1
|
Yang F, Luo J, Han S, Zhang Y, Liu Z, Lan J, Sun Y, Zhao T. Evolutionary dynamics and functional characterization of proximal duplicated sorbitol-6-phosphate dehydrogenase genes in Rosaceae. FRONTIERS IN PLANT SCIENCE 2024; 15:1480519. [PMID: 39582629 PMCID: PMC11581945 DOI: 10.3389/fpls.2024.1480519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol 6-phosphate dehydrogenase (S6PDH) functions as the pivotal rate-limiting enzyme in sorbitol synthesis. The origin and functional diversification of S6PDH in Rosaceae remain unclear, largely due to the complicated interplay of gene duplications. Here, we investigated the synteny relationships among all identified S6PDH genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of S6PDH across diverse Rosaceae plant lineages. We found that S6PDH can be traced back to a pair of proximal duplicated genes of the common ancestor of the Rosaceae, and the further amplification of S6PDH in the Maleae primarily relies on WGD events in their lineages. In Rosaceae species, multiple copies of the S6PDH gene are preliminarily divided into two main clades (Clade 1 and Clade 2) based on sequence similarity. These clades have evolved to acquire different functional directions. In Clade 1, lineage-specific transposition events in the Amygdaloideae have led to changes in gene expression patterns and promoted lineage evolution. This is mainly characterized by a decrease in enzymatic activity and transcriptional expression in the leaves, but also includes specific functional diversification, such as sustained post-harvest fruit expression and enhanced expression under biotic stress in certain tissues. In contrast, S6PDH in the Rosoideae and Dryadoideae has not undergone additional duplications beyond early proximal duplication. The loss of exons and variations in exon length might the key factor leading to reduced enzymatic activity in the Clade 2 proximal gene pairs. Collectively, our findings illuminate the dynamic nature of S6PDH evolution and reveal the intricate interplay between duplication, transposition, and functional diversification. This work not only contributes valuable insights into the genetic mechanisms underlying sorbitol metabolism but also establish a crucial foundation for future investigations aimed at comprehensively characterizing the variations of sorbitol metabolism across different subfamilies within the Rosaceae family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Chen BZ, Yang ZJ, Yang L, Zhu YF, Li XZ, Wang L, Zhou YP, Zhang GH, Li DW, Dong Y, Duan SC. Chromosome-scale genome assembly of Codonopsis pilosula and comparative genomic analyses shed light on its genome evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1469375. [PMID: 39559763 PMCID: PMC11570261 DOI: 10.3389/fpls.2024.1469375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Introduction Codonopsis pilosula is a significant plant in traditional Chinese medicine, valued for its edible and medicinal properties. However, the lack of available genomic resources has hindered further research. Methods This study presents the first chromosome-scale genome assembly of C. pilosula using PacBio CLR reads and Hi-C scaffolding technology. Additionally, Ks analysis and syntenic depth analysis were performed to elucidate its evolutionary history. Results The final assembly yielded a high-quality genome of 679.20 Mb, which was anchored to 8 pseudo-chromosomes with an anchoring rate of 96.5% and a scaffold N50 of 80.50 Mb. The genome assembly showed a high completeness of 97.6% based on Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis. Repetitive elements constituted approximately 76.8% of the genome, with long terminal repeat retrotransposons (LTRs) accounting for about 39.17%. Ks and syntenic depth analyses revealed that the polyploidization history of three platycodonoid clade species involved only the γ-WGT event. Karyotype evolutionary analysis identified an ancestral karyotype with 9 protochromosomes for the three platycodonoid clade species. Moreover, non-WGD genes, particularly those arising from tandem duplications, were found to contribute significantly to gene family expansion. Discussion These findings provide essential insights into the genetic diversity and evolutionary biology of C. pilosula, aiding its conservation and sustainable use.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zi-Jiang Yang
