1
|
Peng D, Wang L, Fang Y, Lu L, Li Z, Jiang S, Chen J, Aschner M, Li S, Jiang Y. Lead exposure induces neurodysfunction through caspase-1-mediated neuronal pyroptosis. ENVIRONMENTAL RESEARCH 2024; 255:119210. [PMID: 38795947 DOI: 10.1016/j.envres.2024.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Leilei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Siyang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Dahleh MMM, Mello CF, Ferreira J, Rubin MA, Prigol M, Guerra GP. CaMKIIα mediates spermidine-induced memory enhancement in rats: A potential involvement of PKA/CREB pathway. Pharmacol Biochem Behav 2024; 240:173774. [PMID: 38648866 DOI: 10.1016/j.pbb.2024.173774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.
Collapse
Affiliation(s)
- Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Carlos Fernando Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Juliano Ferreira
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maribel Antonello Rubin
- Programa de Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Neuropsicofarmacologia Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio, Universidade Federal do Pampa - Campus Itaqui, 97650-000, Itaqui, RS, Brazil.
| |
Collapse
|
3
|
Latif‐Hernandez A, Yang T, Butler RR, Losada PM, Minhas PS, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson KI, Wyss‐Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. Alzheimers Dement 2024; 20:4434-4460. [PMID: 38779814 PMCID: PMC11247716 DOI: 10.1002/alz.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aβ) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION BD10-2 prevented APPL/S/Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.
Collapse
Affiliation(s)
- Amira Latif‐Hernandez
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Tao Yang
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Robert R. Butler
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Patricia Moran Losada
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Paras S. Minhas
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Halle White
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Kevin C. Tran
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Harry Liu
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Danielle A. Simmons
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Vanessa Langness
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Katrin I. Andreasson
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- The Phil and Penny Knight Initiative for Brain ResilienceStanford UniversityStanfordCaliforniaUSA
| | - Frank M. Longo
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
4
|
Latif-Hernandez A, Yang T, Raymond-Butler R, Losada PM, Minhas P, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson K, Wyss-Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558138. [PMID: 37781573 PMCID: PMC10541128 DOI: 10.1101/2023.09.18.558138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introduction TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-β (Aβ)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions BD10-2 prevented APP L/S /Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.
Collapse
|
5
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
7
|
The Calcium/Calmodulin-Dependent Kinases II and IV as Therapeutic Targets in Neurodegenerative and Neuropsychiatric Disorders. Int J Mol Sci 2021; 22:ijms22094307. [PMID: 33919163 PMCID: PMC8122486 DOI: 10.3390/ijms22094307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
CaMKII and CaMKIV are calcium/calmodulin-dependent kinases playing a rudimentary role in many regulatory processes in the organism. These kinases attract increasing interest due to their involvement primarily in memory and plasticity and various cellular functions. Although CaMKII and CaMKIV are mostly recognized as the important cogs in a memory machine, little is known about their effect on mood and role in neuropsychiatric diseases etiology. Here, we aimed to review the structure and functions of CaMKII and CaMKIV, as well as how these kinases modulate the animals’ behavior to promote antidepressant-like, anxiolytic-like, and procognitive effects. The review will help in the understanding of the roles of the above kinases in the selected neurodegenerative and neuropsychiatric disorders, and this knowledge can be used in future drug design.
