1
|
Tominello-Ramirez CS, Muñoz Hoyos L, Oubounyt M, Stam R. Network analyses predict major regulators of resistance to early blight disease complex in tomato. BMC PLANT BIOLOGY 2024; 24:641. [PMID: 38971719 PMCID: PMC11227178 DOI: 10.1186/s12870-024-05366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Early blight and brown leaf spot are often cited as the most problematic pathogens of tomato in many agricultural regions. Their causal agents are Alternaria spp., a genus of Ascomycota containing numerous necrotrophic pathogens. Breeding programs have yielded quantitatively resistant commercial cultivars, but fungicide application remains necessary to mitigate the yield losses. A major hindrance to resistance breeding is the complexity of the genetic determinants of resistance and susceptibility. In the absence of sufficiently resistant germplasm, we sequenced the transcriptomes of Heinz 1706 tomatoes treated with strongly virulent and weakly virulent isolates of Alternaria spp. 3 h post infection. We expanded existing functional gene annotations in tomato and using network statistics, we analyzed the transcriptional modules associated with defense and susceptibility. RESULTS The induced responses are very distinct. The weakly virulent isolate induced a defense response of calcium-signaling, hormone responses, and transcription factors. These defense-associated processes were found in a single transcriptional module alongside secondary metabolite biosynthesis genes, and other defense responses. Co-expression and gene regulatory networks independently predicted several D clade ethylene response factors to be early regulators of the defense transcriptional module, as well as other transcription factors both known and novel in pathogen defense, including several JA-associated genes. In contrast, the strongly virulent isolate elicited a much weaker response, and a separate transcriptional module bereft of hormone signaling. CONCLUSIONS Our findings have predicted major defense regulators and several targets for downstream functional analyses. Combined with our improved gene functional annotation, they suggest that defense is achieved through induction of Alternaria-specific immune pathways, and susceptibility is mediated by modulating hormone responses. The implication of multiple specific clade D ethylene response factors and upregulation of JA-associated genes suggests that host defense in this pathosystem involves ethylene response factors to modulate jasmonic acid signaling.
Collapse
Affiliation(s)
- Christopher S Tominello-Ramirez
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lina Muñoz Hoyos
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Christian Albrechts University, Kiel, Germany.
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Jin J, Chen Y, Cai J, Lv L, Zeng X, Li J, Asghar S, Li Y. Establishment of an efficient regeneration system of 'ZiKui' tea with hypocotyl as explants. Sci Rep 2024; 14:11603. [PMID: 38773236 PMCID: PMC11109284 DOI: 10.1038/s41598-024-62319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Zikui (Camellia sinensis cv. Zikui) is a recently discovered cultivar of local purple tea in Guizhou, China. It is a purple leaf bud mutation material of Meitan Taicha (Camellia sinensis cv. 'Meitan-taicha') 'N61' strain, which is an important local germplasm resource in Guizhou. It is also a model plant for the study of anthocyanins, but the limited germplasm resources and the limitation of traditional reproduction hinder its application. Here, an efficient regeneration system is established by using hypocotyl as explants for the first time. Different plant growth regulators (PGRs) are evaluated during different regeneration processes including callus and root induction. According to our findings, using the optimal disinfection conditions, the seed embryo contamination rate is 17.58%. Additionally, the mortality rate is 9.69%, while the survival rate is measured as 72.73%. Moreover, the highest germination rate of 93.64% is observed under MS + 2.40 mg/L GA3 medium conditions. The optimal callus induction rate is 95.19%, while the optimal adventitious bud differentiation rate is 20.74%, Medium with 1.6 mg/L IBA achieved 68.6% rooting of the adventitious shoots. The survival rate is more than 65% after 6 days growth in the cultivated matrix. In summary, our research aims to establish a regeneration system for Zikui tea plants and design a transformation system for tea plant tissue seedlings. This will enable transfer of the target gene and ultimately facilitate the cultivation of new tea varieties with unique characteristics.
