1
|
Pimenta LSE, de Mello CB, Benedetto LMD, Soares DCDQ, Kulikowski LD, Dantas AG, Melaragno MI, Kim CA. Neuropsychological Profile of 25 Brazilian Patients with 22q11.2 Deletion Syndrome: Effects of Clinical and Socioeconomic Variables. Genes (Basel) 2024; 15:595. [PMID: 38790224 PMCID: PMC11121403 DOI: 10.3390/genes15050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is associated with a heterogeneous neurocognitive phenotype, which includes psychiatric disorders. However, few studies have investigated the influence of socioeconomic variables on intellectual variability. The aim of this study was to investigate the cognitive profile of 25 patients, aged 7 to 32 years, with a typical ≈3 Mb 22q11.2 deletion, considering intellectual, adaptive, and neuropsychological functioning. Univariate linear regression analysis explored the influence of socioeconomic variables on intellectual quotient (IQ) and global adaptive behavior. Associations with relevant clinical conditions such as seizures, recurrent infections, and heart diseases were also considered. Results showed IQ scores ranging from 42 to 104. Communication, executive functions, attention, and visuoconstructive skills were the most impaired in the sample. The study found effects of access to quality education, family socioeconomic status (SES), and caregiver education level on IQ. Conversely, age at diagnosis and language delay were associated with outcomes in adaptive behavior. This characterization may be useful for better understanding the influence of social-environmental factors on the development of patients with 22q11.2 deletion syndrome, as well as for intervention processes aimed at improving their quality of life.
Collapse
Affiliation(s)
| | - Claudia Berlim de Mello
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo 04024-002, Brazil;
| | | | - Diogo Cordeiro de Queiroz Soares
- Genetics Unit, Instituto da Criança, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.C.d.Q.S.); (L.D.K.); (C.A.K.)
| | - Leslie Domenici Kulikowski
- Genetics Unit, Instituto da Criança, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.C.d.Q.S.); (L.D.K.); (C.A.K.)
| | - Anelisa Gollo Dantas
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.G.D.); (M.I.M.)
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (A.G.D.); (M.I.M.)
| | - Chong Ae Kim
- Genetics Unit, Instituto da Criança, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, Brazil; (D.C.d.Q.S.); (L.D.K.); (C.A.K.)
| |
Collapse
|
2
|
Li HH, Wang CX, Feng JY, Wang B, Li CL, Jia FY. A Developmental Profile of Children With Autism Spectrum Disorder in China Using the Griffiths Mental Development Scales. Front Psychol 2020; 11:570923. [PMID: 33240159 PMCID: PMC7680850 DOI: 10.3389/fpsyg.2020.570923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to profile the mental development of children aged 18 to 96 months with autism spectrum disorder (ASD) using the Chinese version of the Griffiths Mental Development Scales (GMDS), and to explore the relationships between developmental levels and ASD severity, the sex of the child and the age of ASD diagnosis. Children with ASD (n = 398; 337 boys, 61 girls) were recruited and ASD severity evaluated using the Autism Behavior Checklist and the Childhood Autism Rating Scale, while the GMDS was used to evaluate the children's mental development. Study participants were divided into groups according to GMDS general and subscale quotients, ASD severity, sex, and age. The majority of groups divided according to the GMDS quotients exhibited an unbalanced distribution in respect of the six domains of the GMDS and there were significant differences within the six subscale quotients. Autism severity, sex and age had significant effects on the overall level of development of autistic children. The quotients recorded for the children with more severe ASD were significantly lower than those for the children with less severe ASD. A markedly higher proportion of developmental delay was recorded for girls than boys in relation to the performance subscale. The locomotor quotient decreased in line with age at diagnosis, while autism severity and age had significant effects on the general and subscale quotients and sex had a significant effect on performance quotient. Children with ASD exhibit an uneven cognitive development profile, and their overall developmental levels are affected by autism severity, sex and age. Specific cognitive domains differ according to sex in children with ASD. Locomotor skills tend to decrease according to the age at diagnosis for autistic children aged 18 to 84 months. Autism severity and age are also associated with the level of functioning in different cognitive areas. These findings contribute to define the cognitive developmental profiles of children with ASD.
