320560 DOI: 10.1038/srep43161] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Sperm nuclear migration during fertilization in Arabidopsis and rice has recently been found to be actin-dependent, but the driving force behind this actin cytoskeleton-dependent motion is unclear. Here, we confirmed that the actin-dependent sperm nuclei migration during fertilization is a conserved mechanism in plants. Using in vitro fertilization systems, we showed that a functional actin is also essential in maize and tobacco for sperm nuclei migration after gamete membrane fusion. Cytoskeleton depolymerization inhibitor treatments supported the view that sperm nuclei migration is actin-dependent but microtubule-independent in both egg cell and central cell during double fertilization. We further revealed that the actin-based motor myosin is not the driving force for sperm nuclear migration in maize and tobacco. The WASP-Arp2/3 complex signal cascade is shown here to be involved in the regulation of sperm nuclear migration in maize and tobacco. It is interesting that sperm nuclei migration within somatic cell also need WASP-Arp2/3 complex signal cascade and actin, suggesting that the mechanism of sperm nuclear migration is not gamete specific.
Collapse
Affiliation(s)
- Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tingting Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
17
|
Geitmann A, Nebenführ A. Navigating the plant cell: intracellular transport logistics in the green kingdom. Mol Biol Cell 2016; 26:3373-8. [PMID: 26416952 PMCID: PMC4591683 DOI: 10.1091/mbc.e14-10-1482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracellular transport in plant cells occurs on microtubular and actin arrays. Cytoplasmic streaming, the rapid motion of plant cell organelles, is mostly driven by an actin–myosin mechanism, whereas specialized functions, such as the transport of large cargo or the assembly of a new cell wall during cell division, are performed by the microtubules. Different modes of transport are used, fast and slow, to either haul cargo over long distances or ascertain high-precision targeting, respectively. Various forms of the actin-specific motor protein myosin XI exist in plant cells and might be involved in different cellular functions.
Collapse
Affiliation(s)
- Anja Geitmann
- Department of Biological Sciences, Institut de recherche en biologie végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| |
Collapse
|
18
|
Ueda H, Tamura K, Hara-Nishimura I. Functions of plant-specific myosin XI: from intracellular motility to plant postures. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:30-8. [PMID: 26432645 DOI: 10.1016/j.pbi.2015.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 05/02/2023]
Abstract
The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
Collapse
Affiliation(s)
- Haruko Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
19
|
Peremyslov VV, Cole RA, Fowler JE, Dolja VV. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development. PLoS One 2015; 10:e0139331. [PMID: 26426395 PMCID: PMC4591342 DOI: 10.1371/journal.pone.0139331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023] Open
Abstract
Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.
Collapse
Affiliation(s)
- Valera V. Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - Rex A. Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - John E. Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, United States of America
| |
Collapse
|
20
|
Hawes C, Kiviniemi P, Kriechbaumer V. The endoplasmic reticulum: a dynamic and well-connected organelle. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:50-62. [PMID: 25319240 DOI: 10.1111/jipb.12297] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The endoplasmic reticulum forms the first compartment in a series of organelles which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cellular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organelles, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.
Collapse
Affiliation(s)
- Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | | | | |
Collapse
|
21
|
Shen Z, Liu YC, Bibeau JP, Lemoi KP, Tüzel E, Vidali L. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:106-19. [PMID: 25351786 DOI: 10.1111/jipb.12303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/23/2014] [Indexed: 05/15/2023]
Abstract
In plants, light determines chloroplast position; these organelles show avoidance and accumulation responses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thaliana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.
Collapse
Affiliation(s)
- Zhiyuan Shen
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hepler PK, Winship LJ. The pollen tube clear zone: clues to the mechanism of polarized growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:79-92. [PMID: 25431342 DOI: 10.1111/jipb.12315] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/24/2014] [Indexed: 05/08/2023]
Abstract
Pollen tubes usually exhibit a prominent region at their apex called the "clear zone" because it lacks light refracting amyloplasts. A robust, long clear zone often associates with fast growing pollen tubes, and thus serves as an indicator of pollen tube health. Nevertheless we do not understand how it arises or how it is maintained. Here we review the structure of the clear zone, and attempt to explain the factors that contribute to its formation. While amyloplasts and vacuolar elements are excluded from the clear zone, virtually all other organelles are present including secretory vesicles, mitochondria, Golgi dictyosomes, and the endoplasmic reticulum (ER). Secretory vesicles aggregate into an inverted cone appressed against the apical plasma membrane. ER elements move nearly to the extreme apex, whereas mitochondria and Golgi dictyosomes move less far forward. The cortical actin fringe assumes a central position in the control of clear zone formation and maintenance, given its role in generating cytoplasmic streaming. Other likely factors include the tip-focused calcium gradient, the apical pH gradient, the influx of water, and a host of signaling factors (small G-proteins). We think that the clear zone is an emergent property that depends on the interaction of several factors crucial for polarized growth.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | |
Collapse
|
23
|
Dietrich MR. Explaining the "Pulse of Protoplasm": the search for molecular mechanisms of protoplasmic streaming. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:14-22. [PMID: 25470555 DOI: 10.1111/jipb.12317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mechanisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from colloidal chemistry to a macromolecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.
Collapse
Affiliation(s)
- Michael R Dietrich
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, 03755, USA
| |
Collapse
|
24
|
Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:63-78. [PMID: 25263392 DOI: 10.1111/jipb.12289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.
Collapse
Affiliation(s)
- Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | | | | |
Collapse
|
25
|
Baskin TI. Upward organelle motility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:2-3. [PMID: 25494628 DOI: 10.1111/jipb.12318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|