1
|
Handschuh S, Reichart U, Kummer S, Glösmann M. In situ isotropic 3D imaging of vasculature perfusion specimens using x-ray microscopic dual-energy CT. J Microsc 2025; 297:179-202. [PMID: 39502025 PMCID: PMC11733848 DOI: 10.1111/jmi.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 01/16/2025]
Abstract
Ex vivo x-ray angiography provides high-resolution, three-dimensional information on vascular phenotypes down to the level of capillaries. Sample preparation for ex vivo angiography starts with the removal of blood from the vascular system, followed by perfusion with an x-ray dense contrast agent mixed with a carrier such as gelatine or a polymer. Subsequently, the vascular micro-architecture of harvested organs is imaged in the intact fixed organ. In the present study, we present novel microscopic dual-energy CT (microDECT) imaging protocols that allow to visualise and analyse microvasculature in situ with reference to the morphology of hard and soft tissue. We show that the spectral contrast of µAngiofil and Micropaque barium sulphate in perfused specimens allows for the effective separation of vasculature from mineralised skeletal tissues. Furthermore, we demonstrate the counterstaining of perfused specimens using established x-ray dense contrast agents to depict blood vessels together with the morphology of soft tissue. Phosphotungstic acid (PTA) is used as a counterstain that shows excellent spectral contrast in both µAngiofil and Micropaque barium sulphate-perfused specimens. A novel Sorensen-buffered PTA protocol is introduced as a counterstain for µAngiofil specimens, as the polyurethane polymer is susceptible to artefacts when using conventional staining solutions. Finally, we demonstrate that counterstained samples can be automatically processed into three separate image channels (skeletal tissue, vasculature and stained soft tissue), which offers multiple new options for data analysis. The presented microDECT workflows are suited as tools to screen and quantify microvasculature and can be implemented in various correlative imaging pipelines to target regions of interest for downstream light microscopic investigation.
Collapse
Affiliation(s)
- Stephan Handschuh
- VetCore Facility for Research/Imaging UnitUniversity of Veterinary Medicine ViennaViennaAustria
| | - Ursula Reichart
- VetCore Facility for Research/Imaging UnitUniversity of Veterinary Medicine ViennaViennaAustria
| | - Stefan Kummer
- VetCore Facility for Research/Imaging UnitUniversity of Veterinary Medicine ViennaViennaAustria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging UnitUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
2
|
Hollý S, Chmelík M, Suchá S, Suchý T, Beneš J, Pátrovič L, Juskanič D. Photon-counting CT using multi-material decomposition algorithm enables fat quantification in the presence of iron deposits. Phys Med 2024; 118:103210. [PMID: 38219560 DOI: 10.1016/j.ejmp.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
PURPOSE A new generation of CT detectors were recently developed with the ability to measure individual photon's energy and thus provide spectral information. The aim of this work was to assess the performance of simultaneous fat and iron quantification using a clinical photon-counting CT (PCCT) and its comparison to dual-energy CT (DECT), MRS and MRI at 3 T. METHODS Two 3D printed cylindrical phantoms with 32 samples (n = 12 fat fractions between 0 % and 100 %, n = 20 with mixtures of fat and iron) were scanned with PCCT and DECT scanners for comparison. A three-material decomposition approach was used to estimate the volume fractions of fat (FF), iron and soft tissue. The same phantoms were examined by MRI (6-echo DIXON, a.k.a. Q-DIXON) and MRS (multi-echo STEAM, a.k.a. HISTO) at 3 T for comparison. RESULTS PCCT, DECT, MRI and MRS computed FFs showed correlation with reference fat fraction values in samples with no iron (r > 0.98). PCCT decomposition showed slightly weaker correlation with FFref in samples with added iron (r = 0.586) compared to MRI (r = 0.673) and MRS (r = 0.716) methods. On the other hand, it showed no systematic over- or underestimation. Surprisingly, DECT decomposition-derived FF showed strongest correlation (r = 0.758) in these samples, however systematic overestimation was observed. FF values computed by three-material PCCT decomposition, DECT decomposition, MRI and MRS were unaffected by iron concentration. CONCLUSIONS This in-vitro study shows for the first time that photon-counting computed tomography may be used for quantification of fat content in the presence of iron deposits.
Collapse
Affiliation(s)
- Samuel Hollý
- JESSENIUS - diagnostic center, Nitra, Slovakia; Institute of Biophysics and Informatics, First Faculty of Medicine Charles University, Prague, Czech Republic
| | - Marek Chmelík
- JESSENIUS - diagnostic center, Nitra, Slovakia; Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia.