Collapse
Affiliation(s)
- Hong-Hua Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Cheng-Xin Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jun-Yan Feng
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Bing Wang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Chun-Li Li
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute, Changchun, China
| |
Collapse
|
3
|
Pollak RM, Murphy MM, Epstein MP, Zwick ME, Klaiman C, Saulnier CA, Mulle JG. Neuropsychiatric phenotypes and a distinct constellation of ASD features in 3q29 deletion syndrome: results from the 3q29 registry. Mol Autism 2019; 10:30. [PMID: 31346402 PMCID: PMC6636128 DOI: 10.1186/s13229-019-0281-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The 1.6 Mb 3q29 deletion is associated with neurodevelopmental and psychiatric phenotypes, including increased risk for autism spectrum disorder (ASD) and a 20 to 40-fold increased risk for schizophrenia. However, the phenotypic spectrum of the deletion, particularly with respect to ASD, remains poorly described. Methods We ascertained individuals with 3q29 deletion syndrome (3q29Del, “cases,” n = 93, 58.1% male) and typically developing controls (n = 64, 51.6% male) through the 3q29 registry (https://3q29deletion.patientcrossroads.org). Self-report of neuropsychiatric illness was evaluated for 93 cases. Subsets of participants were evaluated with the Social Responsiveness Scale (SRS, n = 48 cases, 56 controls), Social Communication Questionnaire (n = 33 cases, 46 controls), Autism Spectrum Screening Questionnaire (n = 24 cases, 35 controls), and Achenbach Behavior Checklists (n = 48 cases, 57 controls). Results 3q29Del cases report a higher prevalence of autism diagnoses versus the general population (29.0% vs. 1.47%, p < 2.2E− 16). Notably, 3q29 deletion confers a greater influence on risk for ASD in females (OR = 41.8, p = 4.78E− 05) than in males (OR = 24.6, p = 6.06E− 09); this is aligned with the reduced male:female bias from 4:1 in the general population to 2:1 in our study sample. Although 71% of cases do not report a diagnosis of ASD, there is evidence of significant social disability (3q29Del SRS T-score = 71.8, control SRS T-score = 45.9, p = 2.16E− 13). Cases also report increased frequency of generalized anxiety disorder compared to controls (28.0% vs. 6.2%, p = 0.001), which is mirrored by elevated mean scores on the Achenbach diagnostic and statistical manual-oriented sub-scales (p < 0.001). Finally, cases show a distinct constellation of ASD features on the SRS as compared to idiopathic ASD, with substantially elevated Restricted Interests and Repetitive Behaviors, but only mild impairment in Social Motivation. Conclusions Our sample of 3q29Del is significantly enriched for ASD diagnosis, especially among females, and features of autism may be present even when an ASD diagnosis is not reported. Further, the constellation of ASD features in this population is distinct from idiopathic ASD, with substantially less impaired social motivation. Our study implies that ASD evaluation should be the standard of care for individuals with 3q29Del. From a research perspective, the distinct ASD subtype present in 3q29Del is an ideal entry point for expanding understanding of ASD. Electronic supplementary material The online version of this article (10.1186/s13229-019-0281-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca M Pollak
- 1Genetics and Molecular Biology, Laney Graduate School, Emory University, Atlanta, USA
| | - Melissa M Murphy
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA
| | - Michael P Epstein
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA
| | - Michael E Zwick
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA.,3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | - Cheryl Klaiman
- 3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA.,4Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, USA
| | - Celine A Saulnier
- 3Department of Pediatrics, School of Medicine, Emory University, Atlanta, USA
| | | | - Jennifer G Mulle
- 2Department of Human Genetics, School of Medicine, Emory University, Atlanta, USA.,5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA.,Whitehead 305M, 615 Michael Street, Atlanta, GA 30322 USA
| |
Collapse
|
4
|
PIMENTA LSE, MELLO CBD, SOARES DCDQ, DANTAS AG, MELARAGNO MI, KULIKOWSKI LD, KIM CA. Intellectual performance profi le of a sample of children and adolescents from Brazil with 22q11.2 Deletion Syndrome (22q11.2DS) based on the Wechsler Scale. ESTUDOS DE PSICOLOGIA (CAMPINAS) 2019. [DOI: 10.1590/1982-0275201936e180101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract The 22q11.2 Deletion Syndrome (22q11.2DS), the most common human chromosome microdeletion syndrome, is associated with a very heterogeneous neurocognitive phenotype. One of the main characteristics of the syndrome spectrum is the intellectual variability, which encompasses average performance and intellectual disability and discrepancies between Verbal Intelligence Quotient and Performance Verbal Intelligence Quotient, with greater impairment in nonverbal tasks. The present study aimed at investigating the intellectual performance aspects of a 21children and adolescents sample from Brazil who had been diagnosed with 22q11.2DS, based on the Wechsler Intelligence Scale for Children - 4th edition. The samples were reviewed considering the differences between indices. The results revealed an Full Scale Intelligence Quotient predominant in the borderline range (42 to 104) and a significant discrepancy between the indices of Verbal Comprehension and Perceptual Reasoning in 42% of the sample. With regard to the performance in the subtests alone, a better performance was found in Similarities, whereas block design, matrix reasoning, digit span and letter-number sequencing subtests were the most challenging. These findings indicate that a comprehensive assessment of intellectual performance aspects covering the different measures of the Wechsler Intelligence Scale may contribute to a broader understanding of the neurocognitive phenotype associated with 22q11.2DS.