Collapse
Affiliation(s)
- Jiongyi Jin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yulu Chen
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Ju Cai
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Litang Lv
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
| | - Xiaofang Zeng
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jianrong Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Sumeera Asghar
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Mogollón-Ortiz ÁM, Monteiro TSA, de Freitas LG, de Queiroz MV. Potential of different species of actinobacteria in the management of Meloidogyne javanica. Arch Microbiol 2024; 206:160. [PMID: 38483595 DOI: 10.1007/s00203-024-03874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Root-knot nematodes (RKN) are one of the most harmful soil-borne plant pathogens in the world. Actinobacteria are known phytopathogen control agents. The aim of this study was to select soil actinobacteria with control potential against the RKN (Meloidogyne javanica) in tomato plants and to determine mechanisms of action. Ten isolates were tested and a significant reduction was observed in the number of M. javanica eggs, and galls 46 days after infestation with the nematode. The results could be explained by the combination of different mechanisms including parasitism and induction of plant defense response. The M. javanica eggs were parasited by all isolates tested. Some isolates reduced the penetration of juveniles into the roots. Other isolates using the split-root method were able to induce systemic defenses in tomato plants. The 4L isolate was selected for analysis of the expression of the plant defense genes TomLoxA, ACCO, PR1, and RBOH1. In plants treated with 4L isolate and M. javanica, there was a significant increase in the number of TomLoxA and ACCO gene transcripts. In plants treated only with M. javanica, only the expression of the RBOH1 and PR1 genes was induced in the first hours after infection. The isolates were identified using 16S rRNA gene sequencing as Streptomyces sp. (1A, 3F, 4L, 6O, 8S, 9T, and 10U), Kribbella sp. (5N), Kitasatospora sp. (2AE), and Lentzea sp. (7P). The efficacy of isolates from the Kitasatospora, Kribbella, and Lentzea genera was reported for the first time, and the efficacy of Streptomyces genus isolates for controlling M. javanica was confirmed. All the isolates tested in this study were efficient against RKN. This study provides the opportunity to investigate bacterial genera that have not yet been explored in the control of M. javanica in tomatoes and other crops.
Collapse
Affiliation(s)
- Ángela María Mogollón-Ortiz
- Departamento de Microbiologia-Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Universidad de los Llanos, Villavicencio, Colombia
| | | | | | - Marisa Vieira de Queiroz
- Departamento de Microbiologia-Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
4
|
Getino L, Chamizo-Ampudia A, Martín JL, Luengo JM, Barreiro C, Olivera ER. Specific Gene Expression in Pseudomonas Putida U Shows New Alternatives for Cadaverine and Putrescine Catabolism. Genes (Basel) 2023; 14:1897. [PMID: 37895246 PMCID: PMC10606097 DOI: 10.3390/genes14101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas putida strain U can be grown using, as sole carbon sources, the biogenic amines putrescine or cadaverine, as well as their catabolic intermediates, ɣ-aminobutyrate or δ-aminovalerate, respectively. Several paralogs for the genes that encode some of the activities involved in the catabolism of these compounds, such as a putrescine-pyruvate aminotransferase (spuC1 and spuC2 genes) and a ɣ-aminobutyrate aminotransferase (gabT1 and gabT2 genes) have been identified in this bacterium. When the expression pattern of these genes is analyzed by qPCR, it is drastically conditioned by supplying the carbon sources. Thus, spuC1 is upregulated by putrescine, whereas spuC2 seems to be exclusively induced by cadaverine. However, gabT1 increases its expression in response to different polyamines or aminated catabolic derivatives from them (i.e., ɣ-aminobutyrate or δ-aminovalerate), although gabT2 does not change its expression level concerning no-amine unrelated carbon sources (citrate). These results reveal differences between the mechanisms proposed for polyamine catabolism in P. aeruginosa and Escherichia coli concerning P. putida strain U, as well as allow a deeper understanding of the enzymatic systems used by this last strain during polyamine metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Elías R. Olivera
- Área de Bioquímica y Biología Molecular, Departamento de Biología Molecular, Universidad de León, 24007 León, Spain; (L.G.); (A.C.-A.); (J.L.M.); (J.M.L.); (C.B.)
| |
Collapse
|
5
|
Effect of Farnesol in Trichoderma Physiology and in Fungal-Plant Interaction. J Fungi (Basel) 2022; 8:jof8121266. [PMID: 36547599 PMCID: PMC9783820 DOI: 10.3390/jof8121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.