| | - Slavomíra Suchá
- Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia
| | - Tomáš Suchý
- Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia
| | - Jiři Beneš
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Dominik Juskanič
- JESSENIUS - diagnostic center, Nitra, Slovakia; Medical Faculty, Commenius University in Bratislava, Slovakia
| |
Collapse
|
3
|
Warr R, Handschuh S, Glösmann M, Cernik RJ, Withers PJ. Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography. Sci Rep 2022; 12:21945. [PMID: 36535963 PMCID: PMC9763266 DOI: 10.1038/s41598-022-23592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical staining of biological specimens is commonly utilised to boost contrast in soft tissue structures, but unambiguous identification of staining location and distribution is difficult without confirmation of the elemental signature, especially for chemicals of similar density contrast. Hyperspectral X-ray computed tomography (XCT) enables the non-destructive identification, segmentation and mapping of elemental composition within a sample. With the availability of hundreds of narrow, high resolution (~ 1 keV) energy channels, the technique allows the simultaneous detection of multiple contrast agents across different tissue structures. Here we describe a hyperspectral imaging routine for distinguishing multiple chemical agents, regardless of contrast similarity. Using a set of elemental calibration phantoms, we perform a first instance of direct stain concentration measurement using spectral absorption edge markers. Applied to a set of double- and triple-stained biological specimens, the study analyses the extent of stain overlap and uptake regions for commonly used contrast markers. An improved understanding of stain concentration as a function of position, and the interaction between multiple stains, would help inform future studies on multi-staining procedures, as well as enable future exploration of heavy metal uptake across medical, agricultural and ecological fields.
Collapse
Affiliation(s)
- Ryan Warr
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Stephan Handschuh
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Glösmann
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert J. Cernik
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Philip J. Withers
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| |
Collapse
|
4
|
OCT Meets micro-CT: A Subject-Specific Correlative Multimodal Imaging Workflow for Early Chick Heart Development Modeling. J Cardiovasc Dev Dis 2022; 9:jcdd9110379. [DOI: 10.3390/jcdd9110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Structural and Doppler velocity data collected from optical coherence tomography have already provided crucial insights into cardiac morphogenesis. X-ray microtomography and other ex vivo methods have elucidated structural details of developing hearts. However, by itself, no single imaging modality can provide comprehensive information allowing to fully decipher the inner workings of an entire developing organ. Hence, we introduce a specimen-specific correlative multimodal imaging workflow combining OCT and micro-CT imaging which is applicable for modeling of early chick heart development—a valuable model organism in cardiovascular development research. The image acquisition and processing employ common reagents, lab-based micro-CT imaging, and software that is free for academic use. Our goal is to provide a step-by-step guide on how to implement this workflow and to demonstrate why those two modalities together have the potential to provide new insight into normal cardiac development and heart malformations leading to congenital heart disease.
Collapse
|
5
|
Handschuh S, Glösmann M. Mouse embryo phenotyping using X-ray microCT. Front Cell Dev Biol 2022; 10:949184. [PMID: 36187491 PMCID: PMC9523164 DOI: 10.3389/fcell.2022.949184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Microscopic X-ray computed tomography (microCT) is a structural ex vivo imaging technique providing genuine isotropic 3D images from biological samples at micron resolution. MicroCT imaging is non-destructive and combines well with other modalities such as light and electron microscopy in correlative imaging workflows. Protocols for staining embryos with X-ray dense contrast agents enable the acquisition of high-contrast and high-resolution datasets of whole embryos and specific organ systems. High sample throughput is achieved with dedicated setups. Consequently, microCT has gained enormous importance for both qualitative and quantitative phenotyping of mouse development. We here summarize state-of-the-art protocols of sample preparation and imaging procedures, showcase contemporary applications, and discuss possible pitfalls and sources for artefacts. In addition, we give an outlook on phenotyping workflows using microscopic dual energy CT (microDECT) and tissue-specific contrast agents.
Collapse
|
6
|
Taphorn K, Busse M, Brantl J, Günther B, Diaz A, Holler M, Dierolf M, Mayr D, Pfeiffer F, Herzen J. X-ray Stain Localization with Near-Field Ptychographic Computed Tomography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201723. [PMID: 35748171 PMCID: PMC9404393 DOI: 10.1002/advs.202201723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Although X-ray contrast agents offer specific characteristics in terms of targeting and attenuation, their accumulation in the tissue on a cellular level is usually not known and difficult to access, as it requires high resolution and sensitivity. Here, quantitative near-field ptychographic X-ray computed tomography is demonstrated to assess the location of X-ray stains at a resolution sufficient to identify intracellular structures by means of a basis material decomposition. On the example of two different X-ray stains, the nonspecific iodine potassium iodide, and eosin Y, which mostly interacts with proteins and peptides in the cell cytoplasm, the distribution of the stains within the cells in murine kidney samples is assessed and compared to unstained samples with similar structural features. Quantitative nanoscopic stain concentrations are in good agreement with dual-energy micro computed tomography measurements, the state-of-the-art modality for material-selective imaging. The presented approach can be applied to a variety of X-ray stains advancing the development of X-ray contrast agents.