Collapse
|
5
|
Jalbrzikowski M, Ahmed KH, Patel A, Jonas R, Kushan L, Chow C, Bearden CE. Categorical versus dimensional approaches to autism-associated intermediate phenotypes in 22q11.2 microdeletion syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:53-65. [PMID: 28367513 PMCID: PMC5373800 DOI: 10.1016/j.bpsc.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND 22q11.2 Microdeletion syndrome (22q11DS) is associated with elevated rates of autism spectrum disorders (ASDs), although the diagnosis is controversial. In order to determine whether there is a biological substrate of ASD in 22q11DS, we examined neurocognitive and structural neuroanatomic differences between those with 22q11DS and an ASD diagnosis (22q11DS-ASD+) and those with 22q11DS without ASD (22q11DS-ASD-); we then determined whether these differences were better characterized within a categorical or dimensional framework. METHODS We collected multiple neurocognitive measures and high-resolution T1-weighted scans on 116 individuals (29 22q11DS-ASD+, 32 22q11DS-ASD-, 55 typically developing controls) between 6 and 26 years of age. Measures of subcortical volume, cortical thickness (CT), and surface area were extracted using the FreeSurfer image analysis suite. Group differences in neurocognitive and neuroanatomic measures were assessed; regression analyses were then performed to determine whether a categorical or dimensional measure of ASD was a better predictor of neurocognitive impairment and/or neuroanatomic abnormalities observed in 22q11DS-ASD+. RESULTS In comparison to 22q11DS-ASD-, 22q11DS-ASD+ participants exhibited decreased bilateral hippocampal CT and decreased right amygdala volumes. Those with 22q11DS-ASD+ also showed slowed processing speed and impairments in visuospatial and facial memory. Neurocognitive impairments fit a dimensional model of ASD, whereas reductions in parahippocampal CT were best explained by a categorical measure of ASD. CONCLUSIONS A combination of categorical and dimensional measures of ASD may provide the most comprehensive understanding of ASDs in 22q11DS.
Collapse
Affiliation(s)
| | - Khwaja Hamzah Ahmed
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Arati Patel
- University of Southern California, Keck School of Medicine
| | - Rachel Jonas
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Interdepartmental Neuroscience Program
| | - Leila Kushan
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carolyn Chow
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
| | - Carrie E. Bearden
- University of California, Los Angeles, Department of Psychiatry and Biobehavioral Sciences
- University of California, Los Angeles, Department of Psychology
| |
Collapse
|
6
|
Reiersen AM. Collection of developmental history in the evaluation of schizophrenia spectrum disorders. Scand J Child Adolesc Psychiatr Psychol 2016; 4:36-43. [PMID: 27294074 DOI: 10.21307/sjcapp-2016-007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Schizophrenia is a heterogeneous disorder that is characterized by varying levels of hallucinations, delusions, negative symptoms, and disorganized features. The presence and severity of neurodevelopmental precursors and premorbid psychopathology also vary among individuals. To fully understand individual patients and to sort out phenotypic heterogeneity for genetic research studies, instruments designed to collect developmental history relevant to schizophrenia may be helpful. OBJECTIVE The goal was to describe a pair of self-report and parent-report instruments developed for the purpose of collecting the developmental history of patients with known or suspected schizophrenia spectrum disorders. METHOD Two developmental history instruments were designed for use in studies of brain morphology and cognition in schizophrenia probands and their unaffected siblings. The instruments focus mainly on motor abnormalities and other features that have been described as schizophrenia precursors. RESULTS The Motor Skills History Form is a brief self-report form that asks about patients' childhood and adolescent motor abilities as well as their current motor functioning. The Developmental & Motor History Form is a more detailed parent-rated form that covers aspects of patients' early (infant/preschool) development; their childhood and adolescent motor abilities; any childhood behaviors that may be related to later psychosis risk; and their history of any neurological, emotional, or cognitive disorders diagnosed during childhood or adolescence. The instruments can be used either for interviews or as self-administered questionnaires. The parent-rated form has been used for research and for the clinical assessment of children and adolescents with complex neurodevelopmental presentations with or without strong evidence of schizophrenia risk. CONCLUSIONS The collection of developmental history information is important when evaluating individuals with schizophrenia and related disorders. The Motor Skills History Form and the Developmental & Motor History Form can be used to collect this information for clinical evaluation or research purposes.