Collapse
|
6
|
Cardoza RE, Mayo-Prieto S, Martínez-Reyes N, McCormick SP, Carro-Huerga G, Campelo MP, Rodríguez-González Á, Lorenzana A, Proctor RH, Casquero PA, Gutiérrez S. Effects of trichothecene production by Trichoderma arundinaceum isolates from bean-field soils on the defense response, growth and development of bean plants ( Phaseolus vulgaris). FRONTIERS IN PLANT SCIENCE 2022; 13:1005906. [PMID: 36452093 PMCID: PMC9702529 DOI: 10.3389/fpls.2022.1005906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.
Collapse
Affiliation(s)
- Rosa E. Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Sara Mayo-Prieto
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Natalia Martínez-Reyes
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Guzmán Carro-Huerga
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - M. Piedad Campelo
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Álvaro Rodríguez-González
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Alicia Lorenzana
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Pedro A. Casquero
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| |
Collapse
|
7
|
Álvarez-García S, Manga-Robles A, Encina A, Gutiérrez S, Casquero PA. Novel culture chamber to evaluate in vitro plant-microbe volatile interactions: Effects of Trichoderma harzianum volatiles on wheat plantlets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111286. [PMID: 35643620 DOI: 10.1016/j.plantsci.2022.111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
The field of plant-microbe interactions mediated by Biogenic Volatile Organic Compounds (BVOCs) still faces several limitations due to the lack of reliable equipment. We present a novel device designed to evaluate in vitro plant-microbe volatile interactions, the plant-microbe VOC Chamber. It was tested by evaluating the effects exerted on wheat development by volatiles from three Trichoderma harzianum strains, a wild type and two genetically modified strains; one expressing the tri5 gene, which leads to the synthesis and emission of the volatile trichodiene, and the other by silencing the erg1 gene, impairing ergosterol production. The wild type and the erg1-silenced strain enhanced fresh weight and length of the aerial part, but reduced root dry weight. Interestingly, no differences were found between them. Conversely, the tri5-transformant strain reduced root and aerial growth compared to the control and the other strains. No differences were observed regarding chlorophyll fluorescence quantum yield and leaf chlorophyll content, suggesting that the released BVOCs do not interfere with photosynthesis. The plant-microbe VOC Chamber proved to be a simple and reliable method to evaluate the in vitro effects of microbial BVOCs on plant development, perfect for the screening of microorganisms with interesting volatile traits.
Collapse
Affiliation(s)
- Samuel Álvarez-García
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Antonio Encina
- Área de Fisiología Vegetal, Dpto. Ingeniería y Ciencias Agrarias. Facultad de Ciencias Biológicas y Ambientales, Universidad de León, E-24071 León, Spain.
| | - Santiago Gutiérrez
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Área de Microbiología, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Campus de Ponferrada, Avenida Astorga s/n, 24401 Ponferrada, Spain.
| | - Pedro A Casquero
- Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Avenida Portugal 41, 24071 León, Spain.