Collapse
Affiliation(s)
- Kirsten Taphorn
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| | - Madleen Busse
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| | - Johannes Brantl
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| | - Benedikt Günther
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| | - Ana Diaz
- Paul Scherrer InstituteVilligen5232Switzerland
| | | | - Martin Dierolf
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| | - Doris Mayr
- Institute of PathologyLudwig‐Maximilians‐University80337MunichGermany
| | - Franz Pfeiffer
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
- Department of Diagnostic and Interventional RadiologySchool of Medicine & Klinikum rechts der IsarTechnical University of Munich81675MünchenGermany
- Institute for Advanced StudyTechnical University of Munich85748GarchingGermany
| | - Julia Herzen
- Chair of Biomedical PhysicsDepartment of PhysicsSchool of Natural SciencesTechnical University of Munich85748GarchingGermany
- Munich Institute of Biomedical Engineering (MIBE)Technical University of Munich85748GarchingGermany
| |
Collapse
|
7
|
Wehrse E, Klein L, Rotkopf LT, Stiller W, Finke M, Echner G, Glowa C, Heinze S, Ziener CH, Schlemmer HP, Kachelrieß M, Sawall S. Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man. Z Med Phys 2022:S0939-3889(22)00066-6. [PMID: 35868888 DOI: 10.1016/j.zemedi.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022]
Abstract
X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - L Klein
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - M Finke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - G Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - C Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Materials Separation via the Matrix Method Employing Energy-Discriminating X-ray Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The majority of lab-based X-ray sources are polychromatic and are not easily tunable, which can make the 3D quantitative analysis of multi-component samples challenging. The lack of effective materials separation when using conventional X-ray tube sources has motivated the development of a number of potential solutions including the application of dual-energy X-ray computed tomography (CT) as well as the use of X-ray filters. Here, we demonstrate the simultaneous decomposition of two low-density materials via inversion of the linear attenuation matrices using data from the energy-discriminating PiXirad detector. A key application for this method is soft-tissue differentiation which is widely used in biological and medical imaging. We assess the effectiveness of this approach using both simulation and experiment noting that none of the materials investigated here incorporate any contrast enhancing agents. By exploiting the energy discriminating properties of the detector, narrow energy bands are created resulting in multiple quasi-monochromatic images being formed using a broadband polychromatic source. Optimization of the key parameters for materials separation is first demonstrated in simulation followed by experimental validation using a phantom test sample in 2D and a small-animal model in 3D.
Collapse
|
9
|
Liimatainen K, Latonen L, Valkonen M, Kartasalo K, Ruusuvuori P. Virtual reality for 3D histology: multi-scale visualization of organs with interactive feature exploration. BMC Cancer 2021; 21:1133. [PMID: 34686173 PMCID: PMC8539837 DOI: 10.1186/s12885-021-08542-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Virtual reality (VR) enables data visualization in an immersive and engaging manner, and it can be used for creating ways to explore scientific data. Here, we use VR for visualization of 3D histology data, creating a novel interface for digital pathology to aid cancer research. Methods Our contribution includes 3D modeling of a whole organ and embedded objects of interest, fusing the models with associated quantitative features and full resolution serial section patches, and implementing the virtual reality application. Our VR application is multi-scale in nature, covering two object levels representing different ranges of detail, namely organ level and sub-organ level. In addition, the application includes several data layers, including the measured histology image layer and multiple representations of quantitative features computed from the histology. Results In our interactive VR application, the user can set visualization properties, select different samples and features, and interact with various objects, which is not possible in the traditional 2D-image view used in digital pathology. In this work, we used whole mouse prostates (organ level) with prostate cancer tumors (sub-organ objects of interest) as example cases, and included quantitative histological features relevant for tumor biology in the VR model. Conclusions Our application enables a novel way for exploration of high-resolution, multidimensional data for biomedical research purposes, and can also be used in teaching and researcher training. Due to automated processing of the histology data, our application can be easily adopted to visualize other organs and pathologies from various origins. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08542-9.
Collapse
Affiliation(s)
- Kaisa Liimatainen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Masi Valkonen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Kimmo Kartasalo
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Pekka Ruusuvuori
- Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland. .,Cancer Research Unit and FICAN West Cancer Centre, Institute of Biomedicine, University of Turku and Turku University Hospital, FI-20014, Turku, Finland.
| |
Collapse
|
10
|
Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction. Sci Rep 2021; 11:20818. [PMID: 34675228 PMCID: PMC8531290 DOI: 10.1038/s41598-021-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens.
Collapse
|
11
|
Kunisch S, Blüml V, Schwaha T, Beisser CJ, Handschuh S, Lemell P. Digital dissection of the head of the frogs Calyptocephalella gayi and Leptodactylus pentadactylus with emphasis on the feeding apparatus. J Anat 2021; 239:391-404. [PMID: 33713453 PMCID: PMC8273601 DOI: 10.1111/joa.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022] Open
Abstract
Micro-computed tomography (microCT) of small animals has led to a more detailed and more accurate three-dimensional (3D) view on different anatomical structures in the last years. Here, we present the cranial anatomy of two frog species providing descriptions of bone structures and soft tissues of the feeding apparatus with comments to possible relations to habitat and feeding ecology. Calyptocephalella gayi, known for its aquatic lifestyle, is not restricted to aquatic feeding but also feeds terrestrially using lingual prehension. This called for a detailed investigation of the morphology of its feeding apparatus and a comparison to a fully terrestrial species that is known to feed by lingual prehension such as Leptodactylus pentadactylus. These two frog species are of similar size, feed on similar diet but within different main habitats. MicroCT scans of both species were conducted in order to reconstruct the complete anatomical condition of the whole feeding apparatus for the first time. Differences in this regard are evident in the tongue musculature, which in L. pentadactylus is more massively built and with a broader interdigitating area of the two main muscles, the protractor musculus genioglossus and the retractor musculus hyoglossus. In contrast, the hyoid retractor (m. sternohyoideus) is more massive in the aquatic species C. gayi. Moreover, due to the different skull morphology, the origins of two of the five musculi adductores vary between the species. This study brings new insights into the relation of the anatomy of the feeding apparatus to the preferred feeding method via 3D imaging techniques. Contrary to the terrestrially feeding L. pentadactylus, the skeletal and muscular adaptations of the aquatic species C. gayi provide a clear picture of necessities prescribed by the habitat. Nevertheless, by keeping a certain amount of flexibility of the design of its feeding apparatus, C. gayi is able to employ various methods of feeding.