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ling Yang
- Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ye-Peng Zhou
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guang-Hui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sheng-Chang Duan
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhu L, Diao S, Li T, Guo J. Deciphering the multi- partite mitochondrial genome of Crataegus pinnatifida: insights into the evolution and genetics of cultivated Hawthorn. BMC PLANT BIOLOGY 2024; 24:929. [PMID: 39370506 PMCID: PMC11457364 DOI: 10.1186/s12870-024-05645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Flowering plant (angiosperm) mitochondrial genomes are remarkably dynamic in their structures. We present the complete mitochondrial genome of hawthorn (Crataegus pinnatifida Bunge), a shrub that bears fruit and is celebrated for its extensive medicinal history. We successfully assembled the hawthorn mitogenome utilizing the PacBio long-read sequencing technique, which yielded 799,862 reads, and the Illumina novaseq6000 sequencing platform, which producing 6.6 million raw paired reads. The C. pinnatifida mitochondria sequences encompassed a total length of 440,295 bp with a GC content of 45.42%. The genome annotates 54 genes, including 34 that encode proteins, 17 that encode tRNA, and three genes for rRNA. A fascinating interplay was observed between the chloroplast and mitochondrial genomes, which share 17 homologous sequences sequences that rotal 1,933 bp. A total of 134 SSRs, 22 tandem repeats and 42 dispersed repeats were identified in the mitogenome. Four conformations of C. pinnatifida mitochondria sequences recombination were verified through PCR experiments and Sanger sequencing, and C. pinnatifida mitogenome is more likely to be assembled into three circular-mapping chromosomes. All the RNA editing sites that were identified C-U edits, which predominantly occurred at the first and second positions of the codons. Phylogenetic and collinearity analyses identified the evolutionary trajectory of C. pinnatifida, which reinforced the genetic identity of the hawthorn section. This unveiling of the unique multi-partite structure of the hawthorn mitogenome offers a foundational reference for future study into the evolution and genetics of C. pinnatifida.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China.
| | - Taishan Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, China
| |
Collapse
|
4
|
Wang B, Xiao Y, Yan M, Fan W, Zhu Y, Li W, Li T. Gene Duplication and Functional Diversification of MADS-Box Genes in Malus × domestica following WGD: Implications for Fruit Type and Floral Organ Evolution. Int J Mol Sci 2024; 25:8962. [PMID: 39201650 PMCID: PMC11354807 DOI: 10.3390/ijms25168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The evolution of the MADS-box gene family is essential for the rapid differentiation of floral organs and fruit types in angiosperms. Two key processes drive the evolution of gene families: gene duplication and functional differentiation. Duplicated copies provide the material for variation, while advantageous mutations can confer new functions on gene copies. In this study, we selected the Rosaceae family, which includes a variety of fruit types and flower organs, as well as species that existed before and after whole-genome duplication (WGD). The results indicate that different fruit types are associated with different copies of MADS-box gene family duplications and WGD events. While most gene copies derived from WGD have been lost, MADS-box genes not only retain copies derived from WGD but also undergo further gene duplication. The sequences, protein structures, and expression patterns of these gene copies have undergone significant differentiation. This work provides a clear example of MADS-box genes in the context of gene duplication and functional differentiation, offering new insights into the evolution of fruit types and floral organs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhong Li
- College of Horticulture, China Agricultural University, Beijing 100193, China; (B.W.); (Y.X.); (M.Y.); (W.F.); (Y.Z.); (W.L.)