| |
Collapse
|
8
|
Buijs VA, Groenewald JZ, Haridas S, LaButti KM, Lipzen A, Martin FM, Barry K, Grigoriev IV, Crous PW, Seidl MF. Enemy or ally: a genomic approach to elucidate the lifestyle of Phyllosticta citrichinaensis. G3 (BETHESDA, MD.) 2022; 12:jkac061. [PMID: 35311955 PMCID: PMC9073689 DOI: 10.1093/g3journal/jkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Members of the fungal genus Phyllosticta can colonize a variety of plant hosts, including several Citrus species such as Citrus sinensis (orange), Citrus limon (lemon), and Citrus maxima (pomelo). Some Phyllosticta species have the capacity to cause disease, such as Citrus Black Spot, while others have only been observed as endophytes. Thus far, genomic differences underlying lifestyle adaptations of Phyllosticta species have not yet been studied. Furthermore, the lifestyle of Phyllosticta citrichinaensis is ambiguous, as it has been described as a weak pathogen but Koch's postulates may not have been established and the presence of this species was never reported to cause any crop or economic losses. Here, we examined the genomic differences between pathogenic and endophytic Phyllosticta spp. colonizing Citrus and specifically aimed to elucidate the lifestyle of Phyllosticta citrichinaensis. We found several genomic differences between species of different lifestyles, including groups of genes that were only present in pathogens or endophytes. We also observed that species, based on their carbohydrate active enzymes, group independent of their phylogenetic association, and this clustering correlated with trophy prediction. Phyllosticta citrichinaensis shows an intermediate lifestyle, sharing genomic and phenotypic attributes of both pathogens and endophytes. We thus present the first genomic comparison of multiple citrus-colonizing pathogens and endophytes of the genus Phyllosticta, and therefore provide the basis for further comparative studies into the lifestyle adaptations within this genus.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt M LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Francis M Martin
- Department of Biology, Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine “Interaction Arbres/Microorganismes”, Champenoux F-54280, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
9
|
Tian Y, Fu X, Zhang G, Zhang R, Kang Z, Gao K, Mendgen K. Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. J Fungi (Basel) 2022; 8:jof8020180. [PMID: 35205933 PMCID: PMC8878499 DOI: 10.3390/jof8020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are effective in plant growth and development by secreting various kinds of plant hormones and nutrients. However, the cellular and molecular interactions between the endophytic fungi and plant growth-promoting have remained less explored. The present study was designed to explore the effects of the infection and colonization events of Chaetomium globosum strain ND35 on cucumber growth and the expression pattern of some metabolically important genes in development of the cucumber radicle. The results demonstrated that strain ND35 can infect and colonize the outer layers (cortical cells) of cucumber root and form a symbiotic structure with the host cell, similar to a periarbuscular membrane and establish chemical communication with the plant. Through transcriptome analysis, we found the differentially expressed genes (DEGs) caused by strain ND35 were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, plant-pathogen interaction and photosynthesis. Correspondingly, the contents of reactive oxygen species (ROS), hydrogen peroxide (H2O2), indole-3-acetic acid (IAA), gibberellin (GA), zeatin (ZT), salicylic acid (SA), jasmonic acid (JA) and the activity of phenylalanine ammonia lyase (PAL), 4-coumarate-CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD) in ND35-colonized seedlings were generally higher than those of non-inoculated seedlings. Overall, the infection and colonization events of C. globosum strain ND35 increased cucumber growth through complex regulation of plant hormones biosynthesis and metabolism. Furthermore, although the endophytic fungus strain ND35 produced IAA, GA, ZT, and ergosterol in the fermentation broth, and there are enabled to promote growth of cucumber, it is uncertain whether there are ND35-derived microbial hormones in plants. This study of the interaction between cucumber and strain ND35 contributes to a better understanding of the plant-endophytic fungi interactions, and may help to develop new strategies for crop production.
Collapse
Affiliation(s)
- Yehan Tian
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Xuesong Fu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Gongchen Zhang
- Qingdao Academy of Agricultural Science, Qingdao 266100, China;
| | - Rui Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Kexiang Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China; (Y.T.); (X.F.); (R.Z.)
- Correspondence:
| | - Kurt Mendgen
- Department of Biology, University of Constance, 78457 Constance, Germany;
| |
Collapse
|
10
|
Taylor L, Gutierrez S, McCormick SP, Bakker MG, Proctor RH, Teresi J, Kurtzman B, Hao G, Vaughan MM. Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microb Biotechnol 2022; 15:513-527. [PMID: 33528888 PMCID: PMC8867995 DOI: 10.1111/1751-7915.13742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.