Collapse
Affiliation(s)
- Stephanie Kunisch
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Valentin Blüml
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | - Thomas Schwaha
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| | | | | | - Patrick Lemell
- Department of Evolutionary BiologyFaculty of Life SciencesUniversity of ViennaViennaAustria
| |
Collapse
|
12
|
MicroCT as a Useful Tool for Analysing the 3D Structure of Lichens and Quantifying Internal Cephalodia in Lobaria pulmonaria. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High-resolution X-ray computer tomography (microCT) is a well-established technique to analyse three-dimensional microstructures in 3D non-destructive imaging. The non-destructive three-dimensional analysis of lichens is interesting for many reasons. The examination of hidden structural characteristics can, e.g., provide information on internal structural features (form and distribution of fungal-supporting tissue/hypha), gas-filled spaces within the thallus (important for gas exchange and, thus, physiological processes), or yield information on the symbiont composition within the lichen, e.g., the localisation and amount of additional cyanobacteria in cephalodia. Here, we present the possibilities and current limitations for applying conventional laboratory-based high-resolution X-ray computer tomography to analyse lichens. MicroCT allows the virtual 3D reconstruction of a sample from 2D X-ray projections and is helpful for the non-destructive analysis of structural characters or the symbiont composition of lichens. By means of a quantitative 3D image analysis, the volume of internal cephalodia is determined for Lobaria pulmonaria and the external cephalodia of Peltigera leucophlebia. Nevertheless, the need for higher-resolution tomography for more detailed studies is emphasised. Particular challenges are the large sizes of datasets to be analysed and the high variability of the lichen microstructures.
Collapse
|
13
|
Virtual non-contrast enhanced magnetic resonance imaging (VNC-MRI). Magn Reson Imaging 2021; 81:67-74. [PMID: 34119648 DOI: 10.1016/j.mri.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Application of contrast agents (CA) is widely used in various clinical fields like oncology. Similar to approaches used in computed tomography, virtual non-contrast enhanced (VNC) images can be generated with the goal to supersede true non-contrast enhanced (TNC) images. METHODS In MRI a T1-mapping sequence with variable flip angle (VFA) was used to acquire two images with different image contrast at the same time. To generate VNC images postprocessing based on this technique, an image-space based material decomposition algorithm was used. The inverse of a sensitivity matrix, consisting of intensity values for both VFA images and every material respectively, was used to determine the three material fractions and to calculate the final VNC images. The technique was tested on a 3 T scanner using a phantom and two in-vivo scans of patients with glioma and glioblastoma respectively. In all these cases the required six values were manually derived from the respective material or the background from both VFA images. RESULTS Postprocessing results of the phantom show that the chosen materials can be separated and visualized individually and unwanted materials can be suppressed. In the VNC images of in-vivo scans the signal of the CA is removed successfully. CONCLUSION It was shown that VNC images that match the visual impression of the TNC images can be generated, resulting in possibly reduced scan times and avoided mismatches due to movement of the patient.
Collapse
|
14
|
Sombke A, Müller CHG. When SEM becomes a deceptive tool of analysis: the unexpected discovery of epidermal glands with stalked ducts on the ultimate legs of geophilomorph centipedes. Front Zool 2021; 18:17. [PMID: 33879192 PMCID: PMC8056527 DOI: 10.1186/s12983-021-00402-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The jointed appendage is a key novelty in arthropod evolution and arthropod legs are known to vary enormously in relation to function. Among centipedes, the ultimate legs always are distinctly different from locomotory legs, and different centipede taxa evolved different structural and functional modifications. In Geophilomorpha (soil centipedes), ultimate legs do not participate in locomotion and were interpret to serve a sensory function. They can be sexually dimorphic and in some species, male ultimate legs notably appear "hairy". It can be assumed that the high abundance of sensilla indicates a pronounced sensory function. This study seeks for assessing the sensory diversity, however, documents the surprising and unique case of an extensive glandular epithelium in the ultimate legs of three phylogenetically distant species. RESULTS The tightly aggregated epidermal glands with stalked ducts - mistakenly thought to be sensilla - were scrutinized using a multimodal microscopic approach comprising histology as well as scanning and transmission electron microscopy in Haplophilus subterraneus. Hence, this is the first detailed account on centipede ultimate legs demonstrating an evolutionary transformation into a "secretory leg". Additionally, we investigated sensory structures as well as anatomical features using microCT analysis. Contrary to its nomination as a tarsus, tarsus 1 possesses intrinsic musculature, which is an indication that this podomere might be a derivate of the tibia. DISCUSSION The presence and identity of ultimate leg associated epidermal glands with stalked ducts is a new discovery for myriapods. A pronounced secretory as well as moderate sensory function in Haplophilus subterraneus can be concluded. The set of characters will improve future taxonomic studies, to test the hypotheses whether the presence of these specialized glands is a common feature in Geophilomorpha, and that tarsus 1 may be a derivate of the tibia. As the number of epidermal glands with stalked ducts is sexually dimorphic, their function might be connected to reproduction or a sex-specific defensive role. Our results, in particular the unexpected discovery of 'glandular hairs', may account for a striking example for how deceptive morphological descriptions of epidermal organs may be, if based on non-invasive techniques alone.