| |
Collapse
|
5
|
Li X, Chen Y, Zhang Z, He Q, Tian T, Jiao Y, Cao L. Genome-wide identification of starch phosphorylase gene family in Rosa chinensis and expression in response to abiotic stress. Sci Rep 2024; 14:13917. [PMID: 38886497 PMCID: PMC11183051 DOI: 10.1038/s41598-024-64937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Chinese rose (Rosa chinensis) is an important ornamental plant, with economic, cultural, and symbolic significance. During the application of outdoor greening, adverse environments such as high temperature and drought are often encountered, which affect its application scope and ornamental quality. The starch phosphorylase (Pho) gene family participate in the synthesis and decomposition of starch, not only related to plant energy metabolism, but also plays an important role in plant stress resistance. The role of Pho in combating salinity and high temperature stress in R. chinensis remains unknown. In this work, 4 Phos from R. chinensis were detected with Pfam number of Pho (PF00343.23) and predicted by homolog-based prediction (HBP). The Phos are characterized by sequence lengths of 821 to 997 bp, and the proteins are predicted to subcellularly located in the plastid and cytoplasm. The regulatory regions of the Phos contain abundant stress and phytohormone-responsive cis-acting elements. Based on transcriptome analysis, the Phos were found to respond to abiotic stress factors such as drought, salinity, high temperature, and plant phytohormone of jasmonic acid and salicylic acid. The response of Phos to abiotic stress factors such as salinity and high temperature was confirmed by qRT-PCR analysis. To evaluate the genetic characteristics of Phos, a total of 69 Phos from 17 species were analyzed and then classified into 3 groups in phylogenetic tree. The collinearity analysis of Phos in R. chinensis and other species was conducted for the first time. This work provides a view of evolution for the Pho gene family and indicates that Phos play an important role in abiotic stress response of R. chinensis.
Collapse
Affiliation(s)
- Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Qin He
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China
| | - Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
6
|
Yu Z, Li J, Wang H, Ping B, Li X, Liu Z, Guo B, Yu Q, Zou Y, Sun Y, Ma F, Zhao T. Transposable elements in Rosaceae: insights into genome evolution, expression dynamics, and syntenic gene regulation. HORTICULTURE RESEARCH 2024; 11:uhae118. [PMID: 38919560 PMCID: PMC11197308 DOI: 10.1093/hr/uhae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) exert significant influence on plant genomic structure and gene expression. Here, we explored TE-related aspects across 14 Rosaceae genomes, investigating genomic distribution, transposition activity, expression patterns, and nearby differentially expressed genes (DEGs). Analyses unveiled distinct long terminal repeat retrotransposon (LTR-RT) evolutionary patterns, reflecting varied genome size changes among nine species over the past million years. In the past 2.5 million years, Rubus idaeus showed a transposition rate twice as fast as Fragaria vesca, while Pyrus bretschneideri displayed significantly faster transposition compared with Crataegus pinnatifida. Genes adjacent to recent TE insertions were linked to adversity resistance, while those near previous insertions were functionally enriched in morphogenesis, enzyme activity, and metabolic processes. Expression analysis revealed diverse responses of LTR-RTs to internal or external conditions. Furthermore, we identified 3695 pairs of syntenic DEGs proximal to TEs in Malus domestica cv. 'Gala' and M. domestica (GDDH13), suggesting TE insertions may contribute to varietal trait differences in these apple varieties. Our study across representative Rosaceae species underscores the pivotal role of TEs in plant genome evolution within this diverse family. It elucidates how these elements regulate syntenic DEGs on a genome-wide scale, offering insights into Rosaceae-specific genomic evolution.
Collapse
Affiliation(s)
- Ze Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hanyu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Boya Ping
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinchu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiguang Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bocheng Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoming Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqiang Sun
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Yang Y, Liu JF, Jiang XF. A chromosome-level genome assembly of Chinese quince ( Pseudocydonia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1368861. [PMID: 38887462 PMCID: PMC11180997 DOI: 10.3389/fpls.2024.1368861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
Introduction Pseudocydonia sinensis, also known as Chinese quince, is a perennial shrub or small tree highly valued for its edibility and medicinal properties. Method This study presents the first chromosome-level genome assembly of P. sinensis, achieved using HiFi sequencing and Hi-C scaffolding technology. Results The assembly resulted in a high-quality genome of 576.39 Mb in size. The genome was anchored to 17 pseudo-chromosomes, with a contig N50 of 27.6 Mb and a scaffold N50 of 33.8 Mb. Comprehensive assessment using BUSCO, CEGMA and BWA tools indicates the high completeness and accuracy of the genome assembly. Our analysis identified 116 species-specific genes, 1196 expanded genes and 1109 contracted genes. Additionally, the distribution of 4DTv values suggests that the most recent duplication event occurred before the divergence of P. sinensis from both Chaenomeles pinnatifida and Pyrus pyrifolia. Discussion The assembly of this high-quality genome provides a valuable platform for the genetic breeding and cultivation of P. sinensis, as well as for the comparison of the genetic complexity of P. sinensis with other important crops in the Rosaceae family.