Collapse
|
7
|
Hidding E, Swaab H, de Sonneville LMJ, van Engeland H, Vorstman JAS. The role of COMT and plasma proline in the variable penetrance of autistic spectrum symptoms in 22q11.2 deletion syndrome. Clin Genet 2016; 90:420-427. [PMID: 26919535 DOI: 10.1111/cge.12766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/10/2016] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
This paper examines how COMT158 genotypes and plasma proline levels are associated with variable penetrance of social behavioural and social cognitive problems in 22q11.2 deletion syndrome (22q11DS). Severity of autistic spectrum symptoms of 45 participants with 22q11DS was assessed using the Autism Diagnostic Interview Revised. Face and facial emotion recognition was evaluated using standardized computer-based test-paradigms. Associations with COMT158 genotypes and proline levels were examined. High proline levels and poor face recognition in individuals with the COMTMET allele, and poor facial emotion recognition, explained almost 50% of the variance in severity of autism symptomatology in individuals with 22q11DS. High proline levels and a decreased capacity to break down dopamine as a result of the COMTMET variant are both relevant in the expression of the social phenotype in patients. This epistatic interaction effect between the COMT158 genotype and proline on the expression of social deficits in 22q11DS shows how factors other than the direct effects of the deletion itself can modulate the penetrance of associated cognitive and behavioural outcomes. These findings are not only relevant to our insight into 22q11DS, but also provide a model to better understand the phenomenon of variable penetrance in other pathogenic genetic variants.
Collapse
Affiliation(s)
- E Hidding
- Department of Clinical Child and Adolescent Studies, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands
| | - H Swaab
- Department of Clinical Child and Adolescent Studies, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands.,Leiden Institute of Brain and Cognition, Leiden, The Netherlands
| | - L M J de Sonneville
- Department of Clinical Child and Adolescent Studies, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands. .,Leiden Institute of Brain and Cognition, Leiden, The Netherlands .
| | - H van Engeland
- Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J A S Vorstman
- Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Guna A, Butcher NJ, Bassett AS. Comparative mapping of the 22q11.2 deletion region and the potential of simple model organisms. J Neurodev Disord 2015; 7:18. [PMID: 26137170 PMCID: PMC4487986 DOI: 10.1186/s11689-015-9113-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
Background 22q11.2 deletion syndrome (22q11.2DS) is the most common micro-deletion syndrome. The associated 22q11.2 deletion conveys the strongest known molecular risk for schizophrenia. Neurodevelopmental phenotypes, including intellectual disability, are also prominent though variable in severity. Other developmental features include congenital cardiac and craniofacial anomalies. Whereas existing mouse models have been helpful in determining the role of some genes overlapped by the hemizygous 22q11.2 deletion in phenotypic expression, much remains unknown. Simple model organisms remain largely unexploited in exploring these genotype-phenotype relationships. Methods We first developed a comprehensive map of the human 22q11.2 deletion region, delineating gene content, and brain expression. To identify putative orthologs, standard methods were used to interrogate the proteomes of the zebrafish (D. rerio), fruit fly (D. melanogaster), and worm (C. elegans), in addition to the mouse. Spatial locations of conserved homologues were mapped to examine syntenic relationships. We systematically cataloged available knockout and knockdown models of all conserved genes across these organisms, including a comprehensive review of associated phenotypes. Results There are 90 genes overlapped by the typical 2.5 Mb deletion 22q11.2 region. Of the 46 protein-coding genes, 41 (89.1 %) have documented expression in the human brain. Identified homologues in the zebrafish (n = 37, 80.4 %) were comparable to those in the mouse (n = 40, 86.9 %) and included some conserved gene cluster structures. There were 22 (47.8 %) putative homologues in the fruit fly and 17 (37.0 %) in the worm involving multiple chromosomes. Individual gene knockdown mutants were available for the simple model organisms, but not for mouse. Although phenotypic data were relatively limited for knockout and knockdown models of the 17 genes conserved across all species, there was some evidence for roles in neurodevelopmental phenotypes, including four of the six mitochondrial genes in the 22q11.2 deletion region. Conclusions Simple model organisms represent a powerful but underutilized means of investigating the molecular mechanisms underlying the elevated risk for neurodevelopmental disorders in 22q11.2DS. This comparative multi-species study provides novel resources and support for the potential utility of non-mouse models in expression studies and high-throughput drug screening. The approach has implications for other recurrent copy number variations associated with neurodevelopmental phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s11689-015-9113-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Guna
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Nancy J Butcher
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON Canada ; Institute of Medical Science, University of Toronto, Toronto, ON Canada ; Dalglish Family Hearts and Minds Clinic for Adults with 22q11.2 Deletion Syndrome, Division of Cardiology, Department of Medicine, Department of Psychiatry, and Toronto General Research Institute, University Health Network, Toronto, ON Canada ; Department of Psychiatry, University of Toronto, Toronto, ON Canada ; Centre for Addiction and Mental Health, 33 Russell Street, Room 1100, M5S 2S1 Toronto, ON Canada
| |
Collapse
|