Collapse
Affiliation(s)
- Andy Sombke
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carsten H. G. Müller
- University of Greifswald, Zoological Institute and Museum, General and Systematic Zoology, Loitzer Straße 26, 17489 Greifswald, Germany
| |
Collapse
|
15
|
Günther B, Gradl R, Jud C, Eggl E, Huang J, Kulpe S, Achterhold K, Gleich B, Dierolf M, Pfeiffer F. The versatile X-ray beamline of the Munich Compact Light Source: design, instrumentation and applications. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1395-1414. [PMID: 32876618 PMCID: PMC7467334 DOI: 10.1107/s1600577520008309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 05/08/2023]
Abstract
Inverse Compton scattering provides means to generate low-divergence partially coherent quasi-monochromatic, i.e. synchrotron-like, X-ray radiation on a laboratory scale. This enables the transfer of synchrotron techniques into university or industrial environments. Here, the Munich Compact Light Source is presented, which is such a compact synchrotron radiation facility based on an inverse Compton X-ray source (ICS). The recent improvements of the ICS are reported first and then the various experimental techniques which are most suited to the ICS installed at the Technical University of Munich are reviewed. For the latter, a multipurpose X-ray application beamline with two end-stations was designed. The beamline's design and geometry are presented in detail including the different set-ups as well as the available detector options. Application examples of the classes of experiments that can be performed are summarized afterwards. Among them are dynamic in vivo respiratory imaging, propagation-based phase-contrast imaging, grating-based phase-contrast imaging, X-ray microtomography, K-edge subtraction imaging and X-ray spectroscopy. Finally, plans to upgrade the beamline in order to enhance its capabilities are discussed.
Collapse
Affiliation(s)
- Benedikt Günther
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Regine Gradl
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Christoph Jud
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Elena Eggl
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Juanjuan Huang
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Stephanie Kulpe
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Klaus Achterhold
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Bernhard Gleich
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Martin Dierolf
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
| | - Franz Pfeiffer
- Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Munich School of BioEngineering, Technical University of Munich, Boltzmannstraße 11, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|
16
|
Eberspächer-Schweda MC, Schmitt K, Handschuh S, Fuchs-Baumgartinger A, Reiter AM. Diagnostic Yield of Micro-Computed Tomography (micro-CT) Versus Histopathology of a Canine Oral Fibrosarcoma. J Vet Dent 2020; 37:14-21. [PMID: 32484022 DOI: 10.1177/0898756420926519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Micro-computed tomography (micro-CT) imaging currently gains increased interest in human as well as veterinary medicine. The ability to image 3-dimensional (3D) biopsy specimens nondestructively down to 1 µm spatial resolution makes it a promising tool for microscopic tissue evaluation in addition to histopathology. Visualizing tumor margins and calculating tumor load on 3D reconstructions may also enhance oncological therapies. The objective of this study was to describe the workflow from tumor resection to histopathological diagnosis, using both routine hematoxylin-eosin (HE)-stained sections and micro-CT tomograms on a stage II oral fibrosarcoma in a 7-year-old Hovawart dog. The maxillectomy specimen was fixed with formalin and stained with an X-ray dense soft tissue contrast agent. Micro-CT imaging was done using an ex vivo specimen micro-CT device. Tumor margins could not be exactly determined on micro-CT tomograms due to limited image resolution and contrast. Histopathology was performed after washing out the contrast agent. It showed neoplastic cells infiltrating the surrounding tissue further than assumed from micro-CT images. A total tumor volume of 10.3 cm3 could be calculated based on correlating micro-CT tomograms with HE-stained sections. This correlative approach may be of particular interest for oncological therapy. More than that, micro-CT imaging technology supported histopathology by means of 3D orientation and selection of slices to be cut on determining tumor margins. In this clinical case report, micro-CT imaging did not provide unambiguous clinical evidence for oncological decision-making, but it showed potential to support histopathology and calculate tumor volume for further clinical use.