Collapse
Affiliation(s)
- Ying Yang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Jin Feng Liu
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
| | - Xian Feng Jiang
- College of Agriculture and Biological Science, Dali University, Dali, Yunnan, China
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali, Yunnan, China
| |
Collapse
|
8
|
Yang F, Luo J, Guo W, Zhang Y, Liu Y, Yu Z, Sun Y, Li M, Ma F, Zhao T. Origin and early divergence of tandem duplicated sorbitol transporter genes in Rosaceae: insights from evolutionary analysis of the SOT gene family in angiosperms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:856-872. [PMID: 37983569 DOI: 10.1111/tpj.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol transporters (SOTs) play a vital role in facilitating sorbitol allocation from source to sink organs and sugar accumulation in sink organs. While prior research has addressed gene duplications within the SOT gene family in Rosaceae, the precise origin and evolutionary dynamics of these duplications remain unclear, largely due to the complicated interplay of whole genome duplications and tandem duplications. Here, we investigated the synteny relationships among all identified Polyol/Monosaccharide Transporter (PLT) genes in 61 angiosperm genomes and SOT genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of PLTs and SOTs across diverse plant lineages. We found that Rosaceae SOTs, as PLT family members, originated from a pair of tandemly duplicated PLT genes within Class III-A. Furthermore, our investigation highlights the role of lineage-specific and synergistic duplications in Amygdaloideae in contributing to the expansion of SOTs in Rosaceae plants. Collectively, our findings provide insights into the genomic origins, duplication events, and subsequent divergence of SOT gene family members. Such insights lay a crucial foundation for comprehensive functional characterizations in future studies.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiawei Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wenmeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yuxin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yunxiao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ze Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaqiang Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
- Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
9
|
Zhang L, Morales-Briones DF, Li Y, Zhang G, Zhang T, Huang CH, Guo P, Zhang K, Wang Y, Wang H, Shang FD, Ma H. Phylogenomics insights into gene evolution, rapid species diversification, and morphological innovation of the apple tribe (Maleae, Rosaceae). THE NEW PHYTOLOGIST 2023; 240:2102-2120. [PMID: 37537712 DOI: 10.1111/nph.19175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Maleae is one of the most widespread tribes of Rosaceae and includes several important fruit crops and ornamental plants. We used nuclear genes from 62 transcriptomes/genomes, including 26 newly generated transcriptomes, to reconstruct a well-supported phylogeny and study the evolution of fruit and leaf morphology and the possible effect of whole genome duplication (WGD). Our phylogeny recovered 11 well-supported clades and supported the monophyly of most genera (except Malus, Sorbus, and Pourthiaea) with at least two sampled species. A WGD was located to the most recent common ancestor (MRCA) of Maleae and dated to c. 54 million years ago (Ma) near the Early Eocene Climatic Optimum, supporting Gillenieae (x = 9) being a parental lineage of Maleae (x = 17) and including duplicate regulatory genes related to the origin of the fleshy pome fruit. Whole genome duplication-derived paralogs that are retained in specific lineages but lost in others are predicted to function in development, metabolism, and other processes. An upshift of diversification and innovations of fruit and leaf morphologies occurred at the MRCA of the Malinae subtribe, coinciding with the Eocene-Oligocene transition (c. 34 Ma), following a lag from the time of the WGD event. Our results provide new insights into the Maleae phylogeny, its rapid diversification, and morphological and molecular evolution.