Collapse
Affiliation(s)
- Laurie Taylor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Santiago Gutierrez
- Molecular Biology DepartmentUniversity of LeonCampus de Ponferrada, Avda. Astorga s/n 24400PonferradaSpain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Matthew G. Bakker
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
- Present address:
Department of MicrobiologyUniversity of Manitoba45 Chancellor’s CircleWinnipegMBR3T 2N2Canada
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Jennifer Teresi
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Ben Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| |
Collapse
|
11
|
Shishupala S. Biocontrol Potential of Fungi for Pest and Pathogen Management. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li S, Liu G, Pu L, Liu X, Wang Z, Zhao Q, Chen H, Ge F, Liu D. WRKY Transcription Factors Actively Respond to Fusarium oxysporum in Lilium regale. PHYTOPATHOLOGY 2021; 111:1625-1637. [PMID: 33576690 DOI: 10.1094/phyto-10-20-0480-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The WRKY transcription factors form a plant-specific superfamily important for regulating plant development, stress responses, and hormone signal transduction. In this study, many WRKY genes (LrWRKY1-35) were identified in Lilium regale, which is a wild lily species highly resistant to Fusarium wilt. These WRKY genes were divided into three classes (I to III) based on a phylogenetic analysis. The Class-II WRKY transcription factors were further divided into five subclasses (IIa, IIb, IIc, IId, and IIe). Moreover, the gene expression patterns based on a quantitative real-time PCR analysis revealed the WRKY genes were differentially expressed in the L. regale roots, stems, leaves, and flowers. Additionally, the expression of the WRKY genes was affected by an infection by Fusarium oxysporum as well as by salicylic acid, methyl jasmonate, ethephon, and hydrogen peroxide treatments. Moreover, the LrWRKY1 protein was localized to the nucleus of onion epidermal cells. The recombinant LrWRKY1 protein purified from Escherichia coli bound specifically to DNA fragments containing the W-box sequence, and a yeast one-hybrid assay indicated that LrWRKY1 can activate transcription. A co-expression assay in tobacco (Nicotiana tabacum) confirmed LrWRKY1 regulates the expression of LrPR10-5. Furthermore, the overexpression of LrWRKY1 in tobacco and the Oriental hybrid 'Siberia' (susceptible to F. oxysporum) increased the resistance of the transgenic plants to F. oxysporum. Overall, LrWRKY1 regulates the expression of the resistance gene LrPR10-5 and is involved in the defense response of L. regale to F. oxysporum. This study provides valuable information regarding the expression and functional characteristics of L. regale WRKY genes.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guanze Liu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuyan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Zie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
13
|
Kim JH, Castroverde CDM. Diversity, Function and Regulation of Cell Surface and Intracellular Immune Receptors in Solanaceae. PLANTS 2020; 9:plants9040434. [PMID: 32244634 PMCID: PMC7238418 DOI: 10.3390/plants9040434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022]
Abstract
The first layer of the plant immune system comprises plasma membrane-localized receptor proteins and intracellular receptors of the nucleotide-binding leucine-rich repeat protein superfamily. Together, these immune receptors act as a network of surveillance machines in recognizing extracellular and intracellular pathogen invasion-derived molecules, ranging from conserved structural epitopes to virulence-promoting effectors. Successful pathogen recognition leads to physiological and molecular changes in the host plants, which are critical for counteracting and defending against biotic attack. A breadth of significant insights and conceptual advances have been derived from decades of research in various model plant species regarding the structural complexity, functional diversity, and regulatory mechanisms of these plant immune receptors. In this article, we review the current state-of-the-art of how these host surveillance proteins function and how they are regulated. We will focus on the latest progress made in plant species belonging to the Solanaceae family, because of their tremendous importance as model organisms and agriculturally valuable crops.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (J.H.K.); (C.D.M.C.)
| | | |
Collapse
|