Collapse
Affiliation(s)
- Matthias C Eberspächer-Schweda
- Dentistry and Oral Surgery Service, Clinic of Small Animal Surgery, Department of Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kira Schmitt
- Dentistry and Oral Surgery Service, Clinic of Small Animal Surgery, Department of Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephan Handschuh
- VetCore Facility for Research Imaging Unit, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Alexander M Reiter
- Dentistry and Oral Surgery Service, Section of Surgery, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Gabner S, Böck P, Fink D, Glösmann M, Handschuh S. The visible skeleton 2.0: phenotyping of cartilage and bone in fixed vertebrate embryos and foetuses based on X-ray microCT. Development 2020; 147:dev187633. [PMID: 32439754 DOI: 10.1242/dev.187633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/23/2020] [Indexed: 01/14/2023]
Abstract
For decades, clearing and staining with Alcian Blue and Alizarin Red has been the gold standard to image vertebrate skeletal development. Here, we present an alternate approach to visualise bone and cartilage based on X-ray microCT imaging, which allows the collection of genuine 3D data of the entire developing skeleton at micron resolution. Our novel protocol is based on ethanol fixation and staining with Ruthenium Red, and efficiently contrasts cartilage matrix, as demonstrated in whole E16.5 mouse foetuses and limbs of E14 chicken embryos. Bone mineral is well preserved during staining, thus the entire embryonic skeleton can be imaged at high contrast. Differences in X-ray attenuation of ruthenium and calcium enable the spectral separation of cartilage matrix and bone by dual energy microCT (microDECT). Clearing of specimens is not required. The protocol is simple and reproducible. We demonstrate that cartilage contrast in E16.5 mouse foetuses is adequate for fast visual phenotyping. Morphometric skeletal parameters are easily extracted. We consider the presented workflow to be a powerful and versatile extension to the toolkit currently available for qualitative and quantitative phenotyping of vertebrate skeletal development.
Collapse
Affiliation(s)
- Simone Gabner
- Histology and Embryology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Peter Böck
- Histology and Embryology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Dieter Fink
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinaärplatz 1, A-1210 Vienna, Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Stephan Handschuh
- VetCore Facility for Research/Imaging Unit, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
18
|
Schwarz D, Konow N, Roba YT, Heiss E. A salamander that chews using complex, three-dimensional mandible movements. J Exp Biol 2020; 223:jeb220749. [PMID: 31988164 DOI: 10.1242/jeb.220749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
Most non-mammal tetrapods have a hinge-like jaw operation restricted to vertical opening and closing movements. Many mammal jaw joints, by contrast, operate in more complex, three-dimensional (3D) ways, involving not only vertical but also propalinal (rostro-caudal) and transverse (lateral) movements. Data on intraoral food processing in lissamphibians and sauropsids has prompted a generally accepted view that these groups mostly swallow food unreduced, and that in those cases where lissamphibians and sauropsids chew, they mostly use simple vertical jaw movements for food processing. The exception to this generally accepted view is the occurrence of some propalinal chewing in sauropsids. We combined 3D kinematics and morphological analyses from biplanar high-speed video fluoroscopy and micro-computed tomography to determine how the paedomorphic salamander Siren intermedia treats captured food. We discovered not only that S. intermedia uses intraoral food processing but also that the elaborated morphology of its jaw joint facilitates mandibular motions in all three planes, resulting in complex 3D chewing. Thus, our data challenge the commonly held view that complex 3D chewing movements are exclusive to mammals, by suggesting that such mechanisms might have evolved early in the tetrapod evolution.
Collapse
Affiliation(s)
- Daniel Schwarz
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University of Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, MA 01854, USA
| | - Yonas Tolosa Roba
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University of Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Egon Heiss
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University of Jena, Erbertstrasse 1, 07743 Jena, Germany
| |
Collapse
|
19
|
Abstract
Recent developments within micro-computed tomography (μCT) imaging have combined to extend our capacity to image tissue in three (3D) and four (4D) dimensions at micron and sub-micron spatial resolutions, opening the way for virtual histology, live cell imaging, subcellular imaging and correlative microscopy. Pivotal to this has been the development of methods to extend the contrast achievable for soft tissue. Herein, we review the new capabilities within the field of life sciences imaging, and consider how future developments in this field could further benefit the life sciences community.
Collapse
Affiliation(s)
- Shelley D Rawson
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Jekaterina Maksimcuka
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Philip J Withers
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Sarah H Cartmell
- The Henry Royce Institute and School of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
20
|
Collins LT. The case for emulating insect brains using anatomical "wiring diagrams" equipped with biophysical models of neuronal activity. BIOLOGICAL CYBERNETICS 2019; 113:465-474. [PMID: 31696303 DOI: 10.1007/s00422-019-00810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Developing whole-brain emulation (WBE) technology would provide immense benefits across neuroscience, biomedicine, artificial intelligence, and robotics. At this time, constructing a simulated human brain lacks feasibility due to limited experimental data and limited computational resources. However, I suggest that progress toward this goal might be accelerated by working toward an intermediate objective, namely insect brain emulation (IBE). More specifically, this would entail creating biologically realistic simulations of entire insect nervous systems along with more approximate simulations of non-neuronal insect physiology to make "virtual insects." I argue that this could be realistically achievable within the next 20 years. I propose that developing emulations of insect brains will galvanize the global community of scientists, businesspeople, and policymakers toward pursuing the loftier goal of emulating the human brain. By demonstrating that WBE is possible via IBE, simulating mammalian brains and eventually the human brain may no longer be viewed as too radically ambitious to deserve substantial funding and resources. Furthermore, IBE will facilitate dramatic advances in cognitive neuroscience, artificial intelligence, and robotics through studies performed using virtual insects.