Collapse
Affiliation(s)
- Lin Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Diego F Morales-Briones
- Princess Therese von Bayern chair of Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, Munich, 80638, Germany
| | - Yujie Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guojin Zhang
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taikui Zhang
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Guo
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kaiming Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yihan Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongwei Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fu-De Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
10
|
Zhang RG, Shang HY, Jia KH, Ma YP. Subgenome phasing for complex allopolyploidy: case-based benchmarking and recommendations. Brief Bioinform 2023; 25:bbad513. [PMID: 38189536 PMCID: PMC10772947 DOI: 10.1093/bib/bbad513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Accurate subgenome phasing is crucial for understanding the origin, evolution and adaptive potential of polyploid genomes. SubPhaser and WGDI software are two common methodologies for subgenome phasing in allopolyploids, particularly in scenarios lacking known diploid progenitors. Triggered by a recent debate over the subgenomic origins of the cultivated octoploid strawberry, we examined four well-documented complex allopolyploidy cases as benchmarks, to evaluate and compare the accuracy of the two software. Our analysis demonstrates that the subgenomic structure phased by both software is in line with prior research, effectively tracing complex allopolyploid evolutionary trajectories despite the limitations of each software. Furthermore, using these validated methodologies, we revisited the controversial issue regarding the progenitors of the octoploid strawberry. The results of both methodologies reaffirm Fragaria vesca and Fragaria iinumae as progenitors of the octoploid strawberry. Finally, we propose recommendations for enhancing the accuracy of subgenome phasing in future studies, recognizing the potential of integrated tools for advanced complex allopolyploidy research and offering a new roadmap for robust subgenome-based phylogenetic analysis.
Collapse
Affiliation(s)
- Ren-Gang Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
- University of Chinese Academy of Sciences, Beijing 101408 Beijing, China
| | - Hong-Yun Shang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
| | - Kai-Hua Jia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100 Shandong, China
| | - Yong-Peng Ma
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 Yunnan, China
| |
Collapse
|
11
|
Sun M, Yao C, Shu Q, He Y, Chen G, Yang G, Xu S, Liu Y, Xue Z, Wu J. Telomere-to-telomere pear ( Pyrus pyrifolia) reference genome reveals segmental and whole genome duplication driving genome evolution. HORTICULTURE RESEARCH 2023; 10:uhad201. [PMID: 38023478 PMCID: PMC10681005 DOI: 10.1093/hr/uhad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (≥74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
Collapse
Affiliation(s)
- Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Chenjie Yao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yingyun He
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Yueyuan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu 210014, China
| |
Collapse
|
12
|
Lyu Q, Zheng W, Shan Q, Huang L, Wang Y, Wang L, Kuang H, Azam M, Cao G. Expanding annotation of chemical compounds in hawthorn fruits and their variations in thermal processing using integrated mass spectral similarity networking. Food Res Int 2023; 172:113114. [PMID: 37689886 DOI: 10.1016/j.foodres.2023.113114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Chemical structural characterization of chemical compounds from hawthorn fruits and its thermal processed products was carried out in present study. By linking Global Natural Products Social (GNPS) Molecular Networking and MolNetEnhancer workflow, seventy-four chemical compounds in hawthorn fruits and its thermal processed products were tentatively identified. Three quercetagetin derivatives (quercetagetin-3-O-glucoside, quercetagetin-di-glucoside and its isomer), five quercetin or kaempferol derivatives (quercetin-acetylapiosyl-hexoside, quercetin-3-O-(6″-malonyl-hexoside), quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-hexoside, quercetin-3-O-(6″-malonyl-hexoside)-(1 → 2)-O-deoxyhexoside, kaempferol-3-O-(6″-malonyl-hexoside)), six procyanidins including four (E)C-ethyl-procyanidins and two A-type procyanidins digallate, as well as 13 triterpenoids including ursolic aldehyde, triterpenoid glycosides, and triterpene acids were reported for the first time in hawthorn fruits. In addition, triterpenoids exhibited considerable thermal stability, while all of flavonoid glycosides, proanthocyanidins and 10 in 13 organic acids showed dramatic decrease after thermal processing.