Collapse
|
8
|
Yamada Y, Yoshikawa T, Naganuma F, Kikkawa T, Osumi N, Yanai K. Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology 2020; 175:108179. [DOI: 10.1016/j.neuropharm.2020.108179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 01/31/2023]
|
9
|
Fang X, Tang W, Yang F, Lu W, Cai J, Ni J, Zhang J, Tang W, Li T, Zhang DF, Zhang C. A Comprehensive Analysis of the CaMK2A Gene and Susceptibility to Alzheimer's Disease in the Han Chinese Population. Front Aging Neurosci 2019; 11:84. [PMID: 31031618 PMCID: PMC6470288 DOI: 10.3389/fnagi.2019.00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/26/2019] [Indexed: 02/05/2023] Open
Abstract
There is ample evidence suggesting that calcium/calmodulin-dependent protein kinase II alpha (CaMK2A) may play an important role in the pathophysiology of Alzheimer’s disease (AD). This genetic study aimed to investigate whether CaMK2A confers susceptibility to the development of AD in the Han Chinese population. A total of seven single nucleotide polymorphisms (SNPs) within CaMK2A were screened in two independent cohorts from southwestern China (333 AD patients and 334 controls) and eastern China (382 AD patients and 426 controls) to discern the potential association between this gene and AD. In addition, a cross-platform normalized expression resource was used to investigate whether CaMK2A is differentially expressed in the brain between individuals with AD and the controls. In addition, expression quantitative trait loci (eQTL) analysis was used to explore the differences in CaMK2A expression in the brain among different genotypes. The cross-platform normalized data showed significant differences in CaMK2A expression in the hippocampus, entorhinal cortex and temporal cortex between the AD patients and the control subjects (|log FC| > 0.1, P < 0.05); however, only the differences in the hippocampus and temporal cortex remained after the multiple comparisons correction [false discovery rate (FDR)-corrected, P < 0.05]. The frequency of the rs4958445 genotype was significantly different between the AD subjects and the controls from southwestern China (P = 0.013, P = 0.034 after FDR correction). When the two samples were combined, rs4958445 still showed a significant association with AD (P = 0.044). Haplotype analysis indicated that the T-A-C-A-T-C-C and T-G-C-A-T-C-C haplotypes in the southwestern cohort and the T-G-C-G-C-T-C haplotype in the eastern cohort, consisting of rs10051644, rs6869634, rs3797617, rs3756577, rs4958445, rs10515639 and rs6881743, showed a significant association with AD (P = 0.037, P = 0.026 and P = 0.045, respectively). Furthermore, the brain eQTL analysis revealed a significant association between the rs4958445 polymorphism and CaMK2A expression in the inferior olivary nucleus (P = 0.029). Our results suggest an important role for CaMK2A in the pathophysiology of AD in the Han Chinese population, especially the southwestern population.
Collapse
Affiliation(s)
- Xinyu Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fuyin Yang
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weihong Lu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianliang Ni
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | | | - Wenxin Tang
- Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Tao Li
- Huaxi Brain Research Centre, West China Hospital, Sichuan University, Sichuan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Paeonol promotes hippocampal synaptic transmission: The role of the Kv2.1 potassium channel. Eur J Pharmacol 2018; 827:227-237. [PMID: 29550337 DOI: 10.1016/j.ejphar.2018.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
Paeonol is a major constituent of the Chinese herb Moutan cortex radices. Recent studies report that paeonol has neuroprotective effects and improves impaired learning and memory. However, its underlying mechanisms by which paeonol contributes to synaptic transmission remain unclear. In this study, we found that paeonol increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs), but had no effect on the amplitude in rat hippocampal CA1 neurons. Similarly, the acetylcholinesterase (AChE) inhibitor rivastigmine increased the frequency of mEPSCs, but had no effect upon amplitude in rat hippocampal neurons. Rivastigmine also inhibited the delayed outward K+ currents in rat hippocampal CA1 neurons, but had no effect in nucleus ambiguus (NA) neurons. The Kv2 blocker guangxitoxin-1E increased the frequency of both mEPSCs and sEPSCs of rat hippocampal CA1 neurons, without affecting their amplitude. Our results suggest that paeonol and rivastigmine enhance spontaneous presynaptic transmitter release, which may be associated with the inhibition of the hippocampal Kv2 current and with therapeutic potential in neurotransmitter deficits found in Alzheimer's disease (AD). Moreover, our data also show that paeonol protects against Aβ25-35-induced impairment of long-term potentiation (LTP) in mouse hippocampal neurons. However, guangxitoxin-1E failed to potentiate the evoked field excitatory postsynaptic potentials (fEPSPs), LTP and Aβ25-35-induced impairment of LTP. These results indicate that paeonol may has the potential to improve learning and memory in AD. Interestingly, this effect is not involved in the inhibition of the hippocampal Kv2 current.