Collapse
Affiliation(s)
- Logan T Collins
- Department of Psychology and Neuroscience, University of Colorado, Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA.
| |
Collapse
|
21
|
Performance Evaluation of a Novel Preclinical Micro-CT System In Vitro and In Vivo. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech 2019; 82:812-848. [PMID: 30786098 DOI: 10.1002/jemt.23225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 12/25/2022]
Abstract
X-ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X-ray tomography is widely used for diagnostic purposes whose three-dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X-ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule-based and nanoparticle-based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.
Collapse
Affiliation(s)
- Mümin Mehmet Koç
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom.,Department of Physics, Kirklareli University, Kirklareli, Turkey
| | - Naim Aslan
- Department of Metallurgical and Materials Engineering, Munzur University, Tunceli, Turkey
| | - Alexander P Kao
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Asa H Barber
- School of Engineering, London South Bank University, London, United Kingdom
| |
Collapse
|
23
|
Müller M, Kimm MA, Ferstl S, Allner S, Achterhold K, Herzen J, Pfeiffer F, Busse M. Nucleus-specific X-ray stain for 3D virtual histology. Sci Rep 2018; 8:17855. [PMID: 30552357 PMCID: PMC6294809 DOI: 10.1038/s41598-018-36067-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Histological investigations are indispensable with regards to the identification of structural tissue details but are limited to two-dimensional images, which are often visualized in one and the same plane for comparison reasons. Nondestructive three-dimensional technologies such as X-ray micro- and nanoCT have proven to provide valuable benefits for the understanding of anatomical structures as they allow visualization of structural details in 3D and from arbitrary viewing angles. Nevertheless, low attenuation of soft tissue has hampered their application in the field of 3D virtual histology. We present a hematein-based X-ray staining method that specifically targets the cell nuclei of cells, as demonstrated for a whole liver lobule of a mouse. Combining the novel staining protocol with the high resolving power of a recently developed nanoCT system enables the 3D visualization of tissue architecture in the nanometer range, thereby revealing the real 3D morphology and spatial distribution of the cell nuclei. Furthermore, our technique is compatible with conventional histology, as microscopic slides can be derived from the very same stained soft-tissue sample and further counter staining is possible. Thus, our methodology demonstrates future applicability for modern histopathology using laboratory X-ray CT devices.
Collapse
Affiliation(s)
- Mark Müller
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
| | - Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Simone Ferstl
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Sebastian Allner
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Julia Herzen
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Madleen Busse
- Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
| |
Collapse
|
24
|
Glueckert R, Johnson Chacko L, Schmidbauer D, Potrusil T, Pechriggl EJ, Hoermann R, Brenner E, Reka A, Schrott-Fischer A, Handschuh S. Visualization of the Membranous Labyrinth and Nerve Fiber Pathways in Human and Animal Inner Ears Using MicroCT Imaging. Front Neurosci 2018; 12:501. [PMID: 30108474 PMCID: PMC6079228 DOI: 10.3389/fnins.2018.00501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Design and implantation of bionic implants for restoring impaired hair cell function relies on accurate knowledge about the microanatomy and nerve fiber pathways of the human inner ear and its variation. Non-destructive isotropic imaging of soft tissues of the inner ear with lab-based microscopic X-ray computed tomography (microCT) offers high resolution but requires contrast enhancement using compounds with high X-ray attenuation. We evaluated different contrast enhancement techniques in mice, cat, and human temporal bones to differentially visualize the membranous labyrinth, sensory epithelia, and their innervating nerves together with the facial nerve and middle ear. Lugol’s iodine potassium iodine (I2KI) gave high soft tissue contrast in ossified specimens but failed to provide unambiguous identification of smaller nerve fiber bundles inside small bony canals. Fixation or post-fixation with osmium tetroxide followed by decalcification in EDTA provided superior contrast for nerve fibers and membranous structures. We processed 50 human temporal bones and acquired microCT scans with 15 μm voxel size. Subsequently we segmented sensorineural structures and the endolymphatic compartment for 3D representations to serve for morphometric variation analysis. We tested higher resolution image acquisition down to 3.0 μm voxel size in human and 0.5 μm in mice, which provided a unique level of detail and enabled us to visualize single neurons and hair cells in the mouse inner ear, which could offer an alternative quantitative analysis of cell numbers in smaller animals. Bigger ossified human temporal bones comprising the middle ear and mastoid bone can be contrasted with I2KI and imaged in toto at 25 μm voxel size. These data are suitable for surgical planning for electrode prototype placements. A preliminary assessment of geometric changes through tissue processing resulted in 1.6% volume increase caused during decalcification by EDTA and 0.5% volume increase caused by partial dehydration to 70% ethanol, which proved to be the best mounting medium for microCT image acquisition.