Collapse
Affiliation(s)
- Qiang Lyu
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Wanying Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lichuang Huang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Yiwen Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Haodan Kuang
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China
| | - Muhammad Azam
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, 548, Binwen Road, Hangzhou 310053, China.
| |
Collapse
|
13
|
He S, Weng D, Zhang Y, Kong Q, Wang K, Jing N, Li F, Ge Y, Xiong H, Wu L, Xie DY, Feng S, Yu X, Wang X, Shu S, Mei Z. A telomere-to-telomere reference genome provides genetic insight into the pentacyclic triterpenoid biosynthesis in Chaenomeles speciosa. HORTICULTURE RESEARCH 2023; 10:uhad183. [PMID: 37927407 PMCID: PMC10623406 DOI: 10.1093/hr/uhad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/03/2023] [Indexed: 11/07/2023]
Abstract
Chaenomeles speciosa (2n = 34), a medicinal and edible plant in the Rosaceae, is commonly used in traditional Chinese medicine. To date, the lack of genomic sequence and genetic studies has impeded efforts to improve its medicinal value. Herein, we report the use of an integrative approach involving PacBio HiFi (third-generation) sequencing and Hi-C scaffolding to assemble a high-quality telomere-to-telomere genome of C. speciosa. The genome comprised 650.4 Mb with a contig N50 of 35.5 Mb. Of these, 632.3 Mb were anchored to 17 pseudo-chromosomes, in which 12, 4, and 1 pseudo-chromosomes were represented by a single contig, two contigs, and four contigs, respectively. Eleven pseudo-chromosomes had telomere repeats at both ends, and four had telomere repeats at a single end. Repetitive sequences accounted for 49.5% of the genome, while a total of 45 515 protein-coding genes have been annotated. The genome size of C. speciosa was relatively similar to that of Malus domestica. Expanded or contracted gene families were identified and investigated for their association with different plant metabolisms or biological processes. In particular, functional annotation characterized gene families that were associated with the biosynthetic pathway of oleanolic and ursolic acids, two abundant pentacyclic triterpenoids in the fruits of C. speciosa. Taken together, this telomere-to-telomere and chromosome-level genome of C. speciosa not only provides a valuable resource to enhance understanding of the biosynthesis of medicinal compounds in tissues, but also promotes understanding of the evolution of the Rosaceae.
Collapse
Affiliation(s)
- Shaofang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Wuhan Carboncode Biotechnologies Co., Ltd., Wuhan 430070, China
| | - Duanyang Weng
- Sinopharm Zhonglian Pharmaceutical Co., Ltd., Wuhan 430070, China
| | - Yipeng Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiusheng Kong
- College of Horticulture & Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naliang Jing
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengfeng Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuebin Ge
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan 430074, China
| | - Hui Xiong
- School of Pharmaceutical Science, South-Central Minzu University, Wuhan 430074, China
| | - Lei Wu
- Wuhan Carboncode Biotechnologies Co., Ltd., Wuhan 430070, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shengqiu Feng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuekui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaohua Shu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Wu X, Luo D, Zhang Y, Jin L, Crabbe MJC, Qiao Q, Li G, Zhang T. Integrative analysis of the metabolome and transcriptome reveals the potential mechanism of fruit flavor formation in wild hawthorn ( Crataegus chungtienensis). PLANT DIVERSITY 2023; 45:590-600. [PMID: 37936817 PMCID: PMC10625895 DOI: 10.1016/j.pld.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 11/09/2023]
Abstract
Hawthorns are important medicinal and edible plants with a long history of health protection in China. Besides cultivated hawthorn, other wild hawthorns may also have excellent medicinal and edible value, such as Crataeguschungtienensis, an endemic species distributed in the Southwest of China. In this study, by integrating the flavor-related metabolome and transcriptome data of the ripening fruit of C. chungtienensis, we have developed an understanding of the formation of hawthorn fruit quality. The results show that a total of 849 metabolites were detected in the young and mature fruit of C. chungtienensis, of which flavonoids were the most detected metabolites. Among the differentially accumulated metabolites, stachyose, maltotetraose and cis-aconitic acid were significantly increased during fruit ripening, and these may be important metabolites affecting fruit flavor change. Moreover, several flavonoids and terpenoids were reduced after fruit ripening compared with young fruit. Therefore, using the unripe fruit of C. chungtienensis may allow us to obtain more medicinal active ingredients such as flavonoids and terpenoids. Furthermore, we screened out some differentially expressed genes (DEGs) related to fruit quality formation, which had important relationships with differentially accumulated sugars, acids, flavonoids and terpenoids. Our study provides new insights into flavor formation in wild hawthorn during fruit development and ripening, and at the same time this study lays the foundation for the improvement of hawthorn fruit flavor.