Collapse
|
11
|
Two cholinesterase inhibitors trigger dissimilar effects on behavior and body weight in C57BL/6 mice: The case of chlorpyrifos and rivastigmine. Behav Brain Res 2017; 318:1-11. [DOI: 10.1016/j.bbr.2016.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023]
|
12
|
The olfactory bulbectomized rat as a model of depression: The hippocampal pathway. Behav Brain Res 2016; 317:562-575. [PMID: 27633561 DOI: 10.1016/j.bbr.2016.09.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 01/07/2023]
Abstract
In rodents, the removal of the olfactory bulbs (OBs), i.e. olfactory bulbectomy (OBX), results in numerous alterations in neurotransmitter, endocrine and immune systems, as well as behavioral changes, similar to those observed in depressed patients. Because the behavioral deficits induced in OBX animals are reversed after repeated administration of antidepressants, this is a model often used to test the effectiveness of putative antidepressant agents. Recent evidence suggests that OBX results in the dysfunction of various cellular processes within the hippocampus, including decreases in dentate gyrus neurogenesis, disruption in long-term potentiation in CA1 and CA3 subregions and neuronal atrophy in the CA1 subregion, along with downstream markers, all of which are consistent with abnormal neuronal activity in the hippocampus of clinically depressed populations. Moreover, repeated administration of novel natural and synthetic antidepressant compounds can improve certain aspects of depression-like behavior and hippocampal function. In an effort to bring together the existing literature, this review will focus on the mechanisms by which proposed pharmaceuticals impact hippocampal-dependent processes and behavior.
Collapse
|
13
|
Hu A, Yuan H, Wu L, Chen R, Chen Q, Zhang T, Wang Z, Liu P, Zhu X. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice. Brain Res 2016; 1631:204-13. [DOI: 10.1016/j.brainres.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022]
|
14
|
Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection. Sci Rep 2015; 5:14728. [PMID: 26423766 PMCID: PMC4589734 DOI: 10.1038/srep14728] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 07/22/2015] [Indexed: 12/20/2022] Open
Abstract
AMPK is a serine/threonine protein kinase that acts as a positive regulator of autophagy, by phosphorylating ULK1 at specific sites. A previous study demonstrated activation of the macroautophagic system in scrapie-infected experimental rodents and in certain human prion diseases, in which the essential negative regulator mTOR is severely inhibited. In this study, AMPK and ULK1 in the brains of hamsters infected with scrapie strain 263 K and in the scrapie-infected cell line SMB-S15 were analysed. The results showed an up-regulated trend of AMPK and AMPK-Thr172, ULK1 and ULK1-Ser555. Increases in brain AMPK and ULK1 occurred at an early stage of agent 263 K infection. The level of phosphorylated ULK1-Ser757 decreased during mid-infection and was only negligibly present at the terminal stage, a pattern that suggested a close relationship of the phosphorylated protein with altered endogenous mTOR. In addition, the level of LKB1 associated with AMPK activation was selectively increased at the early and middle stages of infection. Knockdown of endogenous ULK1 in SMB-S15 cells inhibited LC3 lipidation. These results showed that, in addition to the abolishment of the mTOR regulatory pathway, activation of the AMPK-ULK1 pathway during prion infection contributes to autophagy activation in prion-infected brain tissues.
Collapse
|
15
|
Ataei N, Sabzghabaee AM, Movahedian A. Calcium/Calmodulin-dependent Protein Kinase II is a Ubiquitous Molecule in Human Long-term Memory Synaptic Plasticity: A Systematic Review. Int J Prev Med 2015; 6:88. [PMID: 26445635 PMCID: PMC4587077 DOI: 10.4103/2008-7802.164831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/15/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Long-term memory is based on synaptic plasticity, a series of biochemical mechanisms include changes in structure and proteins of brain's neurons. In this article, we systematically reviewed the studies that indicate calcium/calmodulin kinase II (CaMKII) is a ubiquitous molecule among different enzymes involved in human long-term memory and the main downstream signaling pathway of long-term memory. METHODS All of the observational, case-control and review studies were considered and evaluated by the search engines PubMed, Cochrane Central Register of Controlled Trials and ScienceDirect Scopus between 1990 and February 2015. We did not carry out meta-analysis. RESULTS At the first search, it was fined 1015 articles which included "synaptic plasticity" OR "neuronal plasticity" OR "synaptic density" AND memory AND "molecular mechanism" AND "calcium/calmodulin-dependent protein kinase II" OR CaMKII as the keywords. A total of 335 articles were duplicates in the databases and eliminated. A total of 680 title articles were evaluated. Finally, 40 articles were selected as reference. CONCLUSIONS The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory.
Collapse
Affiliation(s)
- Negar Ataei
- Student Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Mohammad Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 2014; 144:1637-41. [PMID: 25056690 DOI: 10.3945/jn.114.196105] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.
Collapse
Affiliation(s)
- Takeo Yoshikawa
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tadaho Nakamura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | | | - Mayu Sugita
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Fumito Naganuma
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Tomomitsu Iida
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Yamato Miura
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Attayeb Mohsen
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| |
Collapse
|