Collapse
Affiliation(s)
- Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Schmidbauer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Biotechnology and Food Engineering, Management Center Innsbruck (MCI), Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Romed Hoermann
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Brenner
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Alen Reka
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Stephan Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
25
|
Schwaha TF, Handschuh S, Ostrovsky AN, Wanninger A. Morphology of the bryozoan Cinctipora elegans (Cyclostomata, Cinctiporidae) with first data on its sexual reproduction and the cyclostome neuro-muscular system. BMC Evol Biol 2018; 18:92. [PMID: 29898669 PMCID: PMC6000935 DOI: 10.1186/s12862-018-1206-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/31/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cyclostome bryozoans are an ancient group of marine colonial suspension-feeders comprising approximately 700 extant species. Previous morphological studies are mainly restricted to skeletal characters whereas data on soft tissues obtained by state-of-the-art methods are still lacking. In order to contribute to issues related to cyclostome ground pattern reconstruction, we analyzed the morphology of the neuromuscular system Cinctipora elegans by means of immunocytochemical staining, confocal laser scanning microscopy, histological sections and microCT imaging. RESULTS Polypides of C. elegans are located in elongated tubular skeletal cystids. Distally, the orifice leads into a prominent vestibulum which is lined by an epithelium that joins an almost complete perimetrical attachment organ, both containing radially arranged neurite bundles and muscles. Centrally, the prominent atrial sphincter separates the vestibulum from the atrium. The latter is enclosed by the tentacle sheath which contains few longitudinal muscle fibers and two principal neurite bundles. These emerge from the cerebral ganglion, which is located at the lophophoral base. Lateral ganglia are located next to the cerebral ganglion from which the visceral neurite bundles emerge that extend proximally towards the foregut. There are four tentacle neurite bundles that emerge from the ganglia and the circum-oral nerve ring, which encompasses the pharynx. The tentacles possess two striated longitudinal muscles. Short buccal dilatators are situated at the lophophoral base and short muscular sets are present at the abfrontal and frontal side of the tentacle base. The pharynx is myoepithelial and triradiate in cross-section. Oocytes are found inside the pharyngeal myoepithelium. The digestive tract contains dense circular musculature and few longitudinal muscles. The membranous sac contains regular, thin, circular and diagonal muscles and neurites in its epithelial lining. CONCLUSIONS The general structure of the neuro-muscular system is more reminiscent of the condition found in Gymnolaemata rather than Phylactolaemata, which supports a close relationship between Cyclostomata and Gymnolaemata. Several characters of C. elegans such as the lateral ganglia or loss of the cardia are probably apomorphic for this species. For the first time, oocytes that surprisingly develop in the pharyngeal wall are reported for this species.
Collapse
Affiliation(s)
- Thomas F. Schwaha
- Faculty of Life Sciences, Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Stephan Handschuh
- VetCore Facility for Research, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Andrew N. Ostrovsky
- Faculty of Earth Sciences, Geography and Astronomy, Department of Palaeontology, University of Vienna, Geozentrum, Althanstraße 14, 1090 Vienna, Austria
- Faculty of Biology, Department of Invertebrate Zoology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034 Saint Petersburg, Russia
| | - Andreas Wanninger
- Faculty of Life Sciences, Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
26
|
Martins de Souza E Silva J, Utsch J, Kimm MA, Allner S, Epple MF, Achterhold K, Pfeiffer F. Dual-energy micro-CT for quantifying the time-course and staining characteristics of ex-vivo animal organs treated with iodine- and gadolinium-based contrast agents. Sci Rep 2017; 7:17387. [PMID: 29234002 PMCID: PMC5727238 DOI: 10.1038/s41598-017-17064-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
Chemical staining of soft-tissues can be used as a strategy to increase their low inherent contrast in X-ray absorption micro-computed tomography (micro-CT), allowing to obtain fast three-dimensional structural information of animal organs. Though some staining agents are commonly used in this context, little is known about the staining agents' ability to stain specific types of tissues; the times necessary to provide a sufficient contrast; and the effect of staining solution in distorting the tissue. Here we contribute to studies of animal organs (mouse heart and lungs) using staining combined with dual-energy micro-CT (DECT). DECT was used in order to obtain an additional quantitative measure for the amount of staining agents within the sample in 3D maps. Our results show that the two staining solutions used in this work diffuse differently in the tissues studied, the staining times of some tens of minutes already produce high-quality micro-CT images and, at the concentrations applied in this work, the staining solutions tested do not cause relevant tissue distortions. While one staining solution provides images of the general morphology of the organs, the other reveals organs' features in the order of a hundred micrometers.
Collapse
Affiliation(s)
- Juliana Martins de Souza E Silva
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
- Institute of Physics, Martin Luther University, Halle-Wittenberg, Germany.
| | - Julian Utsch
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
| | - Sebastian Allner
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Michael F Epple
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, 81675, München, Germany
- Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|