Collapse
Affiliation(s)
- Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Dengli Luo
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingmin Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ling Jin
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - M. James C. Crabbe
- Wolfson College, Oxford University, Oxford, UK
- Institute of Biomedical and Environmental Science & Technology, School of Life Sciences, University of Bedfordshire, Park Square, Luton, UK
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Guodong Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Teng K, Guo Q, Liu L, Guo Y, Xu Y, Hou X, Teng W, Zhang H, Zhao C, Yue Y, Wen H, Wu J, Fan X. Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides. FRONTIERS IN PLANT SCIENCE 2023; 14:1195479. [PMID: 37680353 PMCID: PMC10481962 DOI: 10.3389/fpls.2023.1195479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Pennisetum alopecuroides is an important forage grass resource, which plays a vital role in ecological environment improvement. Therefore, the acquisition of P. alopecuroides genome resources is conducive to the study of the adaptability of Pennisetum species in ecological remediation and forage breeding development. Here we assembled a P. alopecuroides cv. 'Liqiu' genome at the chromosome level with a size of approximately 845.71 Mb, contig N50 of 84.83Mb, and genome integrity of 99.13% as assessed by CEGMA. A total of 833.41-Mb sequences were mounted on nine chromosomes by Hi-C technology. In total, 60.66% of the repetitive sequences and 34,312 genes were predicted. The genomic evolution analysis showed that P. alopecuroides cv. 'Liqiu' was isolated from Setaria 7.53-13.80 million years ago and from Cenchrus 5.33-8.99 million years ago, respectively. The whole-genome event analysis showed that P. alopecuroides cv. 'Liqiu' underwent two whole-genome duplication (WGD) events in the evolution process, and the duplication events occurred at a similar time to that of Oryza sativa and Setaria viridis. The completion of the genome sequencing of P. alopecuroides cv. 'Liqiu' provides data support for mining high-quality genetic resources of P. alopecuroides and provides a theoretical basis for the origin and evolutionary characteristics of Pennisetum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Xifeng Fan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
16
|
Xiao M, Hao G, Guo X, Feng L, Lin H, Yang W, Chen Y, Zhao K, Xiang L, Jiang X, Mei D, Hu Q. A high-quality chromosome-level Eutrema salsugineum genome, an extremophile plant model. BMC Genomics 2023; 24:174. [PMID: 37020189 PMCID: PMC10077641 DOI: 10.1186/s12864-023-09256-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Eutrema salsugineum (2n = 14), a halophyte in the family Brassicaceae, is an attractive model to study abiotic stress tolerance in plants. Two versions of E. salsugineum genomes that previously reported were based on relatively short reads; thus, the repetitive regions were difficult to characterize. RESULTS We report the sequencing and assembly of the E. salsugineum (Shandong accession) genome using long-read sequencing and chromosome conformation capture data. We generated Oxford Nanopore long reads at high depth (> 60X) of genome coverage with additional short reads for error correction. The new assembly has a total size of 295.5 Mb with 52.8% repetitive sequences, and the karyotype of E. salsugineum is consistent with the ancestral translocation Proto-Calepineae Karyotype structure in both order and orientation. Compared with previous assemblies, this assembly has higher contiguity, especially in the centromere region. Based on this new assembly, we predicted 25,399 protein-coding genes and identified the positively selected genes associated with salt and drought stress responses. CONCLUSION The new genome assembly will provide a valuable resource for future genomic studies and facilitate comparative genomic analysis with other plants.
Collapse
Grants
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
Collapse
Affiliation(s)
- Meng Xiao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Guoqian Hao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644007, Sichuan, China
| | - Xinyi Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjie Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanyu Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Kexin Zhao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinyao Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Jiao Y, Li X, Huang X, Liu F, Zhang Z, Cao L. The Identification of SQS/ SQE/ OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina. Molecules 2023; 28:2782. [PMID: 36985754 PMCID: PMC10051230 DOI: 10.3390/molecules28062782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and β-amyrin synthases (β-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that β-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Fan Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| |
Collapse
|